第五章概率_2

合集下载

概率与概率分布

概率与概率分布
第五章 概率及概率分布
掌握概率的概念、性质和法则 明确概率分布的含义,了解二项试验和分布
的基础知识。
概率与概率分布
第一节 概率的一般概念
概率论起源于17世纪,当时在人口统计、人 寿保险等工作中,要整理和研究大量的随机数据资 料,这就需要一种专门研究大量随机现象的规律性 的数学。
参赌者就想:如果同时掷两颗骰子 ,则点数 之和为9 和点数之和为10 ,哪种情况出现的可能 性较大?
概率与概率分布
一、频率和概率的定义
1. 频率 对随机现象进行观测时,若事件A在n次观测中出 现了m次,则m与n的比值,就是事件A出现的频 率(也称为相对频数)。用 W(A)表示事件A 的频率。 公式为:W(A)=m/n
概率与概率分布
2. 概率
概率是对随机事件出现可能性大小的客观量度。
事件A发生的概率记为P(A)。
概率与概率分布
二、概率的性质
1. 对于任何事件A,均有0≤P(A)≤1 2. 不可能事件的概率为零,P(V)=0 3. 必然事件的概率为1,P(U)=1
概率与概率分布
三、概率的加法和乘法
1. 概率的加法
互不相容事件:在一次试验中不可能同时出现的 事件。
事件之和:有限个互不相容事件中任意一个发生。 如:A+B=A或B发生。
假设把两枚硬币投1000次,得到的结果为下表:
正面的数量 0 1 2
总计
频数(f) 253 499 248 1000
百分比(%) 25.3 49.9 24.8 100.0
概率分布实质上是无限次抛掷的频数分布。尽 管我们永远不能观察到这个无限次抛掷的频数 分布,但我们知道这是的频数分布会无限接近 概率分布。
概率与概Байду номын сангаас分布

[学习]概率论与数理统计第五章

[学习]概率论与数理统计第五章

与 数
学期望和方差:E(Xi)=μ,D(Xi)=σ2,(i=1,2,...)则对于给定的ε>0,有
理 统 计 电
lim P{|
n
1 n
n i 1
Xi
| } 1(2)
子 教 定理2可由定理1得到证明.这里我们说明上述两个定理都在概
案 率意义下的极限结论,通常称为依概率收敛.
武 汉
一般,设X1,X2,..Xn是一个随机变量序列,a是一个常数,若对于任
案 验.试验前不知道该天灯泡的寿命有多长,概率和其分布情

况.试验后得到这几个灯泡的寿命作为资料,从中推测整批

科 技
生产灯泡的使用寿命.合格率等.为了研究它的分布,利用概

院 数
率论提供的数学模型进行指数分布,求出 值,再利用几天
理 系
的抽样试验来确定指数分布的合适性.

率 论
由于灯泡使用寿命的试验是破坏性试验.不能将所有的灯泡

教 案
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保
武 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度
汉 科
不高.为此我们研究下面的内容.







§ 5.2 中 心 极 限 定 理
率 在随机变量的一切可能性的分布律中,正态分布占有特殊的

与 地位事实上遇到的大量随机变量都服从正态分布。自然会提
数 理
φ[(X-μ)/σ]~N(0,1)的概率密度函数
统 计 电
lim p{ n np
x
x}
1
t2
e 2 dt
(6)

第五章 大数定律与中心极限定理 《概率论》PPT课件

第五章  大数定律与中心极限定理  《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即

第五章5.2条件概率,乘法公式,全概率

第五章5.2条件概率,乘法公式,全概率
P ( A) P ( B i ) P ( A | B i )
i 1 n
Bn -1 A
B2
Bn
B3
全概率公式的证明
n i 1
显然 A = A A B i ( AB i )
i 1
n
A= AB1 AB2
AB1 AB2 …... …...
ABn
ABn
B i B j ( AB i )( A B j ) ,
某人从任一箱中任意摸出一球,发现是红球,求 该球是取自1号箱的概率. 记 Ai={球取自i号箱}, i=1,2,3; B ={取得红球} 求P(A1|B).
P ( A1 B) P ( A1 | B) P ( B)
P ( A1 ) P ( B | A1 )
P ( A ) P ( B|A )
这批种子所结的穗含有50颗以上麦粒的概率为0.4825。
例 2 三个罐子分别编号为 1, 2, 3,1号装有 2 红 1 黑球 , 2号装有 3 红 1 黑球, 3号装有 2 红 2 黑球. 某人从中随机取一罐,再从中任意取出一球, 求取得红球的概率. 解 记 A ={ 取得红球 } 1 2 3 Bi ={ 球取自 i 号罐 } i=1, 2, 3; 则 A 发生总是伴随着 B1,B2,B3 之一同时发生, 即 A = AB1 + AB2 + AB3, 且AB1、AB2、AB3两两互斥,利用有限可加性 P(A) = P(AB1)+P(AB2)+P(AB3)
解:(1)第一次取得一等品后,剩下的9件产品中 还有6件一等品,即
6 2 P ( B A) . 9 3
(2)第一次取得二等品后,剩下的9件产品中 还有7件一等品,即

概率论与数理统计 第五章

概率论与数理统计 第五章
n →∞ n →∞
∑ X − ∑µ
k =1 k =1
k
Bn
≤ x} = ∫
ቤተ መጻሕፍቲ ባይዱ
x
1 2π
−∞
e
t2 − 2
dt=Φ(x).
说明: 说明
在定理条件下, r.v. Zn =
∑ X − ∑µ
k =1 k k =1
n
n
k
Bn
当 n很 大
时, 近似地服从正态分布N(0, 1),由此当n很大时,
∑X
k =1 n
n
t2 2
(本定理 可以由独立同分布 的中心极限定理证 明)
说明: 说明 本定理不难看出 :若ηn
~ b(n,p), 有
t2 2
b ηn − np 1 lim P a < e dt = Φ(b) − Φ(a), ≤ b = ∫ a n →∞ npq 2π 因 而 当 n较 大 时 , 我 们 可 以 用 正 态 分 布 近 似 计 算 二 项 分布 的 概率 。
2. 切比雪夫大数定律: 设X1 , X 2 , L Xn , L 是由两两互 不相关的随机变量所构成的序列, 每一个随机变量都 有有限的方差, 并且它们有公共的上界 , D(X1 ) ≤ C, D(X 2 ) ≤ C, L , D(Xn ) ≤ C, L 则对∀ε > 0, 都有 1 n 1 n lim P ∑ Xk − ∑ E(Xk ) < ε = 1. n →∞ n k =1 n k =1
k
2 , k = 0,1, L ,90000. 3 ≤ 30500}
90000-k
显然直接计算十分麻烦, 我们利用德莫佛-拉普拉斯定理 来求它的近 似 值 即有P{29500 < X ≤ 30500} 29500-np = P < np(1-p ) 30500-np ≤ np(1-p ) np(1-p ) X-np

新高一数学第五章知识点

新高一数学第五章知识点

新高一数学第五章知识点第五章:概率与统计在高中数学课程中,概率与统计是一个重要的章节。

通过学习这一章节,我们可以了解到概率与统计在日常生活中的应用,以及如何进行统计数据的处理和分析。

本文将对新高一数学第五章的知识点进行详细介绍。

一、概率1. 概率的基本概念- 随机试验和样本空间- 事件的概念- 必然事件、不可能事件和对立事件2. 事件的关系与运算- 包含关系- 互斥事件- 独立事件- 和事件- 与事件3. 概率的计算方法- 经典概型- 相对频率法- 随机事件的概率公式- 概率性质4. 条件概率与乘法定理- 条件概率的定义与计算 - 乘法定理的应用- 独立性的判定5. 全概率公式与贝叶斯定理 - 全概率公式的说明与使用- 贝叶斯定理的推导与应用二、统计1. 统计调查与数据收集- 统计调查的方法- 数据的收集与整理2. 描述统计- 数据的汇总与展示- 数值型数据的测度- 分布型数据的整理与分析- 绘制统计图表3. 概率分布- 随机变量与概率分布- 离散型和连续型随机变量的概率分布4. 随机变量的数学期望与方差 - 数学期望的定义和性质- 方差的定义和性质- 切比雪夫不等式5. 抽样与抽样分布- 抽样方法与原理- 样本均值和样本方差的分布 - 中心极限定理三、应用实例1. 生活中的概率问题- 抛硬币与掷骰子的概率计算 - 抽取彩票的概率计算2. 实际问题中的统计分析- 调查数据的分析与解读- 假设检验的应用以上是新高一数学第五章概率与统计的知识点概述。

通过学习这一章节,我们可以更好地理解和运用概率与统计的概念与方法,从而解决实际生活中的问题,并为未来的学习和研究打下坚实的基础。

希望同学们能够认真学习,并善于将知识应用于实际中,不断提高自己的数学素养。

概率论与数理统计第5章


p( x1 , x2 ,
, xn ) = p(x1 )p(x2 )
p(xn ) = ∏ p( xi )
i =1
n
14 September 2009
1.
若连续型总体 X 的密度函数为 p(x ), , X n )是取自总体 X 的样本, iid
(X 1 , X 2 ,
X1, X2, … , Xn
n 则 (X 1 , X 2 , , X n )的密度函数为 p( x1 , x2 , , xn ) = p(x1 )p(x2 ) p(xn ) = ∏ p( xi ) i =1
数理统计
学习基础:1、高等数学 2、概率论
前面的学习已知:随机变量及其所伴随的概率分布全面描述了 随机现象的统计规律性,所以要研究一个随机现象首先要 知道它的概率分布. 概率论中:许多问题的概率分布通常是已知的或假设为已知的然后 在此基础上进行一切计算与推理. 实际中:一个随机现象的概率分布可能完全不知道 或知道分布类型却不知道其中的参数.例如正态分布
则 (X 1 , X 2 ,
, X n )的密度函数为
p( x1 , x2 ,
, xn ) = p(x1 )p(x2 )
n
p(xn )
⎧n −λ ∑ xi ⎪ Π λe −λxi = λ ne i=1 = ⎨ i =1 ⎪ 0 ⎩
xi > 0, i = 1, 2, 其它
,n
例如 设某批产品共有N 个,其中的次品 数为M, 其次品率为 p = M / N 若 p 是未知的,则可用抽样方法来估计它. 从这批产品中任取一个产品,用随机变量 X来描述它是否是次品: 所取的产品是次品 ⎧ 1, X =⎨ ⎩ 0, 所取的产品不是次品 X 服从参数为p 的0-1分布,可用如下表示 方法: P(x) = p (1− p) ,

概率论第五章大数定律及中心极限定理


设随机变量 n (n 1,2, ) 服从参数为n,p(0<p<1)的二
项分布 ,即 n ~ B(n, p).
则对于任意 x ,恒有:
Hale Waihona Puke lim P{n np x}
n
npq
n
证:n X k ,
1
x t2
e 2 dt
2
(q 1 p)
k 1
其中 X1, , X n 相互独立且都服从于 (0-1)分布。
200 0.6 0.4
200 0.6 0.4
返回主目13 录
第五章 大数定律及中心极限定理
§2 中心极限定理
( r 120) (17.32) ( r 120) 0.999,
48
48
查表得
r -120 3.1 所以 r 141. 48
即供给141千瓦电就能以99.9%的概率保证这个车间 不会因供电不足而影响生产。
则:对任意的 0 ,有
1n
lim P{|
n
n
Xi
i 1
| } 1
注:贝努里大数定律是辛钦大数定律的特殊情况。
返回主目6 录
注:

{|
1 n
n
i 1
X
i
|
}
是一个随机事件。定理中的等式表明,
当 n 这个事件的概率趋于1。即对任意正数 ,
当n充分大时,不等式
|
1 n
n
i 1
X
i
|
成立在概率很大。
解:记某时在工作着的车床 数为 X,则 X ~ B(200,0.6) .
设至少要供给这个车间r千瓦电才能以99.9%的概率
保证这个车间不会因供电不足而影响生产。由题

概率论数理统计基础知识第五章


C
]
(A)Y ~ 2 (n). (B)Y ~ 2 (n 1). (C)Y ~ F (n,1). (D)Y ~ F (1, n).
【例】设 随机变量X和Y都服从标准正态分布,则[ C ]
(A)X+Y服从正态分布.
2 2 2
(B)X2 +Y2服从 2分布. Y
2
2 X (C)X 和Y 都服从 分布. (D)
(X ) ~ t ( n 1) S n
客、考点 10,正态总体的抽样分布
33/33
34/33
35/33
【例】设总体 X ~ N (0,1),X 1 , X 2 , X1 X 2
2 2 X3 X4
, X n 是简单随机
2 X i. i 4 n
样本 , 试问下列统计量服从什么分布? (1 ) ; (2 ) n 1X1
记:F分布是两个卡方分布的商
2. F 分布的上侧分位数
设 F ~ F (k1 , k2 ) ,对于给定的 a (0,1) ,称满足条件
P{F Fa (k1 , k2 )}

Fa ( k1 ,k2 )
f F ( x)dx a
的数 Fa (k1 , k2 ) 为F 分布的上侧a 分位数。
服从F分布.
§5.5 正态总体统计量的分布
一、单个正态总体情形 总体
X ~ N ( , 2 ) ,样本 X1 , X 2 , , Xn ,
1 n 样本均值 X X i n i 1
n 1 2 样本方差 S 2 ( X X ) i n 1 i 1
1. 定理1 若设总体X~N(μ,σ2), 则统计量
有一约束条件
(X
i 1

第五章 常见概率分布(Npoisson分布)


流 统 志 胡
Poisson分布的特点
• Poisson分布的均数和方差相等。 λ=σ2 • Poisson分布的可加性
流 统 志 胡

流 统 志 胡 坚

流 统 志 胡
Poisson分布的可加性
• 观察某一现象的发生数时,如果它呈Poisson分布,那么 把若干个小单位合并为一个大单位后,其总计数亦呈 Poisson分布。 • 如果X1∼P(λ1), X2∼P(λ2),… XK∼P(λK),那么
流 统
胡志坚
统 志 胡 坚
第五章

常见概率分布
志 胡



志 胡

流 统 志 胡
Poisson分布的意义
• 盒子中装有999个黑棋子,一个白棋子,在 一次抽样中,抽中白棋子的概率1/1000 • 在100次抽样中,抽中1,2,…10个白棋子 的概率分别是……



志 胡

统 志 胡 坚

流 统 志 胡



志 胡
流 统 志 胡 坚

流 统

志 胡


谢谢!
志 胡



志 胡

菌落数大于1个的概率:
P(X
1 )
= 1 − p ( x = 0 ) − p ( x = 1) e
(−
6



志 胡

= 1 −
)
6
0
0!

e
(−
6
)
6
1

1!

志 胡
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 概率与概率分布

学习要点 第一节 概率的基本概念 第二节 随机变量及其概率分布 第三节 相对差异量表 第四节 SPSS实验——标准分数 本章小结

学习要点 1.熟练掌握百分等级与标准分数的意义及分析方法 2.应用百分等级与标准分数解释实际问题 3.了解分数的意义及其他的相对指标在实际工作中的应用

第一节 概率的基本概念

在语言实验研究中,我们通常选取研究对象的一部分(即样本)加以研究, 在此基础上, 通过推断统计对所有的研究对象 (即总体) 的情况作出推断。在进行这种推断时,我们不仅要指出总休可能是什么情况,而且还要指出我们进行这种推断的把握程度有多大,或者总体出现这种情况的可能性有多大, 这个 “可能性” 就是概率。 因此, 要学好推断统计, 就要对概率这一概念有所了解。

后验概率(或统计概率)是指通过实际观测,根据在总观测次数中某事件所出现的次数来计算该事件出现的概率,这种概率其实是一个相对频率,是实际概率的估计值。 一般用A代表随机事件 (例如 “全体学生中的男生” ) ,用P代表频率 (概率估计值) ,或用n表示观测的次数,用m表示事件出现的次数 原始分数,又称观测分数,它是观测所得的、未经任何加工的分数。在生活中人们时常用这种分数来评价他人,却不知由于原始分数本身的固有的缺陷造成使用和评价上的失误。原始分析的缺陷主要表现在三个方面。 一、原始分数无明确的意义 在考试或测验中,人们习惯用“分”作为分数的单位,然而“1分”究竟表示什么?其价值是多少?这在传统考试中并无科学的界定,就是说在传统的考试中对“分”的概念并无严格的定义。 二、原始分数的单位不等值 由于原始分数缺乏明确的定义,造成其单位的不等值。众所周知,相同的单位在人们的心目中都有相等的价值。譬如1公斤,在每个人心目中的认识都是一样的。不过,在传统的考试中却并非如此,譬如语文考试中的“1分”与数学考试中的“1分”就不见得等值。同是语文测验,不同的阅卷者因评分的宽严不一致,嗜好不同,看问题的角度不同等等,所给出的“1分”也不尽相同。因此,某考生语文得80分,数学也得80分,我们并不能确定该生的语文学习水平和数学学习水平相同。有人在某次全国统一高考的语文试卷中随机抽取了一名考生的作文,连同教育部规定的评分标准,分别请中学语文教师评阅,在67位评阅者中,给分最高的是25分,给分最低的是6分。可见,在这些人的以上中,“分”的价值是不同的。所以说,原始分数的“1分”实际上是不等值的。 三、原始分数不具可比性 由于原始分数缺乏明确的定义,单位不等值,因此也就不具有可比性。绝对数或绝对统计量不能说明其在整个观测中的相对地位,最多只能表示观测值的高低或大小,却不能说明它在团体中的地位情况。而等级顺序只能表示一个分数的高低次序,不也不能表示它在团体中的地位,更不能与其他团体的分数或等级进行比较。这是因为它们的比较尺度不一样。因此,对分数意义的无知,往往会错怪一个人,甚至还会酿成大错。如青海一九岁学生的母亲,见孩子的两门功课都在90分以下,便认为成绩差了,一气之下,竟将孩子打死。事实上,该生的一门功课名列全班第一,另一门名列第二。又如某生名列第15名,是难以评价其成绩是优、良,还是中、差的,因这与他所处团体的人数多少有直接关系。 四、四、原始分数没有可加性 众所周知,80米是不能与80尺直接相加来计算长度,因为两者的单位不等值。同样,观测所得的原始分数因其单位不等值,也是不能直接相加的。然而,在传统成绩评价中,人们不仅把内容、题量、难度等各不相同,而且各科满分值也不尽相同的试卷得分直接相加以来求总成绩,这无异于把不同测量单位的事物相加的做法。由此可见,将各学科分数直接相加计算总分的方法是很不科学的。 此外,当测量单位不同或均数相差悬殊时,绝对数或绝对统计量也是无法直接进行对比。譬如,比较一个人身高和体重,或是田赛与径赛成绩时,因其测量单位不同是无法比较的。若要进行这类比较分析,必须将绝对数或绝对统计量进行转换,使其变换成为一种可比较的相对量数。 相对量数包括相对地位量数和相对差异量数。前者用于说明一个绝对数在某一团体中所处的相对位置的高低,后者则用于比较各列数据分布的差异程度的大小。

第二节 随机变量及其概率分布 随机变量是指在实验中受随机(或偶然)因素的影响,其取值无法进行准确预测的变量。譬如,我们要随机选取一些学生,来调查其家庭的人口数, “人口数” 是一个随机变量, 因为它可以取这一个值, 也可以取那一个值, 究竟取哪一个值完全是偶然的, 无法碗切地预测, 这要等到实验 (实际抽取)之后才能得知。我们可以用某种方法对随机变量可取数值的概率分布进行描述,这就是随机变量的概率分布。 相对地位量数是就某一特质来描述个体在团体中所占的地位的量数。这里所指的相对地位是指与某一参照点比较起来,这一个体是占在什么地位,是在此参照点以上多少,或是在此参照点以下多少。常用的相对地位量数的主要是百分等级和标准分数。 一、百分等级(PR) (一)百分等级的定义 如前所述,当一个体的等级为15时,我们无法评价其在团体中位置高低。因为这与团体的人数有密切关系。若该团体只有20人,他的成绩属中下水平;若该团体有30人,他的成绩属中等水平,若该团体有200人,他的成绩则属优秀水平。可见,普通的等级顺序是难以看出成绩优劣的。百分等级不同,它能表示一个学生的成绩在他所属的团体中的相对地位。 百分等级(percentile rank)是指把一组观测值先按高低次序排列起来,然后计算出某个个体的分数在百分位上超出多

少人,或是在此分数下占多少百分比的一种量数,用符号RP表示。百分等级是将全体人数作为100来计算的,以确定每一个个体分数在这100中的位置如何。譬如,某一个体的百分等级为70,则表明该生的成绩超过他所在团体70%的人,就是说比他差的人有70%,比他好的只有30%。百分等级越大,所代表的等级越高,反之则越低。 (二)百分等级的计算 计算百分等级实际上就是求某一数(即低于给定数的分数的次数)对另一数(即总次数)的百分数,其计算方法有原始量数法和次数分布法。 1.原量数法 原量数法是直接求利用原始数据进行计算的方法,其公式为

NRPR50100100

式中,R表示某一原始分数在按大小排列的数列中的顺序或名次,N表示分数的总次数。 假设某团体有5个人,依次排序(R)为1,2,3,4,5。试问每个人的百分等级是多少呢?公式的形成过程如下。

首先,确定每一个体在100中所占的分数。以全体人数(或分数的个数)除以100,即有N100,表示在百分量表上每个人应占的分数。本例每一个体在该团体所占的分数为205100。如图5-1所示,第1名占坐标上的0~20,第2名占坐标上的20~40,„„,第5名占坐标上的80~100。

其次,确定第R名个体的百分等级。如第1名占第一个N100,即为1100N,第2名占第二个N100,即为2100N;„„;第R名占第R个N100,即有RN100。本例中,第1名的百分等级为2015100,第2名的百分等级为4025100,„„,第5名的百分等级为10055100。

第三节 相对差异量表 作为差异量数重要指标的标准差,在进行差异程度比较时的最大缺陷就是受测量的单位的限制。典型的事例是一组物体重量的标准差为8克,长度的标准差是8厘米,虽然两个数值相等,却无法反映这些物体的重量和长度谁的差异大一些或小一些。在这种情况下,我们需要一种具有共同单位的相对差异量数来表达。 一、相对差异量的定义与公式 相对差异量数是指差异量数与集中量数的百分比,又称作差异系数(Coefficient of Variation),用符号CV表示。各种差异量,都可以用此公式求其相对差异系数,如平均差差异系数等。其中,最常用的是标准差系数,它是标准差与平 均数的百分比值,用符号SCV表示,其公式为 %100XSCVS

二、标准差系数的应用 标准差系数不仅可以用于比较单位不同数据的差异程度,而且还可以用于比较单位相同平均数相差较大数据的差异程度等。标准差系数在教育与心理研究中的应用主要有以下三个方面。 1. 1. 比较测量单位不同事物的差异程度 例5-:某幼儿园大班儿童的平均体重为22公斤,标准差为3.7;平均身高为108厘米,标准差6.2厘米。试问该班幼儿身高和体重哪方面的差异程度大一些?

%82.16%100227.3身高SCV

%37.5%1001088.5体重SCV 结果表明,该班幼儿身高方面的差异程度远远大于体重,就是说该班幼儿在体重方面的分布比较均匀或整齐,在身高方面的分布则不太均匀或整齐,即幼儿高矮差距较大。 2.比较测量单位相同,均数相差悬殊数据的差异程度

正如第四章例4-1所述,当测量单位相同时,比较多列数据差异程度的大小前提是其平均数相等或相近,若平均数相关较大则无法直接比较,这是因为标准差大小受平均数大小的影响。 例5-:初一甲、乙两班的学生在一次数学测验后,算得甲班平均成绩92分,标准差8.95;乙班平均成绩71分,标准差7.40分。试问两个班谁的数学成绩更整齐一些?

%73.9%1009295.8甲SCV

%42.10%1007140.7乙SCV 结果表明,甲班数学成绩的差异程度小于乙班,其成绩比乙班整齐一些。若从直接标准差来看,似乎甲班的差异程度大于乙班。之所以两种分析结果不同,是因为两班的平均成绩差距太大,有21分之差。 标准差系数是由标准差和平均数构成的一种比数,因此,它既受标准差的影响,又受平均数的影响。在用标准差系数说明事物的差异程度时,除了列出标准差系数的数值外,还必须同时列举其均数和标准差。 3.判断班内学习分化的情况 在教育教学中,防止出现差生或学习困难的学生,使所有学生得到充分发展,提高教学质量是教育者所追求终极目标。在班级管理中,教师或管理者对学生学习的分化主要是通过判断学生的两极端分数或通过简单的平均数来进行的,这种方式难以准确、全面地判断一个班内学习分化的程度,尤其是各科学习分化的情况,差异系数则可解决这一问题。 用差异系数来判断学习分化程度是把实践经验和理论分析结合起来,确定相应的判断标准。这种标准的确定从两方面进行,一是规定无分化现象的指标,二是规定有分化现象的指标,两种指标的中间状态亦可看作一种指标,从而形成一评价学习分化的三种指标。

一是无分化现象的指标,即SCV≤9%。因为根据经验,一般认为学生成绩在60~100之间是合格的,亦可视为无分化现象,而其平均分则为80,设均数上下各有3个标准差,即60~80之间有3个标准差,80~100之间有3标准差,再加上均数本身,80~100之间共有7个标准差,

相关文档
最新文档