原核生物与真核生物DNA复制过程及异同点

原核生物与真核生物DNA复制过程及异同点
原核生物与真核生物DNA复制过程及异同点

原核生物与真核生物D N A复制过程及异同点

文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

原核生物与真核生物D N A复制共同的特点:1底物成分:亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、 DNA聚合酶、RNA酶以及DNA连接酶等;

2过程:分为起始、延伸、终止三个过程;

3聚合方向:5'→3';

4化学键: 3',5'磷酸二酯键;

5遵从碱基互补配对规律;

6一般为双向复制、半保留复制、半不连续复制。

原核生物与真核生物DNA复制不同的特点:

1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA聚合酶的移动速度较原核生物慢。原核生物为一般为环形DNA,具有单一复制起始位点。

2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。

3真核生物复制子大小不一且并不同步。

4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。

5真核生物有五种DNA聚合酶,需要Mg+。主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。原核生物只有三种,主要复制酶为DNA聚合酶III。

6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐。

7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA聚合酶I去除。

8真核生物DNA聚合酶γ负责线粒体DNA合成。

9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。

10原核生物的聚合酶没有5→3外切酶活性,需要一种FEN1的蛋白切除5端引物,原核生物DNA聚合酶工具有5→3外切酶活性。

11原核的DNA Pol─Ⅱ复制时形成二聚体复合物,而真核生物的聚合酶保持分离状态。

原核生物与真核生物基因信息传递过程中的差异

真核生物DNA的复制

第八节真核生物的DNA复制 在上一节中,已经从解决线形DNA复制终止问题的角度讲解了一种真核生物病毒一一腺病毒的DNA复制。本节将要讲解真核生物的复制原点,复制元和复制元族;真核生物的DNA聚合酶和引发酶;作为真核生物DNA复制模型的SV40的复制原点和大T抗原以及复制过程;真核生物染色体末端的DNA的复制F真核生物复制过程中的核小体结构。 一、真核生物的复制原点,复制元和复制元族 在E.coli中,DNA复制速度大约是105bp/分, 而真核细胞的DNA聚合酶活性要低得多,复制速度 大约为500bp/分~500Obp/分。这样,如果按典型的 哺乳动物染色体DNA(比E.coliDNA大50倍)来计 算,则真核DNA的复制时间就会是E.Coli的1000 倍即约一个月的时间。事实上,真核生物DNA复制 时间一般为几个小时。这是通过从许多复制原点同 时开始并双向复制而实现的。用放射自显影方法在 哺乳动物染色体上看到许多复制泡,每个复制泡都 有固定的起点(复制原点),然后双向伸展,与相邻 的复制泡会合。这样一段段的DNA就称为复制单元,简称复制元(replion)。复制元的大小是不均一的,从1.3万bp~90万bp不等。不同生物的复制元大小当然不会相同;就是同一种生物在不同的生长条件下,复制元的大小也不同。生长快的时候,复制元就小。例如果蝇大约有5000个复制原点,每个复制元平均大小约3万bpz而在卵受精后,复制起点增加到大约5万个,仅需3分钟就可以将整个基因组复制完毕。其调节机制目前毫无所知。几个邻近的复制元可组成复制元族,每个复制元族少至两个复制元,多至250个复制元。不同的复制元族在复制起始的时间上有先有后,而同一复制元族内各复制元基本上是同步的。真核生物的复制原点的DNA序列并无固定的模式,但大多包含一个富含AT的序列,可能还有一个特异性蛋白质的结合位点。

原核生物与真核生物DNA复制过程及异同点-精品资料

原核生物与真核生物DNA复制共同的特点: 1底物成分:亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、 DNA聚合酶、RNA酶以及DNA连接酶等; 2过程:分为起始、延伸、终止三个过程; 3聚合方向:5'→3'; 4化学键: 3',5'磷酸二酯键; 5遵从碱基互补配对规律; 6一般为双向复制、半保留复制、半不连续复制。 原核生物与真核生物DNA复制不同的特点: 1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA 聚合酶的移动速度较原核生物慢。原核生物为一般为环形DNA,具有单一复制起始位点。 2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。 3真核生物复制子大小不一且并不同步。 4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。 5真核生物有五种DNA聚合酶,需要Mg+。主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。原核生物只有三种,主要复制酶为DNA聚合酶III。

6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐。7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA聚合酶I去除。 8真核生物DNA聚合酶γ负责线粒体DNA合成。 9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。 10原核生物的聚合酶没有5→3外切酶活性,需要一种FEN1的蛋白切除5端引物,原核生物DNA聚合酶工具有5→3外切酶活性。 11原核的DNA Pol─Ⅱ复制时形成二聚体复合物,而真核生物的聚合酶保持分离状态。 原核生物与真核生物基因信息传递过程中的差异

原核生物与真核生物DNA复制过程及异同点

原核生物与真核生物DNA复制共同得特点: 1底物成分:亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、DNA聚合酶、RNA酶以及DNA连接酶等; 2过程:分为起始、延伸、终止三个过程; 3聚合方向:5'→3'; 4化学键: 3',5'磷酸二酯键; 5遵从碱基互补配对规律; 6一般为双向复制、半保留复制、半不连续复制。 原核生物与真核生物DNA复制不同得特点: 1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA聚合酶得移动速度较原核生物慢。原核生物为一般为环形DNA,具有单一复制起始位点。 2真核生物DNA复制只发生在细胞周期得S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。 3真核生物复制子大小不一且并不同步。 4原核生物有9-mer与13-mer得重复序列构成得复制起始位点,而真核生物得复制起始位点无固定形式。 5真核生物有五种DNA聚合酶,需要Mg+。主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。原核生物只有三种,主要复制酶为DNA聚合酶III。

6真核生物末端靠端粒酶补齐,而原核生物以多联体得形式补齐。7真核生物冈崎片段间得RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA聚合酶I去除。 8真核生物DNA聚合酶γ负责线粒体DNA合成。 9真核生物DNA聚合酶δ得高前进能力来自于RF-C蛋白与PCNA 蛋白得互相作用。原核生物DNA聚合酶III得前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)得相互作用。 10原核生物得聚合酶没有5→3外切酶活性,需要一种FEN1得蛋白切除5端引物,原核生物DNA聚合酶工具有5→3外切酶活性。 11原核得DNA Pol─Ⅱ复制时形成二聚体复合物,而真核生物得聚合酶保持分离状态。 原核生物与真核生物基因信息传递过程中得差异

原核生物与真核生物DNA复制过程及异同点

1底物成分:亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、 DNA聚合酶、RNA酶以及DNA连接酶等; 2过程:分为起始、延伸、终止三个过程; 3聚合方向:5'→3'; 4化学键: 3',5'磷酸二酯键; 5遵从碱基互补配对规律; 6一般为双向复制、半保留复制、半不连续复制。 原核生物与真核生物DNA复制不同的特点: 1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA 聚合酶的移动速度较原核生物慢。原核生物为一般为环形DNA,具有单一复制起始位点。 2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。 3真核生物复制子大小不一且并不同步。 4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。 5真核生物有五种DNA聚合酶,需要Mg+。主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。原核生物只有三种,主要复制酶为DNA聚合酶III。 6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐。 7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生

物冈崎片段由DNA聚合酶I去除。 8真核生物DNA聚合酶γ负责线粒体DNA合成。 9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。 10原核生物的聚合酶没有5→3外切酶活性,需要一种FEN1的蛋白切除5端引物,原核生物DNA聚合酶工具有5→3外切酶活性。 11原核的DNA Pol─Ⅱ复制时形成二聚体复合物,而真核生物的聚合酶保持分离状态。 原核生物与真核生物基因信息传递过程中的差异

原核生物与真核生物DNA复制过程及异同点

原核生物与真核生物D N A复制过程及异同点 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

原核生物与真核生物D N A复制共同的特点:1底物成分:亲代DNA分子为模板,四种脱氧三磷酸核苷(dNTP)为底物,多种酶及蛋白质:DNA拓扑异构酶、DNA解链酶、单链结合蛋白、引物酶、 DNA聚合酶、RNA酶以及DNA连接酶等; 2过程:分为起始、延伸、终止三个过程; 3聚合方向:5'→3'; 4化学键: 3',5'磷酸二酯键; 5遵从碱基互补配对规律; 6一般为双向复制、半保留复制、半不连续复制。 原核生物与真核生物DNA复制不同的特点: 1真核生物为线性DNA,具有多个复制起始位点,形成多个复制叉,DNA聚合酶的移动速度较原核生物慢。原核生物为一般为环形DNA,具有单一复制起始位点。 2真核生物DNA复制只发生在细胞周期的S期,一次复制开始后在完成前不再进行复制,原核生物多重复制同时进行。 3真核生物复制子大小不一且并不同步。 4原核生物有9-mer和13-mer的重复序列构成的复制起始位点,而真核生物的复制起始位点无固定形式。 5真核生物有五种DNA聚合酶,需要Mg+。主要复制酶为DNA聚合酶δ(ε),引物由DNA聚合酶α合成。原核生物只有三种,主要复制酶为DNA聚合酶III。 6真核生物末端靠端粒酶补齐,而原核生物以多联体的形式补齐。 7真核生物冈崎片段间的RNA引物由核酸外切酶MF1去除,而原核生物冈崎片段由DNA聚合酶I去除。

8真核生物DNA聚合酶γ负责线粒体DNA合成。 9真核生物DNA聚合酶δ的高前进能力来自于RF-C蛋白与PCNA蛋白的互相作用。原核生物DNA聚合酶III的前进能力来自与γ复合体(夹钳装载机)与β亚基二聚体(β夹钳)的相互作用。 10原核生物的聚合酶没有5→3外切酶活性,需要一种FEN1的蛋白切除5端引物,原核生物DNA聚合酶工具有5→3外切酶活性。 11原核的DNA Pol─Ⅱ复制时形成二聚体复合物,而真核生物的聚合酶保持分离状态。 原核生物与真核生物基因信息传递过程中的差异

原核生物与真核生物DNA复制过程及异同点

原核生物与真核生物复制的过程及其异同点。 原核生物与真核生物复制的过程大体上均分为复制的起始、DNA链的延伸和复制的终止三个过程。 原核生物DNA的复制过程(以大肠杆菌为例): 复制起始:OriC起始位点由四个9个核苷酸(9-mer)的重复序列和三个13个核苷酸(13-mer)的重复序列组成。DnaA 蛋白结合到9-mer结构上,使DNA形成一个环。结果,双链DNA在富含A-T碱基的13-mer区域分开成为单链。随后,DnaB-DnaC复合体结合到复制起始点上,形成预引发复合物。然后,DnaB利用其解旋酶的活性使解链部分延长,并激发DnaG引发酶,进而形成一段RNA引物,起始DNA的复制(DNA聚合酶只能从3’羟基端起始复制)。 DNA链的延伸:DNA链一般形成两个复制叉进行双向复制。DNA链的复制是半不连续复制,以3’-5’方向DNA链为模板合成的子链为前导链,另一条为后随链,后随链的合成以合成冈崎片段的方式进行。延伸过程主要依靠DNA聚合酶III (核心酶由α、θ、ε构成),DNA聚合酶III靠其β夹钳牢固地结合在DNA链上并延DNA链移动。冈崎片段一端的引物由DNA聚合酶I以切口平移的方式去除,然后由DNA连接酶连接为一体。复制叉前进时由解旋酶依靠水解ATP的能量(一个ATP一个碱基)打开双链,单链与SSB结合并保持稳定。DNA拓扑异构酶去除正超螺旋。

复制的终止:复制叉前行,当遇到22个碱基组成的重复性终止子序列(Ter)时,Ter-Tus复合物使DnaB停止解链,复制叉前移停止,等相反方向复制叉到达后,由修复方式填补两个复制叉间的空缺。随后,在DNA拓扑异构酶IV的作用下复制叉解体,释放子链DNA。 真核生物DNA的复制: 真核生物DNA的复制过程与原核生物DNA的复制过程大体相同。 复制的起始:真核生物DNA复制从成百上千个起始位点上开始,形成多个复制叉。真核生物DNA复制只发生在S期。真核生物复制起始位点难以确定,酵母中称为自主复制序列(ARS)。起点识别复合体(ORC)与ARS结合后又与前复制复合体(pre-RC)结合,进而吸引Cdc6和Cdt1两个蛋白以及解旋蛋白Mcm2-7形成完整的复合体。pre-RC只在G1期合成,在S期时Cdc45结合到复合体上,激活Mcm2-7,在DNA聚合酶作用下使pre-RC启动复制。DNA聚合酶α合成由10bpRNA和20-30bpDNA构成的引物(iDNA)。DNA链的延伸:前导链由DNA聚合酶δ合成,DNA聚合酶δ是有高度前进能力的酶,其前进能力来自于RF-C蛋白和PCNA蛋白的相互作用,两者分别相当于大肠杆菌中γ夹钳装载机和β前进亚基的作用。DNA聚合酶δ的前进能力是由PCNA维持的。后随链的冈崎片段由DNA聚合酶δ或

真核染色体DNA复制的过程

真核染色体DNA复制的过程 DNA复制过程大致可以分为复制的引发,DNA链的延伸和DNA复制的终止三个阶段。 (一)DNA复制的引发 复制的引发(Priming)阶段包括:a.DNA复制起点双链解开,b.通过转录激活步骤合成RNA分子,c.RNA引物的合成,d.DNA聚合酶将第一个脱氧核苷酸加到引物RNA 的3'-OH末端复制。引发的关键步骤就是前导链DNA的合成,一旦前导链DNA的聚合作用开始,滞后链上的DNA合成也随着开始,在所有前导链开始聚合之前有一必需的步骤就是由RNA聚合酶(不是引物酶)沿滞后链模板转录一短的RNA分子。在有些DNA复制中,(如质粒ColE),该RNA分子经过加式成为DNA复制的引物。但是,在大部分DNA复制中,该RNA分子没有引物作用。它的作用似乎只是分开两条DNA链,暴露出某些特定序列以便引发体与之结合,在前导链模板DNA上开始合成RNA引物,这个过程称为转录激活(transcriptional activation),在前导链的复制引发过程中还需要其他一些蛋白质,如大肠杆菌的dnaA蛋白。这两种蛋白质可以和复制起点处DNA上高度保守的4个9bp长的序列结合,其具体功能尚不清楚。可能是这些蛋白质与DNA复制起点结合后能促进DNA聚合酶Ⅲ复合体的七种蛋白质在复制起点处装配成有功能的全酶。DNA复制开始时,DNA螺旋酶首先在复制起点处将双链DNA解开,通过转录激活合成的RNA分子也起分离两条DNA链的作用,然后单链DNA结合蛋白质结合在被解开的链上。由复制因子X(n蛋白),复制因子Y(n'蛋白),n"蛋白,i蛋白,dnaB蛋白和dnaC蛋白等6种蛋白质组成的引发前体(preprimosome),在单链DNA结合蛋白的作用下与单链DNA结合生成中间物,这是一种前引发过程。引发前体进一步与引物酶(primase)组装成引发体(primosome)。引发体可以在单链DNA上移动,在dnaB亚基的作用下识别DNA复制起点位置。首先在前导链上由引物酶催化合成一段RNA引物,然后,引发体在滞后链上沿5'→3'方向不停的移动(这是一种相对移动,也可能是滞后链模板在移动,见后),在一定距离上反复合成RNA引物供DNA聚合酶Ⅲ合成冈崎片段使用,引发体中许多蛋白因子的功能尚不清楚。但是,这些成份必须协同工作才能使引发体在滞后链上移动,识别合适的引物合成位置,并将核苷酸在引发位置上聚合成RNA 引物。由于引发体在滞后链模板上的移动方向与其合成引物的方向相反,所以在滞后链上所合成的RNA引物非常短,一般只有3-5个核苷酸长。而且,在同一种生物体细胞中这些引物都具有相似的序列,表明引物酶要在DNA滞后链模板上比较特定的位置(序列)上才能合成RNA引物。 为什么需要有RNA引物来引发DNA复制呢?这可能尽量减少DNA复制起始处的突变有关。DNA复制开始处的几个核苷酸最容易出现差错,因此,用RNA引物即使出现差错最后也要被DNA聚合酶Ⅰ切除,提高了DNA复制的准确性。RNA引物形成后,由DNA聚合酶Ⅲ催化将第一个脱氧核苷酸按碱基互补原则加在RNA引物3'-OH端而进入DNA链的延伸阶段。

相关主题
相关文档
最新文档