聚合物驱油技术

合集下载

油田用聚合物驱油剂相关知识

油田用聚合物驱油剂相关知识

许多学者认为,聚合物溶液在多孔介质中的粘弹效应引
起了驱油剂粘度的大幅度增加,进一步改善了驱替前缘的流
度比,因而当驱油剂流量增加时,采油速度迅速上升。 用聚合物溶液驱替后,所有类型的残余油均减少,减少 量取决于驱替液的粘弹性。聚合物溶液在驱替不同类型残余 油时,表现出很强的“拉、拽”作用。残余油不是被聚合物
(2)粘滞作用:聚合物的粘弹性加强了水相对残余 油的粘滞作用,在聚合物溶液的携带下,残余油会 重新流动,从而被夹带而出。聚合物溶液在多孔介 质中的粘滞力增加,是驱替膜状、孤状残余油的主 要机理
(3)增加驱动压差:提高了岩石内部的驱动压差,使注入液可以克服 小孔道产生的毛细管压力,进入细小的孔道中,从而把原油驱替出来。 (4)绕流作用:聚合物进入高渗透层后,增加了水相的渗透阻力,产 生了由高渗透层指向低透层的压差,使注入液发生绕流,进入到中、 低渗透层中,扩大了水驱的波及体积,提高了原油的采收率。
Vsw EV V
Vsw-驱油剂的驱替体积; V-油藏总体积; Ev-体积波及系数;
影响因素: 流度比、岩石的宏观非均质性、注采井网对非均
质性的适应程度等
(1)流度比 指注入驱油剂的流度与被驱原油的流度之比。 流度 :流体的渗透率
K
与其粘度 之比。

水油流度比:
K

岩石允许流体 通过的能力
(2)油层岩石宏观非均质的影响
实际油层是在水流冲刷过程中沉积形成的
顺水流方向与垂直水流方向的渗透率必然有差异 流体沿渗透率好的方向流动快 形成不轨则驱动前缘 注采井网安排不当 油井会过早水淹,油藏留下一些“死油区”
油层结构的非均质性: • 油和水都是在油层岩石颗粒之间的细小孔道(孔隙、 裂缝)内运动的。这些孔道大小不一,纵横交错,变 化万千,这就是油层结构的非均质性。 • 水(驱油剂)驱动石油在这些孔道中流动时,由于孔 道大小不同,所遇到的阻力也不一样,使得水在不同 的孔道中驱油时的流动速度不同。

探讨聚合物驱油技术在过渡带油层驱油效果

探讨聚合物驱油技术在过渡带油层驱油效果

探讨聚合物驱油技术在过渡带油层驱油效果1.1 聚合物驱油技术概述聚合物驱油技术是通过在油层中注入一定浓度的聚合物溶液来改变油水相对渗透率,提高原油的驱出效果。

聚合物驱油技术通过增加油水相对渗透率差,改善油水剖面分布,减缓水体的推进速度,增加原油相对渗透率等作用,从而提高油田采收率。

1.2 聚合物驱油技术在过渡带油层的应用过渡带油层通常具有比较复杂的地质构造和流体性质,油气相对渗透率差异大,容易造成高含水油层。

聚合物驱油技术在过渡带油层油藏开发中的应用,可以改变油水相对渗透率,提高驱出效果,从而提高油藏采收率。

2.2 减缓水推进速度过渡带油层常常受到水的推进作用,导致油藏产能下降和生产成本增加。

而聚合物驱油技术的应用可以减缓水的推进速度,提高驱油效果,减少水体侵入,降低生产成本。

2.3 改善油水剖面分布聚合物驱油技术的应用可以改善油水剖面分布,减少水的侵入,提高原油的采收率。

通过聚合物的调控作用,可以使得原油在油藏中的分布更加均匀,减少残余油的损失。

3.1 地质条件地质条件是影响聚合物驱油技术在过渡带油层效果的重要因素之一。

不同地质条件下的油藏对聚合物驱油技术的响应不同,需要根据具体的地质条件和流体性质进行针对性的调控。

3.2 聚合物性能聚合物的性能是影响其在过渡带油层驱油效果的关键因素之一。

聚合物的粘度、分子量、溶解度等性能直接影响着其在油藏中的分布和驱油效果。

3.4 采收系统采收系统的设计和操作也会对聚合物驱油技术的驱油效果产生重要影响。

优化采收系统的设计和操作,可以提高聚合物在过渡带油层的驱油效果。

聚合物驱油技术在过渡带油层的应用可以明显提高油藏的采收率,减缓水的推进速度,改善油水剖面分布。

要想更好地发挥聚合物驱油技术在过渡带油层的驱油效果,需要根据具体地质条件和聚合物性能进行综合考虑,优化注入工艺和采收系统,从而实现最佳的驱油效果。

希望未来在聚合物驱油技术的研究和应用中,能够不断取得新的突破,为油田开发和油藏采收率提高注入新的活力。

聚合物驱油技术研究

聚合物驱油技术研究

传输性 ; 源广 , 来 价格低 , 以便 在油 田上能够实现较低成 本 的广泛应用 。 能够同时满足以上要求的聚合 物很少 , 在 应用时 , 应根据油层条件选择适 当的聚合物 。
22 适合 聚 合 物油 效 率 . 2 聚合物驱提高 了岩石 内部的驱动压差 ,使注入液可
图 5 高抽巷抽放量随工作面推进距 变化 曲线图 图 4— 0 6 2西一Bl 高抽巷穿层钻孔剖面示意图 1
较近 , 这样 高抽巷透气性好 , 且处在瓦斯 富集 区 ; 高抽 巷
高抽 巷安设两路焊接 管 , 一路直径 20m 管路接 5 m, 至高抽巷以里 1 , 放管路 口 3m范围架设木垛保护 。 0m抽 另一路直径 10m 5 m,接到高抽巷里端与 1 2个抽放钻孔 合荐 。 两路管路均与矿井地面抽采系统 主管路合荐 。 在高 抽巷外 口砌 封闭墙 , 墙体厚度 80m 墙 四周要掏槽人 0 m, 岩体 , 墙面用水泥抹平 , 减少漏气 。
赵 荣 彦
( 河南油 田第二采油厂 新庄项 目部 , 河南 南阳 4 3 3 ) 7 12
摘 要 : 年 来 国 内外 聚合 物驱 油技 术研 究得 到 长 足 发 展 , 聚 合 物 的 驱 油 机 理 , 质 条 件及 聚合 物 的 驱 油 方 近 对 地
案 的研 究 应 用 都 有 详 细 的 介 绍 , 章 重 点 对 聚 合 物 的驱 油 地 质 条 件 及 机 理进 行 了探 讨 , 而 提 出适 合 我 国驱 文 进
积, 提高了中、 低渗透层的采出程度, 约提高采收率 7 %。 2 聚合物驱油的适合条件
关于聚合物的驱油机理 , 目前 尚未取得一致 的认识 。 但普遍认为 ,与其他化学驱相 比,聚合物驱 的机理较简 21 聚 合物 的筛 选 . 聚合物驱油时 , 地层岩石 、 流体等 的复杂性会影响聚 单 ,即聚合物通过增加注入水的粘度 和降低油层 的水相 渗透率 而改善水油流度 比,调整注入剖 面 ,扩大波及体 合物 的驱油效果 。 在油 田上应用 时 , 于聚合物的选择 , 对 积 , 高原 油 采 收率 。 提 必须从驱油效果和经济上综合考虑 ,同时与油藏性质相

浅述聚合物驱采油技术

浅述聚合物驱采油技术

浅述聚合物驱采油技术摘要:聚合物驱就是使用聚合物作为添加剂,增加水的粘度、改善水油流度比,从而提高波及系数,达到提高原油的采收率的目的。

近几年的聚合物驱工业化推广应用使它已成为胜利油区有效的提高采收率的三次采油技术之一。

但经研究表明,虽然聚合物驱油能比水驱油较大幅度地提高原油的采收率(6~12%),但即使在聚合物驱之后也只能采出原始地质储量的40~50%。

也就是说,仍有大约一半或以上的原油留在地下未被采出。

关键词:聚合物驱;采油一、引言在聚合物驱之后,还必须研究采取其它方法进一步提高原油的采收率。

聚合物驱试验结果表明,聚合物驱实施结束后,仍有50%~60%的原油残留在地层中,地层中的剩余油仍然很丰富。

如果能在目前状态下进一步提高原油的采收率,将产生巨大的经济效益。

因此,对聚合物驱后剩余油的微观分布规律的研究有很大的意义。

在油田实施聚合物驱以后,将面临着聚合物驱后如何提高采收率这一技术难题。

尽管开展了大规模的工业化应用,然而关于聚合物驱油的机理,人们的认识很不一致。

有学者认为,注粘性水与注常规水的最终剩余油饱和度是相同的;也有人认为,聚合物驱不能在波及面积内使剩余油饱和度有很大降低。

实际上,人们对于聚合物溶液在地下驱油过程中的渗流特征的认识还远远不够完善,特别是微观物理化学渗流规律,还不十分清楚,所以开展聚合物驱及其剩余油分布微观机理研究显得十分有必要。

二、国内外研究现状在石油工程领域,在世界范围内通过油井依靠天然能量开采和人工补充能量开采后的油藏,原油的采出量平均不到原油的原始地质储量的一半,即有一半左右的石油储量残留在地下。

近年来,随着油井含水的增加,原始开采的经济效益越来越差,人们试图寻找新的开采方式,聚合物驱油是当前提高水驱油田采收率的方法,已由先导性实验步入工业化应用阶段。

由于聚合物驱的优良前景,国内外都在做大量的研究,对其机理有一定的认识。

关于聚合物驱油的机理,人们的认为不一致:ALLEN等研究了驱替液流度性对流度控制的影响,认为驱替液的粘弹性对改善流度比有重要作用。

聚合物驱油技术的研究与应用

聚合物驱油技术的研究与应用
聚区动态反 映特 点进行综合调 整是改善聚合物驱效 果的必要技术 措 施。虽然聚合 物驱工业化应用取得 了很好 的效果 . 但驱油机 理仍 有待 研究 . 下步特别要 开展聚合物分子 构效关系研究 . 进一步提高综 合性 能。同时开展聚合物驱经济评价研究 , 确定各类油藏 开展 聚合物驱的 经济技术界限. 并对方案设计 、 工艺流程设计施工 、 运行管理 效果 评价 和后续水驱进行优化 . 提高聚合物驱综合效益 。
行 了配套优化 , 形成 了新的思路和成熟的聚合物驱配套技 术 , 文对此进行 了详尽地介 绍, 本 很值 的借鉴 。
【 关键词 】 聚合物驱 ; ; 索 试验 探
聚合 物驱技术涉及 到注入参 数和注入方式 的优 化、油藏数值 模 拟、 聚合物的配制 、 聚合物溶液 的注入 、 生产方式 的改进 、 出液 的处 采 理 以及动态监测等多个环节 . 仅仅实现单项技术 的突破 . 不形成 配套 技 术就无法实现科研成果 向现实生产力 的转 化以及工业化 的推 广应 用。 为此 。 地面工艺和油藏工程等各 方面协 同攻关 , 从 形成 了具有最新 特点的聚合物驱配套技术
1建立完善的配套工艺 .
2聚合物驱分层注入研究 .
1 优化 聚合物配制站和注入站 的布局 . 1 大量的室内实验 和矿场研究表 明. 聚合物驱 的层 内和层 间调剖作 三次采油开发方式具有集中配制和分散注入 的特 点 . 聚合物配制 用是显著 的 . 层内调剖好 于层 间调剖 . 且 这就是单 层注聚效果好 于多 站必须在空间和时 间上对几个 区块提供共享服务 . 由此 . 带来 了聚合 层注聚效果的主要原 因。当一套开发层系油层较 多、 问渗透率差异 层 物配制站 、 注入站的优化布局问题。从数学 规划和系统工程的角度 出 较大时 . 聚合物驱就难 以发挥其调剖 的优势 。 因此 , 要改善多层聚合物 发, 应用网络流规划方法优化布局模型 , 以投资最省为 目的 , 化选 出配 驱 的效果 . 注采层 系进行 简化 . 对 减小层 间差异就显得 十分 重要 。目 制站个数、 规模 和位置 。 前 . 注采 研究大多是 注人工艺 的研究 . 此种方法一方 面 由于剪 分层 但 1 . 2全过程 动态分析 ・ 切严重 . 注入的聚合物 溶液粘度大 幅度下降 . 造成 另一方 面大大地增 聚合物驱阶段性强 , 与水驱相 比开采时间短 , 调整余地小 , 调整难 加 了设备 的投资 。 使经 济效 益下降 。本文 利用室 内实验 、 值模拟结 数 度大 。针对聚合 物驱特有 的动态反映特点 , 把整个注聚 区调整管理分 果 , 对分层注聚采油进行了研究 。 为注聚前调 整、 注聚前和后续注水 2 阶段 , 个 对注入井 和油井开展单 21 内实验 .室 井动态分析 、 组动态分析和 区块 动态趋 势分析 . 井 确定各 个阶段存在 211 验 条 件 .. 实 的主要矛盾 . 逐一提 出解决 问题的方法 , 并落实解 决。 实验模型是用石英砂制作的均质管式 模型 . 采用双管模型 以模拟 1 - 3分层注入法 油层 的多层情况 。模型 尺寸为 2 x Om,渗透率分别为 30 l- . 3e 5 0 x0 、 3 0 0。z 。 根据聚合物 驱吸水剖面显示 . 在笼统注入方式下 。 高渗透层 的相 15 0x1 Im。 对吸入量远高 于中 、 低渗透层 . 随着间渗透率级 差的增大 以及低 并且 聚合物 为法 国 S F 司生产 的 3 3 S 注入量 为 4 0 V m4 N 公 50 . 5P . v L 实验用 水矿化度为 5 2 mg C 2 Mg 含量 为 1 8 / 模拟油 77 / a+  ̄ L. + 0 mgL 渗透油层所 占厚度 比例的增加 . 注聚合物 的开采效果变差 。在高 渗透 层 聚合物深 液低 效注入 . 在低渗 透层聚合物驱 的动用 程度低 . 约了 粘度为 2 ~0 P 制 0 3m a 聚合物 的整体开发效果。应用分层注入技术 . 较好地解决 了层 间吸聚 2 .驱油实验及结果分析 .2 1 差异 较大的问题 . 提高 了较 差层 段的注入强度 . 制较好层段 的注入 控 驱替 实 验 中 .首 先水 驱 油 至含 水率 9 % .然后 注 入 浓 度 为 5 量, 进一步扩大 了波及体积 , 控制注聚后期综合含水 的回升速度 。 改善 1 0 m / 50 g L的聚合 物溶 液段塞 . 转注水 .直至产 出液含水 率 9 %以 再 8 了区块最终开发效果 上。 1“ . 一井一制” 4 注入法 聚合 物溶液 的注入采用合注和分注 。 合注是通过单泵控制双管注 针对注聚井的注入能力和地层 的不 同特点 . 取不 同的单井 注入 入 。 采 注入速度 为 O 6 Lm n: . m / i 分注是单 泵控制单 管 , 4 控制 两个模 型的 浓度 ( 括加 交联剂 ) 包 和段塞 注入量 , 及时进行调 整 , 由于每 1井 的注 注人量 . : 3 注入速度为 0 3 L i .m/n 2 m 入段塞均不相 同. 故把它称 为“ 一井一制 ” 注入法 。“ 一井一制 ” 注入法 实验结果表 明 . 分注效果好 于合 注分注时 . 在双 管注入量相 同情 不仅解决 了部分注人压力迅速上升 的矛盾 . 而且低 压井 高浓度 注入有 况下 , 提高采 收率 幅度最大 。 也就是说 , 分注可以有效地控制不同渗透 效地封堵 了高渗透带 , 减少 了聚全 物窜流 . 高了驱替效率。同时 . 提 对 率层 的注入量 ; 注时, 而合 主要 吸水的是高渗透层 , 低渗 透层几 乎不吸 不能正常混 注的高压井实施间歇注聚 . 保证 了高压井的正常注入 . 取 水 , 虽然高渗透层的分层提高采收率幅度较高 , 但低渗 透层没 有动用 , 得了很好 的效果 因此提高采收率幅度也 就低 15添加 交 联 剂 . 2 数值模拟研究 . 2 交联聚合物驱油是 在聚合物驱油 的基 础上发展起来 的新 型驱油 221 型 建 立 .. 模 技术 。 它是采用接 近聚合 物驱的聚合物深 液 . 加入少量缓 交联型交联 平面模型选用了四个 反五点井 网, 共有油井 四 口. 九 口. 水井 井距 剂 , 之在地层 内产生缓慢 、 使 轻度交联 , 提高地层阻力系数和残余阻力 2 0 纵 向上分两个小层 , 8m; 每小层的砂岩厚 度为 8 有 效厚度 5 上 m, m, 系数 , 改善油藏 的非 均质状况 . 在大量交联 聚合物深液 注入过程 中以 层为低渗透层 , 下层为高渗透层 , 共设计模型七个。 及弱交联和交联后溶液被后续注入液体 推动时 . 会产生像聚合物驱一 模型垂 向渗透率为平 面渗透率 的 1 初 始含油饱和度均为 O 5 %: . : 6 样的驱油效果 . 从而起到调剖和驱油的综 合作用 。随着聚合物驱油技 其他 如高 压物性 、 相对渗透 率曲线 、 岩石及 流体性质等数据都借 用了 术的 日趋成熟和聚合物驱规模的逐年加大 . 聚合物驱油技术 已成为保 孤东油 田的数值 ;网格 为 2 x 5 2 5 2 x 的均匀直角网格 系统 , 、 x Y方 向的 持持续稳产及高含水后期油 田开发水平的重要技术手段 网格步长均 为 2 m 动态模型 的聚合物特性参数是 孤东八 区聚合物驱 9 1 . 6研究方向 跟踪拟合后得到 的参数 。根据研究 目的的不同 , 建立了多个动态数据 实施多层系同时注入可明显降低单层注人风险 . 防止 管外窜 流造 模型 . 但是所 有模 型的总注入速 度基本都保 持在 01V a注 入聚合 . /. P 成 的低效注入 。 提高药剂利用率 , 同时可实现分层 、 单层 、 选层 、 多层注 物浓度为 20 m / , 聚合物溶液 0 5 V 0 0 g 注入 L .P。 2 入. 对进一 步拓展聚合物驱 发展 空间 , 提高孤东 油 田采收率具有 重要 2 .层 间渗透率差异对驱油效果 的影 响 .2 2 的理论和实践意义 首先研究 了合 注合 采过程 中层 间渗透 率的差异对 聚合物 驱效果 对工业化 聚合物驱 的高含 水、 高采 出程度 和高渗透率 区块 , 宜采 的影响。根据胜利 油区开发的实际情况 , 数模过程 中首先水驱至含水 用 6 0 V. g 0P m / L以上高浓度注入段塞 . 当最大注入量 达到 7 0 V m L 率 9 %, 0P ・ d 5 然后注入聚合物段塞 , 最后水驱 至含水率 9 %。 8 时可取得最佳技术经济效果。 此外 , 有针对性地采取分层注入 , 根据注 驱油效果表 明, 提高采收率 的幅度 最大 , 也就是 ( 下转第 3 7 ) 1页

聚合物驱提高石油采收率的驱油机理

聚合物驱提高石油采收率的驱油机理

1 聚合物驱提高石油采收率的驱油机理聚合物的驱油机理主要是利用水溶性高分子的增粘性,改善驱替液的流度比,在微观上改善驱替效率、并且在宏观上能提高平面和垂向波及效率,从而达到提高采收率的目的。

以下是水油流度度比的定义式:Mwo=(1)经典的前沿理论认为,降低油水流度比,能够改变分流量曲线。

聚合物驱的前沿含油饱和度和突破时的的含油饱和度都明显高于水驱,这表明聚合物驱能降低产出液含水率,提高采油速度,具有更好的驱替效果;(2)聚合物驱通过改善水驱流度比,可以改善水驱在非均质平面的粘性指进现象,提高平面波及效率;在垂向非均质地层,聚合物段塞首先进入高渗层,利用高粘度特性“堵”住高渗层,使后续水驱转向进入低渗层,增加了吸水厚度,扩大了垂向波及效率。

以下是聚合物驱和水驱的对比聚合物驱和水驱的波及系数(3)聚合物在通过孔隙介质时发生吸附、机械捕集等作用而滞留,改变了聚合物所在孔隙处的渗透率。

被吸附的聚合物分子链朝向流体的部分具有亲水性,能降低水相相对渗透率而不降低油相相对渗透率,即堵水不堵油;同时聚合物的滞留能增加阻力系数和残余阻力系数,表明渗流阻力增加,引起驱动压差增大,有利于驱动原来不曾流动的油层,提高油层波及体积。

(4)由于聚合物溶液粘滞力的作用,使得其很难沿孔隙夹缝和水膜窜进,在孔道中以活塞式推进,克服了水驱过程中产生的“海恩斯跳跃”现象,避免了孔隙对油滴的捕集和滞留。

(5)另外,聚合物溶液具有改善油水界面粘弹性的作用,使得油滴或油膜易于拉伸变形,更容易通过狭窄的喉道,提高驱油效率。

2 驱油用聚合物的性能要求通过对聚合物驱油机理的分析,可以知道驱油用水溶性聚合物的性能指标主要是能增加油水流度比,即具有增粘性。

另外,聚合物溶液由于要在地层条件下能通过多孔介质运移传播,并最终被采出地面。

所以还应具有滤过性、粘弹性、稳定性以及无污染性等性能(1)增粘性。

应该尽量获取在较低浓度下就具有较高表观粘度的水溶性聚合物。

高浓度聚合物驱油机理及影响因素分析

高浓度聚合物驱油机理及影响因素分析

一、引言聚合物驱油可在水驱基础上提高采收率l0%左右。

聚合物浓度越高,采收率越大;越早转注高浓聚合物,采收率越大。

因此,尽可能采用最高浓度的聚合物,尽可能早地转注高浓聚合物,不仅采收率可大幅提高,而且经济效果越好。

二、聚合物驱油机理聚合物驱油是60年代初发展起来的一项三次采油技术,其特点是向水中加入高分子量的聚合物,从而使其粘度增加,改善驱替相与被驱替相间的流度比,扩大波及体积,进而提高原油采收率。

深入进行聚合物驱的研究,对改善油田开发效果,保持原油稳产,提高原油最终采收率具有重要意义。

1.提高宏观波及系数(Ev)。

聚合物注入地层后,会提高注入水的粘度,降低水相渗透率,使得油层吸水剖面得到调整,平面非均质性得到改善,水洗厚度增加,扩大了水相的波及体积,从而提高宏观波及系数。

2.提高微观驱油效率(Ep)。

只要选择合适的油藏,有正确的注入体系设计,聚合物驱可提高采收率l0%以上。

国内外专家认为,这是由于聚合物在一定注入速度下具有粘弹效应,从而提高了微观驱油效率。

聚合物驱替机理主要有:(1)粘弹性聚合物溶液对孔隙盲端中残余油的拖拉携带。

(2)聚合物溶液对连续油膜的携带机理。

(3)粘弹性聚合物溶液对孔喉处的残余油的携带机理。

(4)聚合物溶液的粘弹性对圈闭残余油的携带机理。

三、聚合物驱油影响因素由于聚合物驱主要是利用聚合物提高注入水的粘度,降低水油流度比,因此,聚合物水溶液的粘度大小,直接影响聚合物驱的效果,是聚合物驱油的主要影响因素。

1.聚合物的结构及浓度的影响。

聚合物分子越大,聚合物相互缠绕的程度越大,聚合物溶液的粘度越大。

水解度是影响聚物溶液粘度的重要因素,一般水解的聚烯酰胺要比相应未水解的聚丙烯酰胺的况粘度高,这主要是由于已水解分子上的电荷能使聚合物分子的链最大限度展开,并由此提高了溶液的视粘度。

聚合物的浓度也是影响聚合物溶液粘度的一个重要因素。

因为聚合物的浓度越大,被溶解在水中的聚合物分子越多,分子相互缠绕的机会明显增多,聚合物溶液的粘度增加。

聚合物驱油机理

聚合物驱油机理

1、聚合物溶液的流度控制作用聚合物溶液的流度控制作用是聚合物驱油的重要机理之一,对于均质油层,在通常水驱油条件下,由于注入水的粘度往往低于原油粘度,驱油过程中油水流度比不合理,导致采出液中含水率上升很快,过早地达到采油经济所允许的极限含水率的结果,使得实际获得的驱油效率远远小于极限驱油效率。

向油层注入聚合物的结果,可使驱油过程中的油水流度比大大改善,从而延缓了采出液中的含水上升速度,使实际驱油效率更接近极限驱油效率,甚至达到极限驱油效率。

在水驱油条件下,水突破油层后采出液中油的分流量为:该式经简化得出:μoKKroμw KKrw μo KKroλo λw λo fo +=+=KroKrw w o fo •+=μμ11不同油、水粘度比时采出液含水率随水饱和度变化关系曲线50607080901000.40.50.60.70.8含水饱和度,Sw含水率,%2、聚合物溶液的调剖作用调整吸水剖面,扩大波及体积,是聚合物提高采收率的另一项重要机理。

因为在聚合物的调剖作用下,油层水淹体积的扩大,将在油层的未见水层段中采出无水原油。

这就是说,油层水淹孔隙体积扩大多少,采出油的体积也就增加多少。

聚合物的调剖作用只有在油层剖面上存在渗透率的非均质状态时才能发生。

对于这类油层,在通常水驱条件下往往发生注入水沿不同渗透率层段推进不均匀现象。

高渗透率层段注入水推进快,低渗透率层段注入水推进慢。

加上注入水的粘度往往低于原油粘度,水驱油过程中高流度流体取代低流度流体的结果,导致注入水推进不均匀的程度加剧,甚至在很多情况下会出现高渗透率层段早巳被注入水所突破,而低渗透率层段注入水推进距离仍然很小的情况,致使低渗透率层段原油不能得到有效的开采。

在不考虑重力影响的前提下,我们可以给出高渗透率层段水突破之前任一注水阶段时两层段间吸水量之比:K1>K2221121222211112121Kro Krw woKro Krw w oK K oKro K w Krw K o Kro K w Krw K q q ++•=++==μμμμμμμμλλ3、聚合物溶液微观驱油机理传统的聚合物驱油理论认为,聚合物驱只是通过增加注入水的粘度,降低水油流度比,扩大注入水在油层中的波及体积提高原油采收率,聚合物驱并不能增加油藏岩石的微观驱油效率,并认为聚合物驱后残留于孔隙介质中的油的体积与水驱之后相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2胜利孤岛油田中二南中聚合物驱 (1)油藏基本特征 含油面积1.8km2,地质储量1185×104t,油层温度 70.5℃,地层水矿化度5797mg/L,地下原油粘度 85mPa· s。注聚前水驱采出程度38%,综合含水已高 达95%。 (2)工艺参数 二段塞注入方式,前置段塞为0.05PV聚合物溶液, 浓度为2200mg/L,主段塞为0.27PV聚合物溶液,浓 度为1700mg/L,溶液配制采用清水配制母液、污水 稀释注入。 (3)处理效果 综合含水由注聚前的95.0%下降到80.9%,下降了 14.1%,日产油由注聚前的413t/d上升到1091t/d, 增加了678t/d。提高采收率7.7%。
1 胜利油田聚驱试验 1.1 胜利孤岛油田中一区馆3聚合物驱 (1)油藏基本特征 中一区馆3聚合物驱试验区位于孤岛油田主体部位的 顶部, 试验区含油面积0.562km2,地质储量 165×104t。馆3层系构造平缓,南高北低,岩性以粉 细砂岩为主,孔隙度33% ,空气渗透率1.5~2.5μ m2 , 泥质胶结为主,泥质含量9.5 %~15.0 % ,胶结疏松, 油井出砂严重,油层渗透率变异系数为0.54。地下原 油黏度为46.3mPa· s,油层温度67℃。油层水矿化度 5000~6000mg/L。
5600.9
5600.9 5570.4
214.99
497.84 761.50
3.84
8.89 13.67
2.1
3.8 4.8
2.1
5.9 10.7
5450.2
5300.1 5150.2
766.68
869.0 870.0
14.07
16.4 16.89
6.5
6.8 02
2003 2004 累 积
5013.0
4037.1 4640.0 46362.8
1056.7
1044.4 1055.4 7136
21.08
21.58 22.75 15.4
7.6
7.8 8.1
39.2
47.0 55.1
大庆油田不同阶段重大技术产量构成曲线
聚合物驱的效果
-10 0 10 20 30 40 50 0 100 200 300 400 500 600
(2)工艺参数 总用量为450PV· mg/L,三段塞注入,即0.06PV 2000mg/L+0.2PV 1500mg/L+0.04PV750mg/L,清 水配制母液,污水稀释注入。聚合物为PAM,分子量 1500万。 (3)处理效果 显著的降水增油效果。综合含水由注聚前的90.2%最 大下降至71.0%;日产油由注聚前的128t/d最高上升 到351t/d。提高采收率12%。 注聚11个月后,油井陆续见效,日产油量上升,含水下 降。见效率100%,每吨聚合物增油120.1t。
目 录
一、前言
二、喇南聚合物驱油工业性矿场试验
三、喇嘛甸油田二类油层聚合物驱油试验
四、喇嘛甸油田高浓度聚合物驱油试验
一、前 言
一次采油技术:依靠天然能量,靠弹性驱,油井自喷生
产,采收率一般只有15-25%; 二次采油技术:依靠人工注水能量,水驱开发,采收率 一般为40-50%; 三次采油技术:亦称强化开采(EOR)技术,当二次采油 末期油田含水上升到经济极限,再用注水以外的新技术进 行开采,主要是向油层注入化学剂、气体溶剂、热流溶剂
等。
一、前 言
三次采油技术:
1)热力采油技术:蒸气吞吐、蒸气驱、热水驱、火烧油
层;
2)气体混相驱(或非混相驱)采油技术:烃类(液化烃、富气 烃、贫气烃)驱油、二氧化碳驱油、惰性气体(氮气) 驱油; 3)微生物采油技术:微生物吞吐、微生物驱油、微生物 封堵大孔道;
一、前 言
三次采油技术:
4)化学驱采油技术:聚合物驱油、表面活性剂驱油、表
Ⅱ类高温高盐油藏聚合物三次采油技术取得突破
中石化三次采油历年增油曲线
200 147 148 148 150 158 170
年增油 (万吨)
116
100 59 50 0 0 1992 1994 1996 1998 2000 2002 2004 2 2 7 40 24
三次采油从1992年在胜利油田开始实施,河南油田 于1994年开始实施,1998年开始明显见效。1999年三采 的年增油量达到116万吨以上,到2004年达到170万吨。 累计增油935万吨 。
活剂吞吐、碱驱油、二元驱(表活剂—聚合物)、三元
驱(表活剂—碱—聚合物)、三元泡沫驱(表活剂— 碱—聚合物—天然气)。 聚驱提高采收率:一类油层10%以上;二类油层8%; 三元驱提高采收率:一类油层20%左右。
1996-2004年大庆油田产油量构成
年度 1996 1997 1998 1999 2000 2001 大庆油田总产 油量(104t) 聚合物产油量 (104t) 聚合物产量 所占比例 (%) 年注聚合物 干粉量 (104t) 累积注聚合 物干粉量 (104t)
北一区断西块 北二区东西块 北二区西西块 北1、2排西块 北一区中块
北一区断东中块 +
喇南东块
聚合物注入量 (PVmg/L)
不同聚驱区块含水下降效果
聚合物驱驱油机理
1,本体粘度使聚合物在油层中存在阻力系数和残余阻力
系数,是驱替水驱未波及残余油和簇状残余油的主要原因;
2,界面粘度使聚合物溶液在多孔介质中的粘滞力增加,是 驱替膜状、孤岛状残余油的主要机理; 3,拉伸粘度使聚合物溶液存在粘弹性,是驱替盲状残余油 的主要原因
1.3胜利孤岛油田中一区Ng4聚合物驱 (1)油藏基本特征 Ng4为曲河流相,岩性以粉细砂岩为主,各沉积时间单元 岩性自下而上由粗变细,具有明显的正韵律特征。其渗透 率在平面上变化具有方向性和区域性,变异系数0.638, 注入水沿高渗透层窜流,注水开发效果差。中一区Ng4南 北被断层切割,东西分别与中二区和西区自然连接。 (2)工艺参数 注入方式为清水配制母液,清水稀释注入。采用二段塞注 入方式,注聚井第一段塞注入0.066PV ,浓度1700mg/L, 粘度56.5mpa.s;第二段塞注入0.2067PV,浓度1300mg/L, 粘度35.1mpa.s。 (3)处理效果 含水大幅度下降,由注聚前的94.4%下降到86.5%,下降了 7.9%;到2000年8月,已累积增产原油54.55×l04t。
相关文档
最新文档