材料力学性能 ppt课件
合集下载
材料力学性能课件

温度与环境因素
应变速率与加载路径
应变速率和加载路径对材料的力学响 应具有重要影响,特别是在动态加载 条件下。
温度、湿度、腐蚀等环境因素对材料 的强度和塑性也有影响。
03 材料的硬度与韧性
硬度定义与分类
硬度定义
硬度是指材料抵抗被压入或刻划的能力。它是材料表面局部区域抵抗变形或破裂 的能力。
硬度分类
塑性ห้องสมุดไป่ตู้类
根据塑性变形的性质,可分为延性、 展性、韧性等。
强度与塑性的关系
01
强度与塑性相互关联,塑性好的 材料通常强度也较高,但两者之 间并非完全正相关。
02
在一定条件下,材料的强度和塑 性可能存在此消彼长的关系。
强度与塑性的影响因素
材料成分与组织结构
材料的化学成分和微观组织结构对其 力学性能有显著影响。
冲击试验
通过冲击试样来测定材料的冲击韧性、断裂 韧性等参数,适用于评估材料的韧性和脆性 断裂行为。
D
02 材料的强度与塑性
强度定义与分类
强度定义
材料抵抗外力而不发生失效的能力。
强度分类
根据外力类型,可分为抗拉强度、抗压强度、抗剪强度等。
塑性定义与分类
塑性定义
材料在外力作用下发生不可逆变形的 能力。
材料力学性能的测试方法
A
拉伸试验
通过拉伸试样来测定材料的弹性模量、屈服强 度、抗拉强度等参数,是最常用的力学性能测 试方法之一。
压缩试验
通过压缩试样来测定材料的抗压强度、弹 性模量等参数,适用于脆性材料和塑性材 料的测试。
B
C
弯曲试验
通过弯曲试样来测定材料的抗弯强度、挠度 等参数,适用于评估材料的弯曲性能和稳定 性。
金属材料的力学性能-课件

❖ 金属材料旳力学性能是指在承受多种外加载荷(拉 伸、压缩、弯曲、扭转、冲击、交变应力等)时, 对变形与断裂旳抵抗能力及发生变形旳能力。
强度与塑性
❖ 强度是指金属材料在静载荷作用下,抵抗塑性 变形和断裂旳能力。
❖ 塑性是指金属材料在静载荷作用下产生塑性变 形而不致引起破坏旳能力。
❖ 金属材料旳强度和塑性旳判据可经过拉伸试验 测定。
断后伸长率( δ )
l1-l0
δ=
×100%
l0
l1——试样拉断后旳标距,mm; l0——试样旳原始标距,mm。
断面收缩率(ψ)
ψ= S0-S1 ×100% S0
S0——试样原始横截面积,mm2; S1——颈缩处旳横截面积,mm2 。
屈服现象
❖ 在金属拉伸试验过程中, 当应力超出弹性极限后, 变形增长较快,此时除 了弹性变形外,还产生 部分塑性变形。当外力 增长到一定数值时忽然 下降,随即,在外力不 增长或上下波动情况下, 试样继续伸长变形,在 力-伸长曲线出现一种 波动旳小平台,这便是 屈服现象。
强度
屈服点
在伸长过程中力不增长(保持恒定),试样仍能继续
伸长时旳应力,单位为MPa,即:
S
FS Ao
式中:Fs——材料屈服时旳拉伸力,( N ); Ao——试样原始截面积,( mm2 )。
要求残余延伸强度
❖ 对于高碳淬火钢、铸铁等材料,在拉伸试验 中没有明显旳屈服现象,无法拟定其屈服强 度。
❖ 国标GB228-2023要求,一般要求以试样到 达一定残余伸长率相应旳应力作为材料旳屈 服强度,称为要求残余延伸强度,一般记作 Rr。例如Rr0.2表达残余伸长率为0.2%时旳 应力。
要求残余延伸应力
F0.2 A0
强度与塑性
❖ 强度是指金属材料在静载荷作用下,抵抗塑性 变形和断裂旳能力。
❖ 塑性是指金属材料在静载荷作用下产生塑性变 形而不致引起破坏旳能力。
❖ 金属材料旳强度和塑性旳判据可经过拉伸试验 测定。
断后伸长率( δ )
l1-l0
δ=
×100%
l0
l1——试样拉断后旳标距,mm; l0——试样旳原始标距,mm。
断面收缩率(ψ)
ψ= S0-S1 ×100% S0
S0——试样原始横截面积,mm2; S1——颈缩处旳横截面积,mm2 。
屈服现象
❖ 在金属拉伸试验过程中, 当应力超出弹性极限后, 变形增长较快,此时除 了弹性变形外,还产生 部分塑性变形。当外力 增长到一定数值时忽然 下降,随即,在外力不 增长或上下波动情况下, 试样继续伸长变形,在 力-伸长曲线出现一种 波动旳小平台,这便是 屈服现象。
强度
屈服点
在伸长过程中力不增长(保持恒定),试样仍能继续
伸长时旳应力,单位为MPa,即:
S
FS Ao
式中:Fs——材料屈服时旳拉伸力,( N ); Ao——试样原始截面积,( mm2 )。
要求残余延伸强度
❖ 对于高碳淬火钢、铸铁等材料,在拉伸试验 中没有明显旳屈服现象,无法拟定其屈服强 度。
❖ 国标GB228-2023要求,一般要求以试样到 达一定残余伸长率相应旳应力作为材料旳屈 服强度,称为要求残余延伸强度,一般记作 Rr。例如Rr0.2表达残余伸长率为0.2%时旳 应力。
要求残余延伸应力
F0.2 A0
材料力学性能教学课件材料的断裂韧性

材料力学性能教学 课件ppt材料的断裂 韧性
目 录
• 引言 • 材料断裂韧性基础知识 • 材料断裂韧性分析 • 断裂韧性在工程中的应用 • 案例分析 • 结论与展望
01
引言
课程背景
材料力学性能是工程学科中的重要基础课程,而材料的断裂 韧性是其中的一个关键概念。通过学习本课程,学生将了解 材料的力学性能及其在工程实践中的应用。
应力状态
断裂韧性测试中,试样处于平 面应变状态,即应变在试样宽 度和厚度方向均匀分布。
断裂准则
当试样在断裂前达到最大载荷 时,根据应力强度因子或能量 释放率等参数确定材料的断裂
韧性值。
断裂韧性影响因素
01
02
03
04
温度
温度对材料的断裂韧性有显著 影响。随着温度的降低,材料
的断裂韧性通常提高。
应变速率
03
复合材料的断裂韧性通常通过实验测试获得,如弯曲试验、拉伸试验和落锤冲 击试验等。这些测试可以提供关于复合材料韧性和脆性的详细信息,有助于优 化复合材料的设计和应用性能。
04
断裂韧性在工程中的应用
结构安全设计
结构安全是工程设计中的重要考虑因素,而材料的断裂韧 性直接影响到结构的承载能力和安全性。在结构设计中, 需要考虑材料的断裂韧性,以确保结构在受到外力作用时 能够承受足够的应力而不会发生断裂。
04
加强断裂韧性与其他材料性能指标之间的关联研究,深入理解材料的 多性能耦合效应,为材料的多功能优化提供理论支持。
感谢观看
THANKS
层合板复合材料案例
03
层合板复合材料的断裂韧性受层间粘结强度、层数和铺层角度
等因素影响。
06
结论与展望
断裂韧性的重要性
目 录
• 引言 • 材料断裂韧性基础知识 • 材料断裂韧性分析 • 断裂韧性在工程中的应用 • 案例分析 • 结论与展望
01
引言
课程背景
材料力学性能是工程学科中的重要基础课程,而材料的断裂 韧性是其中的一个关键概念。通过学习本课程,学生将了解 材料的力学性能及其在工程实践中的应用。
应力状态
断裂韧性测试中,试样处于平 面应变状态,即应变在试样宽 度和厚度方向均匀分布。
断裂准则
当试样在断裂前达到最大载荷 时,根据应力强度因子或能量 释放率等参数确定材料的断裂
韧性值。
断裂韧性影响因素
01
02
03
04
温度
温度对材料的断裂韧性有显著 影响。随着温度的降低,材料
的断裂韧性通常提高。
应变速率
03
复合材料的断裂韧性通常通过实验测试获得,如弯曲试验、拉伸试验和落锤冲 击试验等。这些测试可以提供关于复合材料韧性和脆性的详细信息,有助于优 化复合材料的设计和应用性能。
04
断裂韧性在工程中的应用
结构安全设计
结构安全是工程设计中的重要考虑因素,而材料的断裂韧 性直接影响到结构的承载能力和安全性。在结构设计中, 需要考虑材料的断裂韧性,以确保结构在受到外力作用时 能够承受足够的应力而不会发生断裂。
04
加强断裂韧性与其他材料性能指标之间的关联研究,深入理解材料的 多性能耦合效应,为材料的多功能优化提供理论支持。
感谢观看
THANKS
层合板复合材料案例
03
层合板复合材料的断裂韧性受层间粘结强度、层数和铺层角度
等因素影响。
06
结论与展望
断裂韧性的重要性
材料力学性能教学课件材料的摩擦与磨损性能

通过选用合适的材料、表面处理、润滑和改善工艺等措施来改善材料的摩擦 与磨损性能,并延长材料的使用寿命。
结论及展望
通过对材料的摩擦与磨损性能的深入研究,可以为材料的选择和应用提供科学依据,进一步提高材料的性能和可靠 性。
金属材料
金属材料通常具有较高的摩擦系数,但也可以通过表面处理和润滑来减少磨损。
聚合物材料
聚合物材料具有较低的摩擦系数,但其耐磨性能相对较差。
陶瓷材料
陶瓷材料通常具有较低的摩擦系数和较高的耐磨性能,但也容易产生表面粉化。
影响摩擦与磨损的因素
1 接触压力
增加接触压力会增加摩擦力和磨损。
3 温度
高温环境下摩擦和磨损会加剧。
2 表面粗糙度
粗糙表面会增加摩擦力和磨损。
摩擦与磨损的测试方法
1
磨损实验
2
使用特定装置和试样进行磨损实验,以获得
材料的磨损特性和性能。
3
滑动摩擦测试
通过模拟实际工况下的滑动摩擦来评估材料 的摩擦和磨损性能。
表面分析
通过观察和分析材料表面的变化,了解摩擦 和磨损的影响。
改善材料的摩擦与磨损性能的 措施
材料力学性能教学课件 PPT材料的摩擦与磨损性 能
在本课程中,我们将探讨材料的摩擦与磨损性能。了解摩擦力与摩擦系数的 含义,并分析擦力与磨损之间的相互作用。探讨不同材料之间的摩擦和 磨损的特点,以及它们对材料性能和寿命的影响。
常见材料的摩擦与磨损性能比较
结论及展望
通过对材料的摩擦与磨损性能的深入研究,可以为材料的选择和应用提供科学依据,进一步提高材料的性能和可靠 性。
金属材料
金属材料通常具有较高的摩擦系数,但也可以通过表面处理和润滑来减少磨损。
聚合物材料
聚合物材料具有较低的摩擦系数,但其耐磨性能相对较差。
陶瓷材料
陶瓷材料通常具有较低的摩擦系数和较高的耐磨性能,但也容易产生表面粉化。
影响摩擦与磨损的因素
1 接触压力
增加接触压力会增加摩擦力和磨损。
3 温度
高温环境下摩擦和磨损会加剧。
2 表面粗糙度
粗糙表面会增加摩擦力和磨损。
摩擦与磨损的测试方法
1
磨损实验
2
使用特定装置和试样进行磨损实验,以获得
材料的磨损特性和性能。
3
滑动摩擦测试
通过模拟实际工况下的滑动摩擦来评估材料 的摩擦和磨损性能。
表面分析
通过观察和分析材料表面的变化,了解摩擦 和磨损的影响。
改善材料的摩擦与磨损性能的 措施
材料力学性能教学课件 PPT材料的摩擦与磨损性 能
在本课程中,我们将探讨材料的摩擦与磨损性能。了解摩擦力与摩擦系数的 含义,并分析擦力与磨损之间的相互作用。探讨不同材料之间的摩擦和 磨损的特点,以及它们对材料性能和寿命的影响。
常见材料的摩擦与磨损性能比较
材料的力学性能课件06_缺口试样

缺口试样的静拉伸试验 缺口试样偏斜拉伸试验 缺口试样的静弯曲试验 缺口试样冲击试验 缺口试样疲劳试验
缺口敏感性试验
在缺口试样试验 中,缺口的几何形状、 大小是一个很重要的影 响因素。缺口几何参数 通常包括缺口深度t、 缺口根部曲率半径ρ以 及缺口张角ω。
缺口敏感性试验-缺口试样的静拉伸
由于断裂韧度有多种不同的定义方式,包括Kc、Gc、Jc、δc等,加之材
料的特性不同,测试方法也有很多种。其中最重要的就是平面应变断裂
韧度KⅠc的测定,这已在工程实践当中有着重要的应用。
不同于缺口敏感性试验,该类试验重在分析缺口试样局部区域的力学行 为,因此对试样尺寸有着严格要求,一定要符合理论计算模型的要求。
断裂韧度测定试验-KⅠc的测定
测定KIC用的试样尺寸 必须保证裂纹顶端处
于平面应变及小范围 屈服状态
断裂韧度测定试验-KⅠc的测定
断裂韧度测定试验-KⅠc的测定
三点弯曲试样加载时,裂纹尖端的应力强度因子KI为:
紧凑拉伸试样加载时,裂纹尖端的应力强度因子KI为:
将当前B、W条件下裂纹失稳扩展的临界载荷FQ及试样的裂 纹长度a0代人上述KI表达式即可求出KI的条件值,记为KQ。
缺口效应
缺口对材料的力学行为影响可归结为四个方面: ①应力集中; ②双向或三向复杂应力状态; ③应变集中; ④局部应变速率增大。 这些统称为缺口效应,其中应力集中是最为重要的一种影响。
缺口效应
缺口效应
应力集中系数
反映局部应力增高程度的参数称为应力集中系数。 将应力集中区域内的峰值应力与不考虑应力集中时的基准应力的比值称为 理论应力集中系数:
疲劳裂纹扩展试验
当材料中存在裂纹并且外加应力达到某一临界值后,裂纹就会发生失 稳扩展。因此含裂纹材料的断裂可根据断裂韧度加以判别。不过在很 多情况下,这种足够大的宏观临界裂纹是在载荷作用下由萌生的小裂 纹逐渐扩展而成的,这也就是所谓的亚临界裂纹扩展过程。 疲劳载荷下的亚临界裂纹扩展尤为重要,这也是导致材料疲劳破坏的 主要原因。通过疲劳裂纹扩展试验,得到疲劳裂纹从萌生到亚临界扩 展再到最后失稳扩展的全过程,可以测定材料中疲劳裂纹扩展的门槛 值,得到疲劳裂纹扩展速率的变化规律,进而估算材料的疲劳寿命。
纳米材料的力学性能PPT课件

.
13
纳米晶界结构特点 尽管纳米晶的晶界原子结构与粗晶的无本质区别,然而
它们还具有以下不同于粗晶晶界结构的特点: 晶界具有大量未被原子占据的空间或过剩体积(Excess
Volume); 低的配位数和密度; 大的原子均方间距; 存在三叉晶界;
.
14
晶界相对配位数与原子间距的关系
在纳米晶材料的晶界上有大量的未 被原子占据的位置或空间
纳米Pd薄膜的高分辨透射电镜图像.
12
要用一种模型统一纳米材料 晶界的原子结构是十分困难的。 尽管如此,还是可以认为纳米 材料的晶界与普通粗晶的晶界 结构无本质上的区别。纳米材 料晶界的原子结构平面示意图 可用左图来表示,图中实心图 表示晶粒内的原子,空心图表 明晶界处的原子。
纳米材料晶界平面示意图
.
7
晶界厚度与晶界体积分数的关系
相同晶粒尺寸时,晶体结构 不同导致晶界厚度不同。 bcc结构晶界厚度:1nm左右 fcc结构晶界厚度:0.5nm左右
Bcc结构晶界体积分 数蒙特卡洛模拟曲线
fcc结构晶界体积分数 蒙特卡洛模拟曲线
1、对金属和合金纳米材料来说,其结构不同,使得晶界厚度不同。
2、对纳米复合陶瓷来说,合成方法. 不同,晶界厚度变化很大。
Ct
4 d 3 4 d 3
3
3
4d3
3d
d 3
d3
61 125
48.8%
3
若取一微体积ΔV,假设单位体积内的界面组元面积为St,则ΔV内界面组元比
表面积为:
Vt Ct V St V
St
Ct
488m2
cm 3
工程材料力学性能1PPT课件

k:体积弹性模量,在三向压缩下,压强p与体 积变化率之间的线性比例关系
18.07.2020
工程材料力学性能
30
E=2G(1+υ) E=3k(1-2 υ) 因此,各向同性材料只有两个独立分量。 弹性模量的意义是以零件的刚度体现出来
18.07.2020
工程材料力学性能
6
18.07.2020
1)力学性能是工程结构 或部件设计中最重要的 数据来源。
工程材料力学性能
7
18.07.2020
2)力学性能通常是新 材料能否由研制状态 进入工程应用的基本 考核指标。
工程材料力学性能
8
3)失效分析中应用。
18.07.2020
工程材料力学性能
18.07.2020
工程材料力学性能
27
f
f
a0
吸引力--金属正离子与公有电子间库仑引力 作用的结果,这是一种长程力,在比原子间距 大得多的距离处它仍然起作用并占优势。
排斥力--由同性电荷(离子,电子)间的库 仑斥力以及相邻原子电子层互相重叠的泡里斥 力所造成的,这是一种短程长,只有当原子距 离接近时才起主导作用。
18.07.2020
工程材料力学性能
16
圆形试样
板状试样
18.07.2020
工程材料力学性能
17
试样为什么要确定比例?
标距内的绝对伸长由均匀伸长和颈缩处
的集中伸长两部分组成:
l lb lu
l lb lu
lb l0
lb l0
lu S0
lu
d0 2
l l0 S0
l
l0
d0 2
有形状和尺寸的能力。
5.
塑性--材料在外力作用下发生不
18.07.2020
工程材料力学性能
30
E=2G(1+υ) E=3k(1-2 υ) 因此,各向同性材料只有两个独立分量。 弹性模量的意义是以零件的刚度体现出来
18.07.2020
工程材料力学性能
6
18.07.2020
1)力学性能是工程结构 或部件设计中最重要的 数据来源。
工程材料力学性能
7
18.07.2020
2)力学性能通常是新 材料能否由研制状态 进入工程应用的基本 考核指标。
工程材料力学性能
8
3)失效分析中应用。
18.07.2020
工程材料力学性能
18.07.2020
工程材料力学性能
27
f
f
a0
吸引力--金属正离子与公有电子间库仑引力 作用的结果,这是一种长程力,在比原子间距 大得多的距离处它仍然起作用并占优势。
排斥力--由同性电荷(离子,电子)间的库 仑斥力以及相邻原子电子层互相重叠的泡里斥 力所造成的,这是一种短程长,只有当原子距 离接近时才起主导作用。
18.07.2020
工程材料力学性能
16
圆形试样
板状试样
18.07.2020
工程材料力学性能
17
试样为什么要确定比例?
标距内的绝对伸长由均匀伸长和颈缩处
的集中伸长两部分组成:
l lb lu
l lb lu
lb l0
lb l0
lu S0
lu
d0 2
l l0 S0
l
l0
d0 2
有形状和尺寸的能力。
5.
塑性--材料在外力作用下发生不
材料力学性能教学课件材料的摩擦与磨损性能

材料性质: 硬度、韧 性、耐磨 性等
载荷条件: 载荷大小、 载荷类型、 载荷频率 等
环境条件: 温度、湿 度、腐蚀 性等
润滑条件: 润滑剂类 型、润滑 剂用量、 润滑剂温 度等
材料表面 状态:粗 糙度、表 面缺陷等
材料加工 工艺:热 处理、表 面处理等
磨损性能的测试方法
磨损量测量:通过测量磨损 前后的尺寸变化来评估磨损 性能
测量方法:摩擦试验机、摩擦磨 损试验机等
添加标题
添加标题
添加标题
添加标题
影响因素:材料性质、表面粗糙 度、温度、湿度等
应用:机械设计、润滑剂选择、 磨损预测等
影响摩擦性能的因素
摩擦性能的测试方法
摩擦系数测试:测量材料表面的摩擦系数,了解其滑动和滚动性能 磨损测试:通过模拟实际使用环境,测量材料的磨损程度和寿命 润滑性能测试:测量材料在润滑条件下的摩擦性能,了解其润滑效果 温度影响测试:测量材料在不同温度下的摩擦性能,了解其温度适应性
疲劳磨损:材料表面在循环载 荷作用下产生的磨损
材料磨损的机理
磨粒磨损:磨粒与材料表面接触,产生摩擦和磨损
疲劳磨损:材料在循环载荷作用下,产生疲劳裂纹,导致磨损
腐蚀磨损:材料表面与腐蚀性介质接触,产生化学反应,导致磨损 微动磨损:材料表面在微动状态下,产生微小的塑性变形,导致磨 损
影响磨损性能的因素
06
提高材料摩擦与磨损性能的途径
表面涂层技术
涂层方法:采用喷涂、电镀、 化学沉积等方法
涂层材料:选择耐磨、耐腐 蚀、耐高温的涂层材料
涂层厚度:控制涂层厚度, 保证涂层的耐磨性和耐腐蚀
性
涂层性能:提高涂层的硬度、 耐磨性、耐腐蚀性等性能
表面处理技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、应力-应变曲线的类型
典型的应力-应变曲线
(d)弹性-不均匀塑性型:形变强化过程中出现多次局部失稳, 其塑性变形方式通常是孪生而不是滑移。当孪生速率超过试验 机夹头运动速度时,载荷会突然松弛而呈现锯齿形的曲线。某 些低溶质固溶体铝合金及含杂质的铁合金具有此行为。
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
低碳钢典型的应力-应变曲线
均匀塑性变形阶段:屈服后, 欲继续变形,必须不断增加载 荷,此阶段的变形是均匀的, 直到曲线达到最高点,均匀变 形结束,如图中的bc段。
形变硬化:随塑性变形增大, 变形抗力不断增加的现象。 不均匀塑性变形阶段:从试 样承受的最大应力点开始直到 断裂点为止,如图中的cd段。 在此阶段,随变形增大,载荷 不断下降,产生大量不均匀变 形,且集中在颈缩处,最后载 荷达到断裂载荷时 ,试样断裂 Company Logo 。
载荷卸除后,变形消失)
Company Logo
1-2 弹性变形
1、弹性变形及其实质
在没有外加载荷作用时,金属
中的原子N1、N2在平衡位置附近振
动,相邻原子间的作用力由引力和
斥力叠加而成。
当原子间相互平衡力受外力而
受到破坏时,原子位置相应调整,
产生位移。而位移总和在宏观上表 曲线1:两原子间的引力
现为变形。
l0 5d0或 l0 10d0
试样加载速率:
常用的拉伸试样几何
1 0 1/s
一般采用圆形或板形二种试样。可分为三个部分,即
工作部分、过渡部分和夹持部分。
其中工作部分必须表面光滑,以保证材料表面也是单
向拉伸状态;过渡部分必须有适当的台阶和圆角,以降低
应力集中,避免该处变形和断裂;夹持部分是与试验机夹
头连接的部分,以定位试样。
体积弹性模量(K)
K E
3(1 2 )
❖ 刚度:工程上弹性模型称为刚度, 表征金属材料对弹性变形的抗力。 ❖ 各向异性
单晶体金属表现为弹性各向异性 多晶体金属表现为伪各向同行(单个晶粒弹性模量的各 向统计平均值)
1-2 弹性变形
2、弹性性能
❖ 弹性模量影响因素 金属原子本性和晶格类型 原子间作用力与原子距离 应力与应变 弹性模量 合金化、热处理、冷塑性变形 均对弹性模量影响不大 温度、加载速率
1、弹性变形及其实质
材料受外力作用发生尺寸和形状的变化,成为变形。外力去 除后,随之消失的变形为弹性变形,剩余的变形为塑性变形。
Hooke定律:金属弹性变形时,外力与应变成正比。 即:E
原子间的距离发生伸
长和缩短,但原子间的结
加载
合键并没有发生破坏
卸载后变形迅速恢复
卸载
弹性变形特征:可逆性
(受力作用后产生变形,
曲线2:两原子间的斥力
外力去除后,原子依靠之间的 曲线3:两原子之间的作用力
作用力又回到原来平衡位置,位移
由于晶体中的缺陷的存在,在弹性 变形量尚小时的应力可以激活位错
消失,宏观变形消失。
运动,代之以塑性变形。实际上可
实现的弹性变形量不会很大。
1-2 弹性变形
2、弹性性能
弹性模量(E)
E
x x
(单向受力状态下)。它反映材料抵抗正应变的能力。
切变模量(G)
G xy (纯剪受力状态下)。它反映材料抵抗切应变的能力。
xy
泊松比()依据体积不变原理,纵向伸长,那么横向必然收缩
y x
(单向-X方向受力状态下)
它反映材料横向正应变与受力方向
正应变的相对比值。
1-2 弹性变形
2、弹性性能
伸曲线经换算可以得相 应的到工程应力-工程 应变曲线。
低碳钢典型的应力-应变曲线
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
低碳钢典型的应力-应变曲线
弹性变形阶段:曲线的起始 部分,图中的oa段。多数情况 下呈直线形式,符合虎克定律。 屈服阶段:超出弹性变形范 围之后,有的材料在塑性变形 初期产生明显的塑性流动。此 时,在外力不增加或增加很小 或略有降低的情况下,变形继 续产生,拉伸图上出现平台或 呈锯齿状,如图中的ab段。
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
1、拉伸试验方法
常用的拉伸试样几何
Company 应变曲线
2、拉伸曲线
❖拉伸力-拉伸曲线:由 拉伸试验机自动记录或 绘图装置,将作用在试 样上的力和所引起的伸 长自动记录绘出的力伸长曲线。
❖应力-应变曲线:由拉
4、真应力-应变曲线
❖式中定:义F:— 真— 外FS ;加载真 荷 ln;ll0 S——试样瞬间截面积; l0——试样原始标距长度; l——试样瞬间标距长度。
❖ 注:①相对而言,真 真曲线较 曲线真实 。
②在小应变范围内,二者区别很小,可以不区分,
且 曲线更方便。
Company Logo
1-2 弹性变形
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
3、应力-应变曲线的类型
典型的应力-应变曲线
(c)弹性-均匀塑性型:未出现颈缩前的均匀变形过程中发 生断裂。主要是许多金属及合金、部分陶瓷和非晶态高聚物 具有此种曲线。
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
1-1 拉伸力-伸长曲线和应力-应变曲线
3、应力-应变曲线的类型
典型的应力-应变曲线
(a)弹性-弹塑性-塑性型:工程上的调质钢和一些轻合金 具有此类行为。加工硬化
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
3、应力-应变曲线的类型
典型的应力-应变曲线
(b)弹性-不均与塑性-均匀塑性型:与前者不同在于出现 了明显的屈服点aa ′,有时呈屈服平台状,有时呈齿状。应 变约1%~3%。退火低碳钢和某些有色金属具有此行为。
材料力学性能
第一章 材料在单向静拉伸载荷下 的力学性能
材料加工工程系
第一章 材料在单向静拉伸载荷下的力学性能
1-1 拉伸力-伸长曲线和应力-应变曲线 1-2 弹性变形 1-3 塑性变形 1-4 材料的断裂
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
1、拉伸试验方法
试样长度要求:
❖ 弹性模量主要取决于结合键本性和原子结合力 共价键材料﹥金属键材料﹥分子键结合的高分子材料
典型的应力-应变曲线
(d)弹性-不均匀塑性型:形变强化过程中出现多次局部失稳, 其塑性变形方式通常是孪生而不是滑移。当孪生速率超过试验 机夹头运动速度时,载荷会突然松弛而呈现锯齿形的曲线。某 些低溶质固溶体铝合金及含杂质的铁合金具有此行为。
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
低碳钢典型的应力-应变曲线
均匀塑性变形阶段:屈服后, 欲继续变形,必须不断增加载 荷,此阶段的变形是均匀的, 直到曲线达到最高点,均匀变 形结束,如图中的bc段。
形变硬化:随塑性变形增大, 变形抗力不断增加的现象。 不均匀塑性变形阶段:从试 样承受的最大应力点开始直到 断裂点为止,如图中的cd段。 在此阶段,随变形增大,载荷 不断下降,产生大量不均匀变 形,且集中在颈缩处,最后载 荷达到断裂载荷时 ,试样断裂 Company Logo 。
载荷卸除后,变形消失)
Company Logo
1-2 弹性变形
1、弹性变形及其实质
在没有外加载荷作用时,金属
中的原子N1、N2在平衡位置附近振
动,相邻原子间的作用力由引力和
斥力叠加而成。
当原子间相互平衡力受外力而
受到破坏时,原子位置相应调整,
产生位移。而位移总和在宏观上表 曲线1:两原子间的引力
现为变形。
l0 5d0或 l0 10d0
试样加载速率:
常用的拉伸试样几何
1 0 1/s
一般采用圆形或板形二种试样。可分为三个部分,即
工作部分、过渡部分和夹持部分。
其中工作部分必须表面光滑,以保证材料表面也是单
向拉伸状态;过渡部分必须有适当的台阶和圆角,以降低
应力集中,避免该处变形和断裂;夹持部分是与试验机夹
头连接的部分,以定位试样。
体积弹性模量(K)
K E
3(1 2 )
❖ 刚度:工程上弹性模型称为刚度, 表征金属材料对弹性变形的抗力。 ❖ 各向异性
单晶体金属表现为弹性各向异性 多晶体金属表现为伪各向同行(单个晶粒弹性模量的各 向统计平均值)
1-2 弹性变形
2、弹性性能
❖ 弹性模量影响因素 金属原子本性和晶格类型 原子间作用力与原子距离 应力与应变 弹性模量 合金化、热处理、冷塑性变形 均对弹性模量影响不大 温度、加载速率
1、弹性变形及其实质
材料受外力作用发生尺寸和形状的变化,成为变形。外力去 除后,随之消失的变形为弹性变形,剩余的变形为塑性变形。
Hooke定律:金属弹性变形时,外力与应变成正比。 即:E
原子间的距离发生伸
长和缩短,但原子间的结
加载
合键并没有发生破坏
卸载后变形迅速恢复
卸载
弹性变形特征:可逆性
(受力作用后产生变形,
曲线2:两原子间的斥力
外力去除后,原子依靠之间的 曲线3:两原子之间的作用力
作用力又回到原来平衡位置,位移
由于晶体中的缺陷的存在,在弹性 变形量尚小时的应力可以激活位错
消失,宏观变形消失。
运动,代之以塑性变形。实际上可
实现的弹性变形量不会很大。
1-2 弹性变形
2、弹性性能
弹性模量(E)
E
x x
(单向受力状态下)。它反映材料抵抗正应变的能力。
切变模量(G)
G xy (纯剪受力状态下)。它反映材料抵抗切应变的能力。
xy
泊松比()依据体积不变原理,纵向伸长,那么横向必然收缩
y x
(单向-X方向受力状态下)
它反映材料横向正应变与受力方向
正应变的相对比值。
1-2 弹性变形
2、弹性性能
伸曲线经换算可以得相 应的到工程应力-工程 应变曲线。
低碳钢典型的应力-应变曲线
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
低碳钢典型的应力-应变曲线
弹性变形阶段:曲线的起始 部分,图中的oa段。多数情况 下呈直线形式,符合虎克定律。 屈服阶段:超出弹性变形范 围之后,有的材料在塑性变形 初期产生明显的塑性流动。此 时,在外力不增加或增加很小 或略有降低的情况下,变形继 续产生,拉伸图上出现平台或 呈锯齿状,如图中的ab段。
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
1、拉伸试验方法
常用的拉伸试样几何
Company 应变曲线
2、拉伸曲线
❖拉伸力-拉伸曲线:由 拉伸试验机自动记录或 绘图装置,将作用在试 样上的力和所引起的伸 长自动记录绘出的力伸长曲线。
❖应力-应变曲线:由拉
4、真应力-应变曲线
❖式中定:义F:— 真— 外FS ;加载真 荷 ln;ll0 S——试样瞬间截面积; l0——试样原始标距长度; l——试样瞬间标距长度。
❖ 注:①相对而言,真 真曲线较 曲线真实 。
②在小应变范围内,二者区别很小,可以不区分,
且 曲线更方便。
Company Logo
1-2 弹性变形
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
3、应力-应变曲线的类型
典型的应力-应变曲线
(c)弹性-均匀塑性型:未出现颈缩前的均匀变形过程中发 生断裂。主要是许多金属及合金、部分陶瓷和非晶态高聚物 具有此种曲线。
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
1-1 拉伸力-伸长曲线和应力-应变曲线
3、应力-应变曲线的类型
典型的应力-应变曲线
(a)弹性-弹塑性-塑性型:工程上的调质钢和一些轻合金 具有此类行为。加工硬化
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
3、应力-应变曲线的类型
典型的应力-应变曲线
(b)弹性-不均与塑性-均匀塑性型:与前者不同在于出现 了明显的屈服点aa ′,有时呈屈服平台状,有时呈齿状。应 变约1%~3%。退火低碳钢和某些有色金属具有此行为。
材料力学性能
第一章 材料在单向静拉伸载荷下 的力学性能
材料加工工程系
第一章 材料在单向静拉伸载荷下的力学性能
1-1 拉伸力-伸长曲线和应力-应变曲线 1-2 弹性变形 1-3 塑性变形 1-4 材料的断裂
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
1、拉伸试验方法
试样长度要求:
❖ 弹性模量主要取决于结合键本性和原子结合力 共价键材料﹥金属键材料﹥分子键结合的高分子材料