高中物理电场专题讲练

高中物理电场专题讲练
高中物理电场专题讲练

1、库仑定律

①库仑定律适用条件:真空中静止点电荷间的相互作用力

例1、关于库仑定律,下列说法正确的是

A.库仑定律适用于点电荷,点电荷其实就是体积很小的球体

B.根据F =k 221r Q Q ,当两点电荷间的距离趋近于零时,电场力将趋向无穷大

C.若点电荷Q 1的电荷量大于Q 2的电荷量,则Q 1对Q 2的电场力大于Q 2对Q 1的电场力

D.库仑定律和万有引力定律的表达式相似,都是平方反比定律

例2、两个半径为R ,所带电荷量分别为+Q 1、+Q 2的带电球体,当两球心相距50R 时,相互

作用的库仑力大小为F 0,当两球心相距为5R 时,相互作用的库仑力大小为 ( )

A.F =F 0/25

B.F >F 0/25

C.F =100F 0

D.F <100F 0 ②库仑定律和静力学相结合问题(三点电荷平衡问题、静力学问题)

例1、如图所示,q 1、q 2、q 3分别表示在一条直线上的三个点电荷,已知q 1与q 2之间的距离为l 1,q 2

与q 3之间的距离为l 2,且每个电荷都处于平衡状态.

(1)如q 2为正电荷,则q 1为_______电荷,q 3 为_______电荷.

(2)q 1、q 2、q 3三者电荷量大小之比是_______∶_______∶_______.

例2、在x 轴上有两个点电荷,一个带正电Q 1,一个带负电-Q 2,且Q 1=2Q 2.用E 1和E 2分别

表示两个电荷所产生的场强的大小,则在X 轴上

A .E 1=E 2之点只有一处,该处合场强为0

B .E 1=E 2之点共有两处:一处合场强为0,另一处合场强为2E 2

C .E 1=E 2之点共有三处:其中两处合场强为0,另一处合场强为2E 2

D .

E 1=E 2之点共有三处:其中一处合场强为0,另两处合场强为2E 2

例3、有一弹簧原长为L,两端固定绝缘小球,球上带同种电荷,电荷量都是Q,由于静电斥力使弹

簧伸长了△L,如图所示.如果两球的电荷量均减为原来的一半,那么弹簧比原长伸长了 ( )

A.△L/4

B.小于△L/4

C.大于△L/4

D.△L/2

2、电场力的性质

例1如图所示,中子内有一个电荷量为 + 23 e 的上夸克和两个电荷量为 - 13

e 的下夸克,3个夸克都分布在半径为 r 的同一圆周上,则3个夸克在其圆心处

产生的电场强度为

A .ke r 2

B .ke 3r 2

C .ke 9r 2

D .2ke 3r

2 例2、如图所示,带箭头的线段表示某一电场中的电场线的分布情况.

一带电粒子在电场中运动的轨迹如图中虚线所示.若不考虑其他力,则

下列判断中正确的是 ( )

A.若粒子是从A 运动到B ,则粒子带正电;若粒子是从B 运动到A ,

则粒子带负电

B.不论粒子是从A 运动到B ,还是从B 运动到A ,粒子必带负电

C.若粒子是从B 运动到A ,则其加速度减小

D.若粒子是从B 运动到A ,则其速度减小

例3、如图所示,一电子沿等量异种电荷的中垂线由A →O →B 匀

速飞过,电子重力不计,则电子所受另一个力的大小和方向变化

情况是( )

A.先变大后变小,方向水平向左

B.先变大后变小,方向水平向右

C.先变小后变大,方向水平向左

D.先变小后变大,方向水平向右

例4、图所示是电场中的一条电场线,下列说法中正确的是 ( )

A.这必是正点电荷形成的电场中的一条电场线,且E A

B.这必是负点电荷形成的电场中的一条电场线,且E A >E B

C.这必是带等量异种电荷的平行金属板间的一根电场线,且E A =E B

D.无法确定这是何种电场中的电场线,也无法比较E A 和E B 的大小

例5、如图所示,图甲中AB 是点电荷电场中的一

条电场线,图乙则是放在电场线上a 、b 处的试探

电荷的电量与所受电场力大小间的函数图线,由

此可以判定 ( )

A.若场源是正电荷,位置在A 侧

B.若场源是正电荷,位置在B 侧

C.若场源是负电荷,位置在A 侧

D.若场源是负电荷,位置在B 侧

例6、如图所示,三个完全相同的金属小球a 、b 、c 位于等边三角形的

三个顶点上。a 和c 带正电,b 带负电,a 所带电量的大小比b 的小。

已知c 受到a 和b 的静电力的合力可用图中四条有向线段中的一条来表

示,它应是 ( )

A F 1

B F 2

C F 3

D F 4

例7、在场强为E 的匀强电场中固定放置两个小球1和2,

它们的质量相等,电荷分别为1q 和2q (12q q )。球1和球

2的连线平行于电场线,如图。现同时放开1球和2球,于是它们开始在电力的作用下运动,如果球1和求之间的距

离可以取任意有限值,则两球刚被放开时,它们的加速度

可能是 ( )

A .大小相等,方向相同

B .大小不等,方向相反

C .大小相等,方向相同

D .大小相等,方向相反

例8、如图所示,悬挂在O 点的一根不可伸长的绝缘细线下端有一个带电量

不变的小球A 。在两次实验中,均缓慢移动另一带同种电荷的小球B 。

当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,

悬线偏离竖直方向的角度为θ,若两次实验中B 的电量分别为q 1和q 2,

θ分别为30°和45°。则q 2/q 1为 ( )

A .2

B .3

C .23

D .33 例9、两个质量相同的小球用不可伸长的细线连结,置于场强为

E 的匀强电

场中,小球1和小球2均带正电,电量分别为q 1和q 2(q 1>q 2)。将细线拉直并使之与电

о о2 1 E B O θ 绝缘手柄

场方向平行,如图所示。若将两小球同时从静止状态释放,则释放后细线中的张力T为(不计重力及两小球间的库仑力)()

A.

12

1

()

2

T q q E

=-B.

12

()

T q q E

=-

C.

12

1

()

2

T q q E

=+D.

12

()

T q q E

=+

例10、一负电荷从电场中A点由静止释放,只受电场力作用,沿电场线运动到B点,它运动的v-t图象如图甲所示,则两点A、B所在区域的电场线分布情况可能是图乙中的()

3、静电平衡和静电屏蔽

例1、一金属球,原来不带电,现沿球的直径的延长线放置一均匀带电的

细杆MN,如图所示,金属球上感应电荷产生的电场在球内直径上a、b、

c三点的场强大小分别为Ea、Eb、Ec,三者相比

A、Ea最大

B、Eb最大

C、Ec最大

D、Ea=Eb=Ec

例2、如图所示,在原来不带电的金属细杆ab附近P处,放置一个正点电荷,达到静电平衡后

A、a端的电势比b端的高

B、b端的电势比d点的低

C、a端的电势不一定比d点的低

D、杆内c处的场强的方向由a指向b

例3、图中接地金属球A的半径为R,球外点电荷的电量为Q,

到球心的距离为r.该点电荷的电场在球心的场强大小等于

A.k

2

2R

Q

k

r

Q

- B. k

2

2R

Q

k

r

Q

+

C.0

D.k

2

r

Q

例4、图是一块宽大的接地金属板的截面,在板的右侧面附近P

点处有一固定的带正电的点电荷(电量为+q).当金属板处于静电平衡状态

时,则()

A.板的右侧面上分布有负的感应电荷,而左侧面上没有感应电荷

B.感应电荷在金属板内部任何一点的电场强度矢量都指向P点

C.感应电荷在金属板内部离P点最近的一点产生的电场强度最大

D.接地线断开后,金属板内各点的场强将不再为零

例5、如图所示,A为空心金属球,B为金属球,将另一个带正电的小球C从A球壳的开口处放入A球中央,不接触A球,然后用手触摸一下A球,接着移走C球,则

A.A球带负电,B球不带电

B.A球带负电,B球带正电

E

球1

球2

a b

c

C .A 、B 两球都带负电

D.A 、B 两球都带正电

4、电场能的性质

例1、如图,a 、b 、c 是一条电场线上的三个点,电场线的方向由a 到c ,a 、b 间的距离等于

b 、

c 间的距离。用?a 、?b 、?c 和E a 、E b 、E c 分别表示a 、b 、c 三点的电势和场强.下列哪个

正确?

A .?a >?b >?c

B .E a >E b >E c

C .?a -?b =?b -?c

D .

E a =E b =E c

例2、在静电场中

A.电场强度处处为零的区域内,电势也一定处处为零;

B.电场强度处处相同的区域内,电势也一定处处相同;

C.电场强度的方向总是跟等势面垂直的;

D.沿着电场强度的方向,电势总是不断降低的.

例3、图中实线是一簇未标明方向的由点电荷产生的电场线,虚线是

某一带电粒子通过该电场区域量的运动轨迹,a 、b 是轨迹上的两点。若带电粒子在运动中只受电场力作用,根据此图可作出正确判断的是

A .带电粒子所带电荷的符号 D .带电粒子在a 、b 两点的电势能何处较大

例4、A 、B 两点各放有电量为十Q 和十2Q 的点电荷,A 、 B 、C 、D 四点在同一直线上,且AC

=CD =DB .将一正电荷从C 点沿直线移到D 点,则

A 、电场力一直做正功

B 、电场力先做正功再做负功

C 、电场力一直做负功

D 、电场力先做负功再做正功

例5、一负电荷仅受电场力的作用,从电场中的A 点运动到B 点,在此过程中该电荷作初速

度为零的匀加速直线运动,则A 、B 两点电场强度E A 、E B 及该电荷的A 、B 两点的电势能 εA 、、

εB 之间的关系为 ( )

A .E A =E

B B .E A

C .εA =εB

D .εA >εB

例6、(03理综)图中虚线所示为静电场中的等势面1、2、3、4,相邻的等

势面之间的电势差相等,其中等势面3的电势为0。一带正电的点电荷在

静电力的作用下运动,经过a 、b 点时的动能分别为26eV 和5eV 。当这一

点电荷运动到某一位置,其电势能变为-8eV 时,它的动能应为

A 、 8eV

B 、 13eV

C 、 20eV

D 、 34eV

例7、一带正电的小球,系于长为l 的不可伸长的轻线一端,线的另

一端固定在O 点,它们处在匀强电场中,电场的方向水平向右,场

强的大小为E 。已知电场对小球的作用力的大小等于小球的重力。现

先把小球拉到图中的P1处,使轻线拉直,并与场强方向平行,然后

由静止释放小球。已知小球在经过最低点的瞬间,因受线的拉力作用,其速度的竖直分量突

变为零,水平分量没有变化,则小球到达与P 1点等高的P 2点时速度的大小为

A .gl

B .gl 2

C .gl 2

D .0

例8、一带电油滴在匀强电场E 中的运动轨迹如图中虚线所示,电场方向竖直向下。若不计

E a b c a b

空气阻力,则此带电油滴从a 运动到b 的过程中,能量变化情况为

A.动能减小 B.电势能增加

C.动能和电势能之和减小 D.重力势能和电势能之和增加 例9、、a 、b 、c 、d 是匀强电场中的四个点,它们正好是一个矩形的四个顶点.电场线与矩形所在平面平行。已知a 点的电势为20 V ,b 点的电势为24 V ,d 点的电势为4 V ,如图,

由此可知c 点的电势为

A .4 V

B .8 V

C .12 V

D .24 V

例10、如图所示,实线为电场线,虚线为等势线,且AB =BC ,电场中的A 、B 、C 三点的场强分别为E A 、E B 、E C ,电势分别为A ?、B ?、C ?,AB 、BC 间的电势差分别为U AB 、U BC ,则下列关系中

正确的有

A. A ?>B ?>C ?

B. E C >E B >E A

C. U AB <U BC

D. U AB =U BC

5、电容和电容器

例1、在右图所示的实验装置中,平行板电容器的极板A 与一灵敏

的静电计相接,极板B 接地。若极板B 稍向上移动一点,由观察到

的静电计指针变化作出平行板电容器电容变小的结论的依据是

(A)两极板间的电压不变,极板上的电量变小

(B)两极板间的电压不变,极板上的电量变大

(C)极板上的电量几乎不变,两极板间的电压变小

(D)极板上的电量几乎不变,两极板间的电压变大

例2、(01春季)一平行板电容器,两板之间的距离d 和两板面积S 都可以调节,电容器两板与电池相连接.以Q 表示电容器的电量,E 表示两极板间的电场强度,则

(A )当d 增大、S 不变时,Q 减小、E 减小

(B )当S 增大、d 不变时,Q 增大、E 增大

(C )当d 减小、S 增大时,Q 增大、E 增大 (D )当S 减小、d 减小时,Q 不变、E 不变

例3、图中所示是一个平行板电容器,其电容为C ,带电量为Q ,上极板带正电。现将一个试探电荷q 由两极板间的A 点移动到B 点,如图所示。A 、B 两点间的距离为s ,连线AB 与极板间的夹角为30°,则电场力对试探电荷q 所做的功等于

A .Qd qCs

B .Cd

qQs a b

E

C .Cd qQs 2

D .Qd qCs

2 例4、如图所示,平行板电容器与电池相连,当二极板间距离减小后,

则二板间的电压U 和电场强度E ,电容器电容C 及电量Q

与原来相比

( )

A .U 不变,E 不变,C 不变,Q 不变

B .U 不变,E 变小,

C 变小,Q 变小

C .U 不变,E 变大,C 变大,Q 变大

D .U 不变,

E 不变,C 变大,Q 变小

例5、如图所示,一平行板电容器充电后与电源断开,负极板接地.在

两极板间有一正电荷(电量很小)固定在P 点,以E 表示两极板间的场

强,U 表示电容器的电压,W 表示正电荷在P 点的电势能.若保持负

极板不动,将正极板移到图中虚线所示的位置,则:

A.U 变小,E 不变

B.E 变大,W 变大

C.U 变小,W 不变

D.U 不变,W 不变

例6、演示位移传感器的工作原理如右图示,物体M 在导轨上平移

时,带动滑动变阻器的金属滑杆p ,通过电压表显示的数据,来反

映物体位移的大小x 。假设电压表是理想的,则下列说法正确的是

A .物体M 运动时,电源内的电流会发生变化

B .物体M 运动时,电压表的示数会发生变化

C .物体M 不动时,电路中没有电流

D .物体M 不动时,电压表没有示数

例7、如图所示,C 为中间插有电介质的电容器,a 和b 为其两极板;a 板接地;P 和Q 为两竖直放置的平行金属板,在两板间用绝缘线悬挂一带电小球;P 板与b 板用导线相连,Q

板接地。开始时悬线静止在竖直方向,在b 板带电后,悬线

偏转了角度a 。在以下方法中,能使悬线的偏角a 变大的是

A.缩小a 、b 间的距离

B.加大a 、b 间的距离

C.取出a 、b 两极板间的电介质

D.换一块形状大小相同、介电常数更大的电介质

例8、如图所示,两平行金属板水平放置并接到电源上,一个带电微

粒P 位于两板间,恰好平衡.现用外力将P 固定住,然后固定导线各

接点,使两板均转过α角,如图虚线所示,再撤去外力,则P 在两板

间 ( )

A.保持静止

B.水平向左做直线运动

C.向右下方运动

D.不知α角的值无法确定P 的运动状态

6、带电粒子在匀强电场中的运动

例1、图1中B 为电源,电动势E=27V ,内阻不计。固定电阻R 1=500Ω,R 2为光敏电阻。C 为

平行板电容器,虚线到两极板距离相等,极板长l 1=8.0×10-2m ,两极板的间距d =1.0×10-2m 。

S 为屏,与极板垂直,到极板的距离l 2=0.16m 。P 为一圆盘,由形状相同、透光率不同的三个

扇形a 、b 和c 构成,它可绕AA /轴转动。当细光束通过扇形a 、b 、c 照射光敏电阻R 2时,R 2的阻值分别为1000Ω、2000Ω、4500Ω。有一细电子束沿图中虚线以速度v 0=8.0×106m/s 连

续不断地射入C 。已知电子电量e =1.6×10-19C ,电子质量m =9×10-31kg 。忽略细光束的宽度、

电容器的充电放电时间及电子所受的重力。假设照在R 2上的光强发生变化时R 2阻值立即有相

应的改变。

⑴设圆盘不转动,细光束通过b 照射到R 2上,求电

子到达屏S 上时,它离O 点的距离y 。(计算结果保留二位有效数字)。

⑵设转盘按图1中箭头方向匀速转动,每3秒转一圈。

取光束照在a 、b 分界处时t =0,试在图2给出的坐标纸上,画出电子到达屏S 上时,它离O 点的距离y

随时间t 的变化图线(0~6s 间)。要求在y 轴上标出

图线最高点与最低点的值。(不要求写出计算过程,只按画出的图线评分。)

例2、如图所示为研究电子枪中电子在电场中运动的简化模型示意图。在Oxy 平面的ABCD 区域内,存在两个场强大小均为E 的匀强电场I 和II ,两电场的边界均是边长为L 的正方形(不计电子所受重力)。

(1)在该区域AB 边的中点处由静止释放电子,求电子离开ABCD 区域的位置。

(2)在电场I 区域内适当位置由静止释放电子,电子恰能从ABCD 区域左下角D 处离开,

求所有释放点的位置。

(3)若将左侧电场II 整体水平向右移动L /n (n ≥1),仍使电子从ABCD 区域左下角D 处

离开(D 不随电场移动),求在电场I 区域内由静止释放电子的所有位置。

例3、两块水平平行放置的导体板如图所示,大量电子(质量m 、电量e )由静止开始,经电压为U 0的电场加速后,连续不断地沿平行板的方向从两板正中间射入两板之间。当两板均不

带电时,这些电子通过两板之间的时间为3t 0;当在两板间加如图所示的周期为2t 0,幅值恒为U 0的周期性电压时,恰好..

能使所有电子均从两板间通过。问: ⑴这些电子通过两板之间后,侧向位移的最大值和最小值分别是多少?

⑵侧向位移分别为最大值和最小值的情况下,电子在刚穿出两板之间时的动能之比为多少?

图2

O t /s y /10-2m

10 20 4t 0

t 0 3t 0 2t 0 t 0

U

U

U 0

7、带电物体在复合场中的运动

例1、有个演示实验,在上下面都是金属板的玻璃盒内,放入了许多用锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。现取以下简化模型进行定量研究。如图所示,电容量为C的平行板电容器的极板A和B水平放置,相距为d,与电动势为ε、内阻可不计的电源相连。设两板之间只有一个质量为m的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的α倍(α<<1)。不计带电小球对极板间匀强电场的影响。重力加速度为g。

(1)欲使小球能够不断地在两板间上下往返运动,电动势ε至少应大于多少?

(2)设上述条件已满足,在较长的时间间隔T内小球做了很多次往返运动。求在T时间内小球往返运动的次数以及通过电源的总电量。

例2、如图所示,质量为m、带电量为 q的小球从距地面高h处以一定的初速度v

水平抛出,

在距抛出水平距离为L处,有一根管口比小球直径略大的竖直细管,管的上口距地面h/2,为使小球能无碰撞地通过管子可在管口上方整个区域里加一场强方向向左的匀强电场。求:(1)小球的初速度v

(2)电场强度E的大小;

(3)小球落地时的动能。

高中物理竞赛辅导 电场电场强度(无答案)

电场电场强度 班级姓名 1、如图所示,有一均匀带电的无穷长直导线,其电荷线密度为λ。试求空间任意一点的电 场强度,该点与直导线间垂直距离为r。 2、如图所示,电量Q均匀分布在一个半径为R的细圆环上,求圆环轴上与环心相距为x 的点电荷q所受的力的大小。 3、如图所示,一根均匀带电细线,总电量为Q,弯成半径为R的缺口圆环,在细线的两端处留有很小的长为△L的空隙,求圆环中心处的场强。 4、均匀带电的半圆弧,(电荷线密度为λ)半径为R,圆心处的电场强度。

5、一根无限长均匀带电细线弯成如图所示的平面图形,期中AB 是半径为R 的半圆弧,AA ’平行于BB ’,试求圆心O 处的电场强度。 6、有一均匀带电的无限大平面,电荷面密度为σ,试求离该平面R 处的电场强度。 7、半径为R 的均匀带电球面,电荷的面密度为σ,试求球心处的电场强度。 8、一半径为R 的球壳,均匀带电Q ,试求距离球心r 处的电场强度。 O A B A ’ B ’

9、一半径为R 的球体,均匀带电Q ,试求距离球心r 处的电场强度。 10、.如图所示,两根均匀带电的半无穷长平行直导线,端点联线LN 垂直于这两直导线, 如图所示.LN 的长度为2R.试求在LN 的中点O 处的电场强度. (它们的电荷线密度为λ) 11、均匀带异种电的半圆弧,(电荷线密度为λ)半径为R ,圆心处的电场强度。 12、有一个均匀的带电球体,球心在O 点,半径为R ,电荷体密度为ρ ,球体内有一个 N

球形空腔,空腔球心在O′点,半径为R′,O O = a ,如图7-7所示,试求空腔中各点的场强。

高中物理电场图像专题

场强图像 1.如图所示,两个带电荷量分别为2q和-q的点电 荷固定在x轴上,相距为2L。下列图象中,两个点电荷连线上场强大小E与x关系的图象可能是( ) 2.一带正电粒子在正点电荷的电场中仅受静电力作用,做初速度为零的直线运动。取该直线为x轴,起始点 O为坐标原点,则下列关于电场强度E、粒子动能E k、粒子电势能E p、粒子加速度a与位移x的关系图象可能的是( ) 3如图所示x轴上各点的电场强度如图所示,场强方 向与x轴平行,规定沿x轴正方向为正,一负点电荷从坐标原点O以一定的初速度沿x轴正方向运动,点电荷到达x2位置速度第一次为零,在x3位置第二次速度为零,不计粒子的重力。下列说法正确的是( ) A.O点与x2和O点与x3电势差U Ox2=U Ox3 B.点电荷从O点运动到x2,再运动到x3的过程中, 加速度先减小再增大,然后保持不变 C.点电荷从O点运动到x2,再运动到x3的过程中,速度先均匀减小再均匀增大,然后减小再增大D.点电荷在x2、x3位置的电势能最小 4.如图甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,在t=0时刻,一不计重力的带电粒子沿板间中线垂直电场方向射入电场,粒子射入电场时的速度为v0,t=T时刻粒子刚好沿MN 板右边缘射出电场。则( ) A.该粒子射出电场时的速度方向一定是沿垂直电场方向的 B.在t= T 2 时刻,该粒子的速度大小为2v0 C.若该粒子在 T 2 时刻以速度v0进入电场,则粒子会打在板上 D.若该粒子的入射速度变为2v0,则该粒子仍在t=T 时刻射出电场 5.在x轴上关于原点对称的a、b两点处固定两个电荷量相等的点电荷,如图所示的E-x图象描绘了x轴上部分区域的电场强度(以x轴正方向为电场强度的正方向)。对于该电场中x轴上关于原点对称的c、d两点,下列结论正确的是( ) A.两点场强相同,c点电势更高 B.两点场强相同,d点电势更高 C.两点场强不同,两点电势相 等,均比O点电势高 D.两点场强不同,两点电势相等,均比O点电势低 6.(多选)静电场在x轴上的 场强E随x的变化关系如图所 示,x轴正方向为场强正方向, 带正电的点电荷沿x轴运动, 则点电荷( )

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高考物理复习专题突破篇专题带电粒子在电场中的运动讲练

专题七带电粒子在电场中的运动 考点1| 电场的性质难度:中档题题型:选择题五年7考 (2014·江苏高考T4)如图1所示,一圆环上均匀分布着正电荷,x轴垂直于环面且过圆心O.下列关于x轴上的电场强度和电势的说法中正确的是( ) 图1 A.O点的电场强度为零,电势最低 B.O点的电场强度为零,电势最高 C.从O点沿x轴正方向,电场强度减小,电势升高 D.从O点沿x轴正方向,电场强度增大,电势降低 【解题关键】解此题的关键有两点: (1)圆环正电荷均匀分布,x轴上各处的场强方向与x轴平行. (2)沿电场方向电势降低,但电场强度不一定减小. B[根据电场的叠加原理和电场线的性质解题.根据电场的对称性和电场的叠加原理知,O点的电场强度为零.在x轴上,电场强度的方向自O点分别指向x轴正方向和x轴负方向,且沿电场线方向电势越来越低,所以O点电势最高.在x轴上离O点无限远处的电场

强度为零,故沿x轴正方向和x轴负方向的电场强度先增大后减小.选项B正确.] (2016·江苏高考T3)一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图2所示,容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是( ) 图2 A.A点的电场强度比B点的大 B.小球表面的电势比容器内表面的低 C.B点的电场强度方向与该处内表面垂直 D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同 【解题关键】解此题的关键有三点: (1)电场线越密的地方电场强度越大 (2)电场线一定与该处的等势面垂直. (3)电场力做功的大小由始末两点的电势差与移动的电荷量共同决定. C[由题图知,B点处的电场线比A点处的密,则A点的电场强度比B点的小,选项A 错误;沿电场线方向电势降低,选项B错误;电场强度的方向总与等势面导体表面垂直,选项C正确;检验电荷由A点移动到B点,电场力做功一定,与路径无关,选项D错误.] (多选) (2014·全国卷ⅠT21)如图3所示,在正点电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点,∠M=30°.M、N、P、F四点处的电势分别用φM、φN、φP、φF表示,已知φM=φN,φP=φF,点电荷Q在M、N、P三点所在平面内,则( ) 图3 A.点电荷Q一定在MP的连线上 B.连接PF的线段一定在同一等势面上 C.将正拭探电荷从P点搬运到N点,电场力做负功 D.φP大于φM 【解题关键】解此题的关键有两点:

2020_2021学年高中物理专题十电场演练测评含解析选修3_1

高中物理选修3_1: 电 场 姓名:__________ 班级:__________ 正确率:__________ 一、单项选择题 1.关于静电的应用和防止,下列说法不正确的是( ) A .为了美观,通常把避雷针顶端设计成球形 B .为了防止静电危害,飞机轮胎用导电橡胶制成 C .为了避免因尖端放电而损失电能,高压输电导线表面要很光滑 D .为了消除静电,油罐车尾装一条拖地铁链 答案:A 2.下列关于点电荷的说法中,正确的是( ) A .只有电荷量很小的带电体才能看成是点电荷 B .体积很大的带电体一定不能看成是点电荷 C .当两个带电体的大小远小于它们之间的距离时,可将这两个带电体看成点电荷 D .一切带电体都可以看成是点电荷 答案:C 3.真空中有两个静止的点电荷,它们之间的作用力为F ,若它们的带电荷量都增大为原来的3倍,距离增大为原来的2倍,它们之间的相互作用力变为( ) A .16F B .9 4F C .3 2F D .12 F 答案:B 4.在真空中有两个点电荷,它们之间的距离是L 时,相互作用的库仑力大小是F ,如果把两个电荷之间的距离缩短10 cm ,则相互作用的库仑力变为4F ,由此可知L 的大小是( ) A .20 cm B .13.3 cm C .30 cm D .50 cm 答案:A 5.两个分别带有电荷量-Q 和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r

的两处,它们间库仑力的大小为F .两小球相互接触后将其固定距离变为r 2,则两球间库仑力的 大小为( ) A .1 12F B .34F C .4 3F D .12F 答案:C 6.小强在加油站加油时,看到加油机上有如图所示的图标,关于图标涉及的物理知识及其理解,下列说法正确的是( ) A .制作这些图标的依据是静电屏蔽原理 B .工作人员工作时间须穿绝缘性能良好的化纤服装 C .化纤手套与接触物容易摩擦起电存在安全隐患 D .用绝缘的塑料梳子梳头应该没有关系 答案:C 7.下列说法中正确的是( ) A .点电荷就是体积小的带电体 B .带电荷量少的带电体一定可以视为点电荷 C .大小和形状对作用力的影响可忽略的带电体可以视为点电荷 D .根据库仑定律表达式F =kQq r 2 ,当两电荷之间的距离r →0时,两电荷之间的库仑力F →∞ 答案:C 8.如图所示,两个带电球,大球的电荷量大于小球的电荷量,可以肯定( ) A .两球都带正电 B .两球都带负电 C .大球受到的静电力大于小球受到的静电力 D .两球受到的静电力大小相等 答案:D

高中物理竞赛辅导

高中物理竞赛辅导 .(分)一质量为M的平顶小车,以速度0v沿水平的光滑轨道作匀速直线运动。现将一质量为m的小物块无初速地放置在车顶前缘。已知物块和车顶之间的动摩擦系数为μ。 若要求物块不会从车顶后缘掉下,则该车顶最少要多长? 若车顶长度符合问中的要求,整个过程中摩擦力共做了多少功? .(分)在用铀作燃料的核反应堆中,铀核吸收一个动能约为eV的热中子(慢中子)后,可发生裂变反应,放出能量和~个快中子,而快中子不利于铀的裂变.为了能使裂变反应继续下去,需要将反应中放出的快中子减速。有一种减速的方法是使用石墨(碳)作减速剂.设中 子与碳原子的碰撞是对心弹性碰撞,问一个动能为 01.75MeV E=的快中子需要与静止的碳原子碰撞多少次,才能减速成为eV的热中子?

参考解答 . 物块放到小车上以后,由于摩擦力的作用,当以地面为参考系时,物块将从静止开始加速运动,而小车将做减速运动,若物块到达小车顶后缘时的速度恰好等于小车此时的速度,则物块就刚好不脱落。令v 表示此时的速度,在这个过程中,若以物块和小车为系统,因为水平方向未受外力,所以此方向上动量守恒,即 0()Mv m M v =+ () 从能量来看,在上述过程中,物块动能的增量等于摩擦力对物块所做的功,即 2112 mv mg s μ= () 其中1s 为物块移动的距离。小车动能的增量等于摩擦力对小车所做的功,即 22021122 Mv mv mgs μ-=- ()其中2s 为小车移动的距离。用l 表示车顶的最小长度,则 21l s s =- ()由以上四式,可解得 202() Mv l g m M μ=+ () 即车顶的长度至少应为202()Mv l g m M μ=+。.由功能关系可知,摩擦力所做的功等于系统动量的增量,即 2201 1()22W m M v Mv =+- ()由()、()式可得

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高中物理竞赛教程(超详细)电场

第一讲电场 §1、1 库仑定律和电场强度 1.1.1、电荷守恒定律 大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持 k 数, 0ε q F E = 式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。 借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为 2 2r Q k q r Qq k q F E === 式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。

1.1.4、场强的叠加原理 在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。 原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。 例1、如图1-1-1(a )所示,在半径为R 、体电荷密度 为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。 ρ,R O 1.1.5.电通量、高斯定理、 (1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ 为截面与磁感线的夹角。与此相似,电通量是指穿过某一截面的电场线的条数,其大小为 θ?sin ES = θ为截面与电场线的夹角。 高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为 ∑=i q k π?4 ( 041πε= k ) Nm C /1085.82120-?=ε为真空介电常 数 O O ' P B r a )

式中k是静电常量,∑i q为闭合曲面所围的所有电荷电量的代数和。由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通 量的计算。尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并 利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的。 (2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场 一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a)所示。考察点P到直线的 距离为r。由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零, 即径向分布,且关于直线对称。取以长直线为主轴,半径为r,长为l的圆柱面为高斯面, E 图1-1-5

高中物理竞赛讲义-运动学综合题

运动学综合题 例1、如图所示,绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,当绳变为竖直方向时,圆 筒转动角速度为ω,(此时绳未松弛),试求此刻圆筒与绳分离处A 的速度以及圆筒与斜面切点C的速度 例2、如图所示,湖中有一小岛A,A与直湖岸的距离为d,湖岸边有一点B,B沿湖岸方向与A点的距离为l.一人自B点出发,要到达A 点.已知他在岸上行走的速度为v1,在水中游泳的速度为v2,且v1>v2,要求他由B至A所用的时问最短,问此人应当如何选择其运动路线?

例3、一根不可伸长的细轻绳,穿上一粒质量为m的珠 子(视为质点),绳的下端固定在A点,上端系在轻质 小环上,小环可沿固定的水平细杆滑动(小环的质量及 与细杆摩擦皆可忽略不计),细杆与A在同一竖直平面 内.开始时,珠子紧靠小环,绳被拉直,如图所示,已 知,绳长为l,A点到杆的距离为h,绳能承受的最大 T,珠子下滑过程中到达最低点前绳子被拉断, 张力为 d 求细绳被拉断时珠子的位置和速度的大小(珠子与绳子 之间无摩擦) 例4、在某铅垂面上有一光滑的直角三角形细管轨道,光滑小球从顶点A沿斜边轨道自静止出发自由滑到端点C所需时间恰好等于小球从A由静止出发自由地经B滑到C所需时间,如图所示.设AB为铅直轨道,转弯处速度大小不变,转弯时间忽略不计,在此直角三角形范围内可构建一系列如图中虚线所示的光滑轨道,每一轨道由若干铅直和水平的部分连接而成,各转弯处性质都和B点相同,各轨道均从A点出发到C点终止,且不越出△ABC的边界.试求小球在各条轨道中,从静止出发自由地由A到C所需时间的上限与下限之比值.

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解 析 一、高考物理精讲专题带电粒子在电场中的运动 1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。 (1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度; (2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。 【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】 解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有: 20 0v qv B m r = 可得:r =0.20m =R 根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012 l v t y at == , 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =?N/C (2)粒子飞离电场时,沿电场方向速度:30 5.010y qE l v at m v ===?g m/s=0v 粒子射出电场时速度:02=v v 根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '= 根据洛伦兹力提供向心力可得: 2 v qvB m r '=' 联立可得所加匀强磁场的磁感应强度大小:4mv B qr '= =' T 根据左手定则可知所加磁场方向垂直纸面向外。

高三物理电场专题复习

电场复习指导意见 20XX 年课标版考试大纲本章特点 概念多、抽象、容易混淆。电场强度、电场力、电势、电势差、电势能、 电场力做功。 公式多。在帮助学生理解公式的来龙去脉、物理意义、适用条件的同时,可将其归类。 正负号含义多。在静电场中,物理量的正负号含义不同,要帮助学生正确理解物理量的正负值的含义。 知识综合性强。要把力学的所有知识、规律、解决问题的方法和能力应用 内 容要求说明 54.两种电荷.电荷守恒 55.真空中的库仑定律.电荷量 56.电场.电场强度.电场线.点电荷的场 强.匀强电场.电场强度的叠加 57.电势能.电势差.电势.等势面 58.匀强电场中电势差跟电场强度的关系 59.静电屏蔽 60.带电粒子在匀强电场中的运动 61.示波管.示波器及其应用 62.电容器的电容 63.平行板电容器的电容,常用的电容器 Ⅰ Ⅱ Ⅱ Ⅱ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ 带电粒子在匀强 电场中运动的计算,只 限于带电粒子进入电场时速度平行或垂直于场强的情况

到电场当中 具体复习建议 一.两种电荷,电荷守恒,电荷量(Ⅰ) 1.两种电荷的定义方式。(丝绸摩擦玻璃棒,定义玻璃棒带正点;毛皮 摩擦橡胶棒,定义橡胶棒带负电) 2.从物质的微观结构及物体带电方法 接触带电(所带电性与原带电体相同) 摩擦起电(两物体带等量异性电荷) 感应带电(两导体带等量异性电荷) 3.由于物体的带电过程就是电子的转移过程,所以带电过程中遵循电荷守恒。每个物体所带电量应为电子电量(基本电量)的整数倍。 4.知道相同的两金属球绝缘接触后将平分两球原来所带净电荷量。(注意电性)

二.真空中的库仑定律(Ⅱ)1.r r q kq F 2 2112 或 2 2121 12r q kq F F 方向在两点电荷连线上,满足同性相斥,异性相吸。2.规律在以下情况下可使用:(1)规定为点电荷;(2)可视为点电荷; (3)均匀带电球体可用点电荷等效处理,绝缘均匀带电球体间的库仑力可用库仑定律 2 21r q kq F 等效处理,但r 表示 两球心之间的距离。(其它形状的带电体不可用电荷中心等效) (4)用点电荷库仑定律定性分析绝缘带电金属球相互作用力的情况 两球带同性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 两球带异性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 3.点电荷库仑力参与下的平衡模型(两质量相同的带电通草球模型) 4.两相同的绝缘带电体相互接触后再放回原处 (1)相互作用力是斥力或为零(带等量异性电荷时为零) L mg F T α mgtg l q kq 2 2 1) sin 2(3 2 21sin 4cos l q kq mg T

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

高中物理带电粒子在电场中的运动技巧很有用及练习题.doc

高中物理带电粒子在电场中的运动技巧 ( 很有用 ) 及练习题 一、高考物理精讲专题带电粒子在电场中的运动 1. 如图所示,竖直面内有水平线 MN 与竖直线 PQ 交于 P 点, O 在水平线 MN 上, OP 间 距为 d ,一质量为 m 、电量为 q 的带正电粒子,从 O 处以大小为 v 0、方向与水平线夹角为 θ= 60o 的速度,进入大小为 E 1 的匀强电场中,电场方向与竖直方向夹角为 θ= 60o ,粒子 到达 PQ 线上的 A 点时,其动能为在 O 处时动能的 4 倍.当粒子到达 A 点时,突然将电场 改为大小为 E 2,方向与竖直方向夹角也为 θ= 60o 的匀强电场,然后粒子能到达 PQ 线上的 B 点.电场方向均平行于 MN 、 PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。 已知粒子从 O 运动到 A 的时间与从 A 运动到 B 的时间相同,不计粒子重力,已知量为 m 、 q 、 v 0、 d .求: (1)粒子从 O 到 A 运动过程中 ,电场力所做功 W ; (2)匀强电场的场强大小 E 1、 E 2; (3)粒子到达 B 点时的动能 E kB . 3 2 (2)E 1 = 3m 02 3m 2 14m 02 【答案】 (1)W mv 0 4qd E 2 = (3) E kB = 2 3qd 3 【解析】 【分析】 (1) 对粒子应用动能定理可以求出电场力做的功。 (2) 粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。 (3) 根据粒子运动过程,应用动能计算公式求出粒子到达 B 点时的动能。 【详解】 (1) 由题知:粒子在 O 点动能为 E = mv 0 粒子在 A 点动能为: E =4E ko ,粒子从 O 到 A ko 1 2 kA 2 运动过程,由动能定理得:电场力所做功: W=E kA -E ko = 3 mv 02 ; 2 (2) 以 O 为坐标原点,初速 v 0 方向为 x 轴正向,

高中物理 静电场及其应用精选测试卷专题练习(word版

高中物理 静电场及其应用精选测试卷专题练习(word 版 一、第九章 静电场及其应用选择题易错题培优(难) 1.如图,真空中x 轴上关于O 点对称的M 、N 两点分别固定两异种点电荷,其电荷量分别为1Q +、2Q -,且12Q Q >。取无穷远处电势为零,则( ) A .只有MN 区间的电场方向向右 B .在N 点右侧附近存在电场强度为零的点 C .在ON 之间存在电势为零的点 D .MO 之间的电势差小于ON 之间的电势差 【答案】BC 【解析】 【分析】 【详解】 AB .1Q +在N 点右侧产生的场强水平向右,2Q -在N 点右侧产生的场强水平向左,又因为 12Q Q >,根据2Q E k r =在N 点右侧附近存在电场强度为零的点,该点左右两侧场强方向相反,所以不仅只有MN 区间的电场方向向右,选项A 错误,B 正确; C .1Q +、2Q -为两异种点电荷,在ON 之间存在电势为零的点,选项C 正确; D .因为12Q Q >,MO 之间的电场强度大,所以MO 之间的电势差大于ON 之间的电势差,选项D 错误。 故选BC 。 2.如图所示,竖直平面内有半径为R 的半圆形光滑绝缘轨道ABC ,A 、C 两点为轨道的最高点,B 点为最低点,圆心处固定一电荷量为+q 1的点电荷.将另一质量为m 、电荷量为+q 2的带电小球从轨道A 处无初速度释放,已知重力加速度为g ,则() A .小球运动到 B 2gR B .小球运动到B 点时的加速度大小为3g C .小球从A 点运动到B 点过程中电势能减少mgR D .小球运动到B 点时对轨道的压力大小为3mg +k 12 2 q q R 【答案】AD 【解析】

高中物理专题:带电粒子在电场中的运动

带电粒子在电场中的运动 新桥中学胡中兴 一、教材内容和学情分析:拓展二《第八讲A带电粒子在电场中的运动》,是在高二学习了基础教材电场、电场强度、电势差、电场力做功与电势能等内容的之后,再学习的拓展内容。通过本专题的学习,进一步理解力与运动、功与能的关系。把电场概念与运动学、力学中的平衡问题、匀变速运动问题、功、能等有机结合起来。学习运用运动的合成与分解、牛顿定律、动能定理解题,提高分析问题能力、综合能力、用数学方法解决物理问题的能力。在高考中,是重点内容。要求学生有较高的综合解题的能力。由于本校学生的基础比较差,学习时有一定难度,所以在题目设计上,尽可能比较简单的题,且对同一类型题,用多题强化。 二、课标要求和三维目标 课标要求:学习水平为c级,即能联系相关内容,解决简单问题。2009高考手册要求为C 即:掌握。(限于粒子的初速度与电场强度的方向平行或垂直的简单情况)。 三维目标: 知识与技能: 1.理解并掌握带电粒子在电场中加速和偏转的原理, 2.能用牛顿运动定律或动能定理分析带电粒子在电场中加速和偏转。 过程与方法: 1.体验类比平抛运动,运用分解的方法,处理曲线运动。 2.归纳用力学规律处理带电粒子在电场中运动的常用方法。 情感、态度和价值观: 1.感受从能的角度,用动能定理分析解答问题的优点, 2.进一步养成科学思维的方法。 三、知识结构疏理: 主要讨论两个问题:一是如何利用电场使带电粒子速度大小改变;二是如何利用电使带电粒子速度方向改变,发生偏转。这里把它们分成四个小问题,用四课时来完成此内容。 带电粒子在电场中的加速问题 带电粒子在匀强电场中做类平抛运动 带电粒子在电场中的加速、偏转综合问题 带电粒子在交替变化的电场中的直线运动 用二课时来完成此内容。

高中物理电磁场练习试题

专题练习电磁场 第1讲电场及带电体在电场中的运动 微网构建核心再现 知识规律(1)电场力的性质. ①电场强度的定义式:E= F q. ②真空中点电荷的场强公式: E=k Q r2. ③匀强电场场强与电势差的关系式:E= U d. (2)电场能的性质. ①电势的定义式:φ= E p q. ②电势差的定义式:U AB= W AB q. ③电势差与电势的关系式: U AB=φA-φB. ④电场力做功与电势能: W AB=-ΔE p. 思想方法(1)物理思想:等效思想、分解思想. (2)物理方法:理想化模型法、比值定义法、控制变量法、对称法、合成法、分解法等. 高频考点一电场的特点和性质

知能必备 1.电场强度的三种表达形式及适用条件. 2.电场强度、电势、电势能大小的比较方法. 3.电场的叠加原理及常见电荷电场线、等势线的分布特点. 例1直角坐标系xOy中,M、N两点位于x轴上,G、H两点坐标如图.M、N两点各固定一负点电荷,一电量为Q的正点电荷置于O点时,G点处的电场强度恰好为零.静电力常量用k表示.若将该正点电荷移到G点,则H点处场强的大小和方向分别为() A. 3kQ 4a2,沿y轴正向 B. 3kQ 4a2,沿y轴负向 C. 5kQ 4a2,沿y轴正向 D. 5kQ 4a2,沿y轴负向 [例2](2016·全国大联考押题卷)(多选) 如图所示,虚线为某电场中的三条电场线1、2、3,实线表示某带电粒子仅在电场力作用下的运动轨迹,a、b是轨迹上的两点,则下列说法中正确的是() A.粒子在a点的加速度大小小于在b点的加速度大小 B.粒子在a点的电势能大于在b点的电势能 C.粒子在a点的速度大小大于在b点的速度大小 D.a点的电势高于b点的电势 电场性质的判断方法 1.电场强度的判断方法:

高中物理竞赛辅导讲义-第8篇-稳恒电流

高中物理竞赛辅导讲义 第8篇 稳恒电流 【知识梳理】 一、基尔霍夫定律(适用于任何复杂电路) 1. 基尔霍夫第一定律(节点电流定律) 流入电路任一节点(三条以上支路汇合点)的电流强度之和等于流出该节点的电流强度之和。即∑I =0。 若某复杂电路有n 个节点,但只有(n ?1)个独立的方程式。 2. 基尔霍夫第二定律(回路电压定律) 对于电路中任一回路,沿回路环绕一周,电势降落的代数和为零。即∑U =0。 若某复杂电路有m 个独立回路,就可写出m 个独立方程式。 二、等效电源定理 1. 等效电压源定理(戴维宁定理) 两端有源网络可以等效于一个电压源,其电动势等于网络的开路端电压,其内阻等于从网络两端看除源(将电动势短路,内阻仍保留在网络中)网络的电阻。 2. 等效电流源定理(诺尔顿定理) 两端有源网络可等效于一个电流源,电流源的电流I 0等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除源网络的电阻。 三、叠加原理 若电路中有多个电源,则通过电路中任一支路的电流等于各个电动势单独存在时,在该支路产生的电流之和(代数和)。 四、Y?△电路的等效代换 如图所示的(a )(b )分别为Y 网络和△网络,两个网络中的6个电阻满足一定关系 时完全等效。 1. Y 网络变换为△网络 12 2331 123 R R R R R R R R ++=, 122331 231R R R R R R R R ++= 122331 312 R R R R R R R R ++= 2. △网络变换为Y 网络 12311122331R R R R R R = ++,23122122331R R R R R R =++,3123 3122331 R R R R R R =++

相关文档
最新文档