氧化铝生产工艺及计算
氧化铝生产工艺流程

氧化铝生产工艺流程氧化铝(Al2O3)是一种重要的无机化合物,广泛应用于陶瓷、耐火材料、磨料、催化剂等领域。
氧化铝的生产工艺流程通常包括以下几个步骤:矿石的选矿、氧化铝的制备和精炼。
下面将详细介绍氧化铝的生产工艺流程。
一、矿石的选矿氧化铝的主要原料是铝土矿(bauxite)。
矿石的选矿过程是将含铝矿石从其他杂质中提取出来,使其含铝量达到一定标准。
矿石的选矿流程包括以下几个步骤:矿石碎磨、物理选矿、化学选矿和浸出。
1.矿石碎磨:将原矿经过破碎设备进行粗碎和细碎,使其达到适合后续处理的粒度要求。
2.物理选矿:利用物理性质的差异,采用重选方法分离矿石中的杂质。
常用的重选设备有重介分离机、离心分选机和震动筛等。
3.化学选矿:通过化学方式改变矿石中各种成分的化学性质,使其在溶液中呈现不同的溶解度,从而达到分离杂质的目的。
常用的化学选矿方法有酸洗、碱洗和氧化等。
4.浸出:将经过选矿的矿石用稀硫酸浸出,使铝氧化物溶解在浸出液中。
二、氧化铝的制备经过选矿的矿石中含有一定数量的铝氧化物(Al2O3),但还存在有机质、杂质和无机结合物等。
所以,经过矿石的选矿后还需要进行炼制和制备氧化铝,常用的工艺流程有碳酸钠法、铝盐法和氨法等。
1.碳酸钠法:将经过选矿的矿石和合适比例的碳酸钠与水一起混合,并加热,使其反应生成碳酸盐。
然后,将碳酸盐与酸进行反应,使铝氧化物在溶液中析出。
最后,将沉淀分离出来,通过烘干和高温煅烧得到氧化铝。
2.铝盐法:将经过选矿的矿石先进行煅烧,使其进行脱水。
然后,将矿石与酸反应,生成铝酸盐。
再通过晶体分离和干燥得到氧化铝。
3.氨法:将经过选矿的矿石煅烧,使其脱除水分。
然后,将矿石与氧化铝碳酸铵溶液进行反应,生成氨铝酸盐。
再通过结晶和煅烧得到氧化铝。
三、氧化铝的精炼经过上述制备后得到的氧化铝还存在一定的杂质,如硅酸盐、铁、钠和镁等。
因此,还需要进行氧化铝的精炼,提高其纯度。
常用的精炼方法有硫酸法、溶剂萃取法和氟化法等。
氧化铝生产工艺技术规程

1氧化铝生产工艺流程1.1工艺流程概述我厂氧化铝生产采用拜尔法。
矿山来的铝土矿在卸矿站卸入矿仓后转运到均化库布料。
石灰石经竖式石灰炉煅烧后送到石灰仓,用于石灰消化和原料磨配料。
均化库内的碎铝土矿用双斗轮取料机横向取料后经皮带运输机送至磨头仓。
铝土矿、石灰和蒸发来的循环母液按一定配比进入由棒、球二段磨和水旋器组成的磨矿分级系统。
分级溢流(原矿浆)进入原矿浆槽,然后泵送至高压溶出工序的溶出前槽。
溶出前槽内矿浆用G E H O泵送入溶出系统。
首先由单套管和压煮器组成的十级预热器预热,再用约60巴新蒸汽间接加热压煮器内矿浆到溶出温度,保温溶出45-60分钟,经十级自蒸发器闪蒸降温后,溶出矿浆用赤泥洗液稀释。
闪蒸产生的二次蒸汽用于十级预热,新蒸汽冷凝水经闪蒸成6巴蒸汽并入全厂低压蒸汽管网,新蒸汽不含碱冷凝水返回热电厂。
二次蒸汽冷凝水及新蒸汽含碱冷凝水送热水站。
稀释矿浆在Ф40m单层平底沉降槽内进行液固分离,底流进入洗涤沉降槽进行三次赤泥反向洗涤,再送入赤泥过滤机进行过滤洗涤,热水分别加入过滤机和末次洗涤,滤饼经螺旋输送进入再浆化槽,用离心泵向G E H O泵喂料,然后压送到赤泥堆场进行干法堆存。
分离沉降槽中添加由絮凝剂工序制备好的合成絮凝剂和天然絮凝剂。
一次、二次洗涤槽加合成絮凝剂。
分离沉降槽溢流经泵送粗液槽,再用泵送往385m2凯利式叶滤机或226m2立式叶滤机进行控制过滤,过滤时加入助滤剂(石灰乳或苛化渣)。
滤饼送二次洗涤槽,精液送板式热交换器。
精液经三级板式热交换器与分解母液和冷却水进行热交换冷却到设定温度。
再与种子过滤滤饼(晶种)在晶种槽内混合后用晶种泵送至由13台平底机械搅拌槽组成的分解系列的首槽(1#和2#槽)。
经连续分解后从11#(或10#)槽顶用立式泵抽取分解浆液去进行旋流分级,分级前加入部分过滤母液稀释,分级溢流进12#(或11#)分解槽。
底流再用部分母液冲稀后自压至产品过滤。
分解末槽(12#或11#)的分解浆液从槽上部出料自流至种子过滤机,滤饼用精液冲入晶种槽,滤液入锥形母液槽。
氧化铝生产工艺流程

氧化铝生产工艺流程氧化铝是一种重要的工业原料,广泛用于陶瓷、磨料、电子材料等领域。
其生产工艺流程主要包括矿石选矿、氧化铝的制备和氧化铝的精炼三个步骤。
一、矿石选矿氧化铝的主要原料是铝土矿,其主要成分是氧化铝矿石。
矿石选矿是生产氧化铝的第一步,其目的是从矿石中提取出氧化铝。
首先将铝土矿石经过破碎、磨矿等工艺处理,得到粉碎后的矿石。
然后通过重选、浮选等方法,将矿石中的氧化铝和其他杂质进行分离,得到含氧化铝较高的矿石精矿。
二、氧化铝的制备1. 煅烧矿石精矿经过煅烧处理,将其转化为氧化铝。
煅烧是将矿石精矿在高温下进行煅烧,使其发生化学反应,氧化铝矿石中的氢氧化铝转化为氧化铝。
煅烧的温度一般在1000℃以上,煅烧时间根据矿石的性质和工艺要求而定。
2. 碳酸化经过煅烧后的氧化铝矿石,其颗粒度较大,不利于后续的加工和应用。
因此需要进行碳酸化处理,将氧化铝矿石进行粉碎,并与碳酸钠进行反应,生成碳酸铝钠。
然后将碳酸铝钠进行水解,生成氢氧化铝沉淀。
经过过滤、洗涤等工艺处理,得到氢氧化铝产品。
三、氧化铝的精炼1. 氢氧化铝的煅烧将氢氧化铝进行煅烧,使其转化为氧化铝。
煅烧温度一般在1100℃以上,煅烧时间根据产品要求而定。
煅烧后的氧化铝颗粒度较大,需要进行粉碎和分级处理,得到符合要求的氧化铝产品。
2. 氧化铝的提纯经过煅烧后的氧化铝产品中可能还含有一定的杂质,需要进行提纯处理。
常用的方法包括盐酸法、碱法和氧化法等,通过这些方法可以将氧化铝产品中的杂质去除,得到高纯度的氧化铝产品。
以上就是氧化铝生产的主要工艺流程。
通过矿石选矿、氧化铝的制备和氧化铝的精炼三个步骤,可以生产出符合工业需求的氧化铝产品。
随着工艺技术的不断进步,氧化铝生产工艺也在不断优化,以提高产品质量和降低生产成本。
希望通过不断的研究和改进,能够进一步完善氧化铝生产工艺,为工业生产提供更优质的原料。
拜耳法生产氧化铝工艺设计计算

拜耳法生产氧化铝工艺设计计算1 目的与要求通过工艺设计计算,对氧化铝生产工艺工艺流程有更深入全面的了解,培养和训练学生具备解决复杂的工艺问题、管理氧化铝生产、进行物料平衡计算的能力。
在进行冶金计算之前,必须收集有关现场数据,以便于具体计算。
为了计算的方便,下面的物料平衡计算按生产1吨氧化铝为基准进行。
2 主要生产技术指标的选择1)产品为一级氧化铝(国标):32O Al 含量 不低于006.98。
本设计取为0099。
2)铝土矿的化学组成(00)表1 铝土矿成分表 成分32O Al 32O Fe 2SiO 2TiO O H 22CO 其他 合计附着水67.40 11.08 5.45 4.2010.77 0.520.58100 0.93)石灰的化学组成(00)表2 石灰石的成分表成分CaO 32O Al 2SiO2CO 其他合计87.56 3.8 3.27 5.190.181004)氧化铝实际溶出率:0009.89,总回收率:0087。
5)石灰添加量占干铝土矿量的008。
6)碱耗:32/53O Al t kg 补碱组成表3 补碱成分表 成分k O Na 2 c O Na 22COL g /438.87.25.1密度=14403/m kg 7)循环母液的组成表4 循环母液的成分成分k O Na 232O Alc O Na 22COTO Na 2L g /240135.132014.19260密度=13583/m kg3=K α8)稀释后的铝酸钠溶液组成 表 5 铝酸钠溶液成分成分k O Na 232O Alc O Na 22COL g /160181.5211.047.83密度=13153/cm g 48.1=K α9)沉降分离底流0.3=S L ,末次洗涤槽底流0.1=S L 。
10)弃赤泥液相中O Na 2的含量(浓度):L g 25.2。
11)溶出后赤泥的35.1=S A , 3.0=S N 。
拜耳法生产氧化铝工艺流程简介

拜耳法生产氧化铝工艺流程简介拜耳法适于处理高品位铝土矿,这是用苛性碱溶液在一定的温度下溶出铝土矿中的氧化铝的生产方法,具有工艺简单、产品纯度高、经济效益好等优点。
基本原理拜耳法的基本原理有两个。
一个是铝土矿的溶出;一个是铝酸钠溶液的分解。
溶出是用苛性碱溶液在一定的条件下(加石灰、碱浓度、温度、时间及搅拌等)溶出铝土矿中的氧化铝,反应为Al2O3·H2O+2NaOH=2NaAlO2+2H2OAl2O3·3H2O+2NaOH=2NaAlO2+4H2OSiO2+NaOH+NaAlO2=Na2O·Al2O3·2SiO 2·2H2O+H2O一水铝石或三水铝石溶解形成铝酸钠进入碱液中,而其它杂质不进入溶液中,呈固相存在,称赤泥。
三水铝石(Al2O3·3H2O)的溶解温度为105℃,一水硬铝石(α-Al2O3·H2O)为220℃,一水软铝石(γ-Al2O3·H2O)为190℃。
分解是利用NaAlO2溶液在降低温度、加入种子及搅拌的条件下析出固相Al(OH)3,分解反应为NaAlO2+2H2O=Al(OH)3↓+NaOH 种子即为Al(OH)3,加入量(以Al2O3量计算)为溶液中Al2O3含量的一倍以上;温度控制为从75℃降到55℃;搅拌时间为60h左右。
所得Al(OH)3再经焙烧脱水变成Al2O3;并使Al2O3晶型转变,满足铝电解的要求,焙烧反应为Al2O3·3H2O 225℃γ-Al2O3·H2O + 2H2Oγ-Al2O3·H2O 500℃γ-Al2O3 + H2Oγ-Al2O3 900~1200℃α-Al2O3工艺流程及主要技术条件拜耳法的生产工艺主要由溶出、分解和焙烧三个阶段组成。
全流程主要加工工序为:矿石的破碎、均化及湿磨、高温高压溶出、赤泥分离洗涤、叶滤、种子分解、母液蒸发及氢氧化铝焙烧。
氧化铝生产工艺

氧化铝生产工艺氧化铝是一种重要的工业原料,广泛应用于陶瓷、建材、电子、化工等领域。
下面我将从原料准备、工艺流程、设备和能耗等方面全面介绍氧化铝的生产工艺。
原料准备:氧化铝主要的原料是含铝矿石,如赤铁矿、高岭土、脱硅白云石等。
此外,还需要使用含碱矿石、氯化铝、铝氧化物等作为助熔剂和助矿剂。
原料在使用前需要经过破碎、磨矿、筛分等工艺处理,以确保原料的颗粒度和成分合格。
工艺流程:氧化铝的生产工艺主要可以分为电解氧化法和氢氧化法两种。
1.电解氧化法:首先,将矿石与碱矿石、助熔剂和助矿剂混合后,在高温电炉中进行熔炼。
熔炼后的铝渣经过冷却和破碎后,得到铝渣粉末。
然后,将铝渣粉末与氯化铝等混合物放入电解槽中,进行电解氧化反应。
在电解槽中,阳极是铝阳极,阴极是石墨或铝带,电解质是熔融氯化铝。
通过施加适当的电压和电流,铝阳极上的氧化铝逐渐析出,并经过相应的处理后得到氧化铝产品。
反应公式如下:2Al(阳极)+3H2O->Al2O3+6H++6e-2.氢氧化法:氢氧化法是一种相对低能耗的生产工艺。
首先,将矿石经过碳酸钠焙烧后得到氧化铝。
然后,将氧化铝与钠氢氧化物溶液反应生成氢氧化铝。
接着,通过煮沸和沉淀处理,得到粗氢氧化铝。
最后,将粗氢氧化铝通过煅烧处理,得到氧化铝产品。
设备:氧化铝的生产设备主要包括熔炼炉、电解槽、沉淀槽等。
其中,熔炼炉一般采用电炉,电解槽为密封结构,以防止电解质的挥发和溢出,沉淀槽为反应容器。
能耗:总结:氧化铝的生产工艺包括电解氧化法和氢氧化法,其中电解氧化法能耗较高,而氢氧化法能耗较低。
原料准备需要对矿石进行破碎、磨矿等处理,设备主要包括熔炼炉、电解槽和沉淀槽。
为了减少能耗,可以采用电能、燃料能的节约措施,并优化工艺参数。
希望通过以上介绍,您对氧化铝的生产工艺有更全面的了解。
氧化铝生产工艺及计算

氧化铝生产工艺及计算氧化铝是一种重要的无机化工原料,广泛用于陶瓷、电子行业、建筑材料等领域。
下面将介绍氧化铝的生产工艺以及计算相关内容。
一、氧化铝的生产工艺1.工艺流程氧化铝的生产主要有两种常用工艺,即碱法和酸法。
碱法:以矾土为原料,经过粉碎、煅烧、鼓风、浸出、结晶、脱硅、破碎、超细加工等步骤,最终得到氧化铝。
酸法:以工业硫酸为主要原料,经过浸出、过滤、脱硅、煅烧、水洗、钝化、干燥等步骤,最终得到氧化铝。
两种工艺各有优缺点,碱法工艺流程简单成熟,但消耗大量碱用于中和,对环境有一定影响,酸法工艺对环境影响小,但消耗大量硫酸。
选择具体的生产工艺应根据实际情况进行考虑。
2.生产设备氧化铝的生产设备主要包括碱法炉、破碎机、粉碎机、过滤机、煅烧炉、结晶罐、产品粉碎机等。
其中,碱法炉和煅烧炉是关键设备,碱法炉用于矾土的煅烧,煅烧炉用于氧化铝的煅烧。
3.生产参数氧化铝的生产需要控制一系列参数,如煅烧温度、浸出时间、酸碱浓度等。
这些参数的合理控制可以提高生产效率和产品质量。
例如,在碱法工艺中,适宜的煅烧温度可以减少煅烧时间,提高氧化铝的产率。
二、氧化铝的计算1.确定产品质量指标氧化铝的质量指标主要包括氧化铝含量、比表面积、晶型等。
根据产品的具体要求和应用领域,确定相应的质量指标。
2.计算产率氧化铝的产率是衡量生产效果的重要指标,通常通过计算可得。
产率=(实际产量/理论产量)×100%其中,实际产量是指实际生产得到的氧化铝的质量,理论产量是根据原料的理论含量计算出来的氧化铝的质量。
3.浓度计算碱法工艺中,浸出液中的铝离子浓度是关键参数之一、可以通过测定浸出液中铝的含量,再根据浸出液体积计算浓度。
4.脱硅率计算氧化铝产品中的硅含量对产品质量有一定影响,因此需要计算脱硅率。
脱硅率=(进料硅含量-产物硅含量)/进料硅含量×100%总结:氧化铝的生产工艺包括碱法和酸法,选择适合的工艺应根据实际情况进行考虑。
氧化铝生产过程计算方法

氧化铝生产过程计算方法氧化铝是一种重要的无机化工原料,常用于制备陶瓷、炼钢、铝盐等工业领域。
其生产过程主要包括铝矿提取、研磨、浸出、沉淀、煅烧等步骤。
下面将分别介绍这些步骤的计算方法。
1.铝矿提取:该步骤是将铝矿中的氧化铝与杂质物质分离的过程。
铝矿石的化学成分可以通过化学分析等方法确定,例如用X-射线荧光光谱仪测定铝矿中氧化铝的含量。
计算铝矿中氧化铝的含量可以使用以下公式:其中,\rho_{\text{氧化铝}}表示氧化铝的含量,m_{\text{氧化铝}}表示氧化铝的质量,m_{\text{样品}}表示铝矿样品的质量。
2.研磨:研磨是将铝矿石破碎成一定粒度的过程。
在研磨过程中,需要控制研磨时间、研磨介质、研磨介质与矿石的质量比等参数。
通过测定研磨后的矿石平均颗粒尺寸可以估算矿石的研磨效果。
常用的测定方法有激光粒度分析仪、显微镜等。
研磨效率可以用以下公式计算:3.浸出:浸出是将经过研磨的铝矿石与浸取剂反应,使氧化铝溶解在浸取液中的过程。
通过浸取液中氧化铝浓度和溶解率可以评估浸出效果。
浸出溶出率可以使用以下公式计算:其中,[]表示物质的浓度,单位为质量浓度。
4.沉淀:沉淀是将浸取液中的氧化铝沉淀下来的过程。
通过沉淀液中氧化铝含量和沉淀率可以评估沉淀效果。
沉淀率可以使用以下公式计算:5.煅烧:煅烧是将沉淀得到的氧化铝加热至一定温度,将其中的水分和杂质气体除去的过程。
煅烧温度和时间可以通过试验得到最佳条件。
可以通过测定煅烧后氧化铝的质量和杂质含量来评估煅烧效果。
常用的测定方法有热重分析法、X-射线衍射法等。
综上所述,氧化铝生产过程的计算方法包括铝矿提取中氧化铝含量的计算、研磨效率的计算、浸出溶出率的计算、沉淀率的计算以及煅烧效果的评估等。
这些计算方法的应用可以帮助生产工艺的优化和产品质量的控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧化铝生产工艺及计算第一章氧化铝生产方法简介氧化铝生产方法大致可分为四类,即碱法、酸法、酸碱联合法和热法。
但目前用于工业生产的几乎全属于碱法。
碱法生产氧化铝的基本过程如下:焙烧3图1:碱法生产氧化铝基本过程碱法生产氧化铝又分为拜耳法、烧结法和联合法等多种流程。
拜耳法是直接用含有大量游离NaOH的循环母液处理铝矿石,以溶出其中的氧化铝而获得铝酸钠溶液,并用加晶种搅拌分解的方法,使溶液中的氧化铝以Al(OH)3状态结晶析出。
种分母液经蒸发后返回用于浸出另一批铝矿石。
矿石中的主要杂质SiO2是以水合铝硅酸钠(Na2O•Al2O3•1.7SiO2•nH2O)的形式进入赤泥,造成Al2O3和Na2O的损失。
因此,拜耳法适合处理高品位铝矿,铝硅比A/S 大于9。
烧结法是将铝矿石配入石灰石(或石灰)、苏打(含有Na2CO3的碳分母液),在高温下烧结得到含固体铝酸钠的物料,用稀碱溶液溶出熟料便得到铝酸钠溶液。
经脱硅后的纯净铝酸钠溶液用碳酸化分解法使溶液中的氧化铝呈Al(OH)3析出。
碳分母液经蒸发后返回用于配制生料浆。
矿石中的主要杂质SiO2是以原硅酸钙(2CaO•SiO2)的形式进入赤泥,不会造成Al2O3和Na2O的损失。
因此,烧结法适合处理高硅铝矿,铝硅比A/S可以为3-5。
拜耳-烧结联合法兼有拜耳法和烧结法流程,兼收了两个流程的优点,获得更好的经济效果。
它适合处理A/S为6-8的中等品位铝矿。
由于流程较复杂,只有生产规模较大时,采用联合法才是可行和有利的。
酸法是用硝酸、硫酸、盐酸等无机酸处理含铝原料而得到相应的铝盐的酸性水溶液。
然后使这些铝盐成水合物晶体(蒸发结晶)或碱式铝盐(水解结晶)从溶液中析出,亦可用碱中和这些铝盐的水溶液,成氢氧化铝析出,煅烧后得无水氧化铝。
酸法适合处理高硅低铁铝矿,如粘土、高岭土等。
但它的缺点是耐酸设备昂贵,酸的回收困难,从溶液中除铁也困难。
酸碱联合法是先用酸法从高硅铝矿中制取含铁、钛等杂质的不纯氢氧化铝,再用碱法(拜耳法)处理。
这一流程的实质是用酸法除硅,碱法除铁。
热法适合处理高硅高铁铝矿,其实质是在电炉或高炉内还原熔炼矿石,同时获得硅铁合金(或生铁)与含氧化铝的炉渣,二者借比重差分开后,再用碱法从炉渣中提取氧化铝。
第二章铝酸钠溶液一、铝酸钠溶液的Al2O3与Na2O比值铝酸钠溶液的Al2O3与Na2O比值,可以用来表示铝酸钠溶液中氧化铝的饱和程度以及溶液的稳定性,是铝酸钠溶液的一个重要特征参数。
对此参数有两种表示方法。
铝酸钠溶液中所含苛性碱与氧化铝的摩尔比叫做铝酸钠溶液的苛性比值,符号为MR。
铝酸钠溶液中所含氧化铝与苛性碱的质量比用Rp表示。
MR与Rp之间的关系如下:MR=1.645/Rp二、铝酸钠溶液的稳定性所谓铝酸钠溶液的稳定性,是指从过饱和的铝酸钠溶液开始分解析出氢氧化铝所需时间的长短。
铝酸钠溶液过饱和程度越大,其稳定性也越低,影响铝酸钠溶液稳定的主要因素是:⑴铝酸钠溶液的Rp值。
在其他条件相同时,溶液的Rp值越大,其过饱和程度越大,溶液的稳定性越低。
⑵铝酸钠溶液的温度。
当其他条件不变时,溶液的过饱和程度随温度的降低而增大,因而溶液的稳定性减少,但是在30℃以下再降低温度,溶液的稳定性反而有所增大。
⑶铝酸钠溶液的浓度。
在常压下,当溶液的Rp一定时,中等浓度(Na2O50~60g/l)铝酸钠溶液的过饱和程度大于更稀或更浓的溶液,其表现为中等浓度的铝酸钠溶液的稳定性最小。
⑷铝酸钠溶液中所含的杂质。
铝酸钠溶液中的氢氧化铁和钛酸钠可以起到氢氧化铝结晶中心的作用,即晶核的作用,加快氢氧化铝的析出,降低溶液的稳定性。
然而工业铝酸钠溶液中多数杂质如SiO2、Na2O、Na2S及有机物等,却使工业铝酸钠溶液的稳定性不同程度的提高。
⑸晶种和搅拌。
往过饱和的铝酸钠溶液中加入氢氧化铝晶种,可以降低溶液的稳定性。
对过饱和的铝酸钠溶液施以搅拌,能强化扩散过程,有利于晶核的形成和结晶的成长,并能使晶核处于悬浮状态,所以搅拌能降低溶液的稳定性。
三、铝酸钠溶液的物理化学性质1、铝酸钠溶液的密度铝酸钠溶液的密度主要受苛性碱浓度、氧化铝浓度、温度等的影响,随着苛性碱浓度、氧化铝浓度的升高而增大,随着温度的降低而增大。
经验计算方法有两种。
⑴在Na2O浓度140~230g/l,Al2O3浓度60~130g/l,Na2O C浓度10~20g/l,温度40~80℃内,常压下,铝酸钠溶液密度的计算公式如下:ρ=1.055+9.640×10-4N+6.589×10-4A+5.176×10-4N C-3.242×10-4T式中ρ-铝酸钠溶液密度,g/cm3;N-铝酸钠溶液苛性碱浓度,g/l;A-铝酸钠溶液氧化铝浓度,g/l;NC-铝酸钠溶液碳酸碱浓度,g/l;T-铝酸钠溶液温度,℃。
⑵先计算出20℃时铝酸钠溶液的密度,再采用系数加以换算。
20℃时密度公式如下:ρ=0.5+√0.25+0.00144N+0.0009A+0.001865N C或ρ=1+0.0144N′+0.009A′+0.01865N C′式中 N′、A′、N C′为对应的百分浓度,%。
当计算其他温度下的密度时,公式如下:ρt℃=K×ρt(℃) 30 40 50 60 70 80 90 100K 0.995 0.991 0.986 0.981 0.976 0.971 0.966 0.960 2、铝酸钠溶液的饱和蒸汽压铝酸钠溶液中氧化铝、氧化钠等都能降低溶液的饱和蒸汽压,使溶液沸点升高。
但研究表明,主要决定于溶液中的Na2O浓度,而Al2O3浓度的影响很小。
3、铝酸钠溶液的比热及热焓在Na2O浓度140~230g/l,Al2O3浓度60~130g/l,Na2O C浓度10~20g/l,温度40~80℃内,铝酸钠溶液比热的计算公式如下:C P=0.921-2.75×10-4N-2.45×10-4A-1.70×10-3N C+5.65×10-4T式中C P-铝酸钠溶液比热,Cal/(g.℃);N-铝酸钠溶液苛性碱浓度,g/l;A-铝酸钠溶液氧化铝浓度,g/l;NC-铝酸钠溶液碳酸碱浓度,g/l;T-铝酸钠溶液温度,℃。
铝酸钠溶液的比热随着温度的升高而增加,随着浓度的升高而减少。
铝酸钠溶液的热焓,可通过以下方程计算:H=(C P×ρ)×T×V×1000式中 H-铝酸钠溶液的比热焓,KCal;C P-铝酸钠溶液比热,Cal/(g.℃);ρ-铝酸钠溶液密度,g/cm3;V-铝酸钠溶液的体积,m3;T-铝酸钠溶液温度,℃。
4、氧化铝水合物在碱溶液中的溶解热溶解反应热可用以下公司计算:△HlgK=————+C4.575T式中△H—溶解热,kJ/mol;K—反应平衡常数;C—常数;T—温度,K。
由上述公式可计算出的氧化铝水合物平均溶解热:三水铝石:602.1kJ/(kg•Al2O3)拜耳石:429.7kJ/(kg•Al2O3)一水软铝石:390.2kJ/(kg•Al2O3)一水硬铝石:640.15kJ/(kg•Al2O3)。
5、一水硬铝石在碱溶液中的溶解度在较高温度下,溶出一水硬铝石得到的饱和铝酸钠溶液中,氧化铝浓度与温度和氧化钠浓度有近似于直线的关系,可用下式表示:C A=1.268C N+0.7673T-278.35式中C A—平衡溶液中氧化铝浓度,g/lC N—原始溶液中氧化钠浓度,g/lT—溶出温度,℃。
第三章拜耳法的原理和基本流程一、拜耳法的原理及实质1、拜耳法的原理拜耳法的基本原理有两条:⑴用NaOH溶液溶出铝土矿所得到的铝酸钠溶液在添加晶种,不断搅拌和逐渐降温的条件下,溶液中的氧化铝便呈Al(OH)3析出;⑵分解得到的母液(主要含NaOH),经蒸发浓缩后在高温下可用来溶出新的一批铝土矿。
交替使用这两个过程就能够连续地处理铝土矿,从中不断析出纯的Al(OH)3产品,构成所谓的拜耳法循环。
拜耳法的实质就是使下一反应在不同的条件下朝不同的方向交替进行:溶出Al2O3•xH2O+2NaOH+(3-x)H2O+aq 2NaAL(OH)4+aq分解式中当溶出一水铝石和三水铝石时x分别为1和3;当分解铝酸钠溶液时x=3。
2、Na2O-Al2O3-H2O系中的拜耳法循环图拜耳法生产氧化铝的工艺流程是由许多工序组成的,其中主要有铝土矿的溶出、溶出浆液的稀释、晶种分解和分解母液的蒸发四个工序。
将四个工序铝酸钠溶液的组成分别标记在Na2O-Al2O3-H2O 系等温图上并将各点依次连接,就构成了一个封闭的拜耳法循环图(如图)。
图中,四边形ABCD表示循环过程,其中AB称溶出线,BC称稀释线,CD称分解线,DA称蒸发线,它们分别反映了溶出、稀释、分解、蒸发过程中溶液组成的变化。
在实际生产过程中,由于存在氧化铝和氧化钠的损失,溶出时使溶液稀释或浓缩,添加晶种带入母液使溶液苛性比值有所提高等原因,因此,实际过程与理想过程有所区别,各个线段都会偏离图中位置。
在每一次作业循环后,都必须补充损失的碱,才能使母液的组成恢复到循环开始的A点。
3、拜耳法的循环效率和循环碱量循环效率是指1tNa2O在一次拜耳法循环中所产出的氧化铝的量(t),用E表示。
循环碱量是指生产1tAl2O3在循环母液中所必须含有的碱量(不包括碱损失),它是E的倒数,用N表示。
假定在生产过程中不发生Al2O3和Na2O的损失,1m3循环母液中苛性碱含量为n(t),氧化铝含量为A1(t),Rp1;溶出后溶液的氧化铝含量为A2(t),Rp2。
则经过一次拜耳法循环后产出的氧化铝量A 应为:A=A2-A1=nRp2-nRp1则循环效率E为:E=A/n=Rp2-Rp1循环碱量N为:N=1/E=1/(Rp2-Rp1)由此可见,溶出时循环母液的Rp愈小,溶出液Rp愈大,循环效率就愈高,而生产1t氧化铝所需的循环碱量越小。
在实际生产中,由于存在碱损失,生产1t氧化铝所需的循环碱量应更大一些。
二、拜耳法的基本流程拜耳法的工艺流程如图。
其主要工序有破碎、湿磨、溶出、稀释、沉降分离、赤泥洗涤、晶种分解、煅烧、蒸发和苛化等。
破碎通常分粗碎、中碎、细碎三段。
湿磨将铝土矿按配料要求配入石灰和循环母液磨制成合格的原矿浆。
溶出在高温、高压的条件下,使铝土矿中的氧化铝水合物从矿石中溶浸出来,制得铝酸钠溶液,而铁、硅等杂质则进入赤泥中。
稀释溶出后的浆液用赤泥洗液加以稀释,进一步脱除溶液中的硅,为沉降分离和晶种分解创造必要的条件。
沉降分离稀释后的浆液进入沉降槽处理,以使铝酸钠溶液和赤泥分离开来。
赤泥洗涤沉降分离出来的赤泥浆液,用水洗涤,以回收有用成分(碱和氧化铝)。
洗涤次数越多,有用成分损失越少。