教育最新K122018-2019学年高中数学苏教版选修2-3教学案:1.5.1 二项式定理-缺答案
苏教版选修2-3高中数学1.5《二项式定理》word学案

1.5 二项式定理(1)一、学习目标1、掌握二项式定理及二项式展开式的通项公式;2、会利用二项展开式及通项公式解决有关问题;本课重点:二项式定理及通项公式的掌握及运用;本课难点:二项式定理及通项公式的掌握及运用。
二、课前自学在初中,我们已经学过了(a+b)2=a 2+2ab+b2 (a+b)3=(a+b)2(a+b)=a 3+3a 2b+3ab 2+b 3(提问):对于(a+b)4,(a+b)5 如何展开?(利用多项式乘法)如何从组合知识得到(a+b)4展开式中各项的系数(a+b)4=(a+b)(a+b)(a+b)(a+b)(1)若每个括号都不取b ,只有一种取法得到a 4即04C 种 (2)若只有一个括号取b ,共有14C 种取法得到a 3b (3)若只有两个括号取b ,共有24C 种取法得到a 2b 2(4)若只有三个括号取b ,共有34C 种取法得到ab 3(5)若每个括号都取b ,共有44C 种取法得b 4 01C 11C02C 12C 22C03C 13C 23C 33C04C 14C 24C 34C 44C05C 15C 25C 35C 45C 55C…………∴ (a+b)n =0n C a n +1n C a n-1b+…+r n C a n-r b r +…+nn C b n (n ∈N +)指出:这个公式叫做二项式定理,它的特点:1.项数:共有(n+1)项;2.系数:依次为0n C ,1n C ,2n C ,…r n C ,…n n C ,其中r n C (r =0,1,2,…n)称为二项式系数;说明:二项式系数r n C 与展开中某一项系数是有区别的。
如:(1+2x)6展开式中第3项中系数为26C ·22=60而第三项的二项式系数是26C =15。
3.指数:a n-r ·b r 指数和为n ,a 的指数依次从n 递减到0,b 的指数依次从0递增到n 。
4.通项:1+r T =r n C a n-r b r5.重要公式:设a=1 b=x 则得到公式:()n n n r r n n n n x C x C x C x C x +++++=+22111三、问题探究例1、 展开411⎪⎭⎫ ⎝⎛+x 例2、 展开612⎪⎪⎭⎫ ⎝⎛-x x例3 求7)21(x +的展开式中第4项的二项式系数和系数例4、求()12a x +的展开式中的倒数第4项。
2018-2019学年高中数学苏教版选修2-3教学案:2.5.1 离散型随机变量的均值-缺答案

_2.5随机变量的均值和方差2.5.1离散型随机变量的均值[对应学生用书P38]设有12个西瓜,其中4个重5 kg,3个重6 kg,5个重7 kg.问题1:任取一个西瓜,用X表示这个西瓜的重量,试想X的取值是多少?提示:x=5,6,7.问题2:x取上述值时,对应的概率分别是多少?提示:412,312,512.问题3:试想西瓜的平均质量该如何表示?提示:5×412+6×312+7×512.1.离散型随机变量的均值(或数学期望)(1)定义:若离散型随机变量X的概率分布为则称x1p1+x2p2+…+x n p n为离散型随机变量X的均值或数学期望,也称为X的概率分布的均值,记为E(X)或μ,即E(X)=μ=x1p1+x2p2+…+x n p n.其中,x i是随机变量X的可能取值,p i是概率,p i≥0,i=0,1,2,…,n,p1+p2+…+p n=1.(2)意义:刻画离散型随机变量取值的平均水平和稳定程度.2.两种常见概率分布的均值(1)超几何分布:若X~H(n,M,N),则E(X)=nM N.(2)二项分布:若X~B(n,p),则E(X)=np.1.随机变量的均值表示随机变量在随机试验中取值的平均水平,又常称随机变量的平均数,它是概率意义下的平均值,不同于相应数值的算术平均数.2.离散型随机变量的均值反映了离散型随机变量取值的平均水平,它是一个常数,是随机变量的多次独立观测值的算术平均值的稳定性,即由独立观测组成的随机样本的均值的稳定值.而样本的平均值是一个随机变量,它随着观测次数的增加而趋于随机变量的均值.[对应学生用书P38][例1] 2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率; (2)求取出的4个球中恰有1个红球的概率;(3)设X 为取出的4个球中红球的个数,求X 的分布列和数学期望.[思路点拨] 首先确定X 的取值及其对应的概率,然后确定随机变量的概率分布及数学期望.[精解详析] (1)设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件A ,B 相互独立,且P (A )=C 23C 24=12,P (B )=C 24C 26=25.故取出的4个球均为黑球的概率为 P (AB )=P (A )P (B )=12×25=15.(2)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D .由于事件C ,D 互斥,且P (C )=C 23C 24·C 12·C 14C 26=415,P (D )=C 13C 24·C 24C 26=15.故取出的4个球中恰有1个红球的概率为 P (C +D )=P (C )+P (D )=415+15=715.(3)X 可能的取值为0,1,2,3.由(1),(2)得P (X =0)=15,P (X =1)=715,P (X =3)=C 13C 24·1C 26=130.从而P (X =2)=1-P (X =0)-P (X =1)-P (X =3)=310. 所以X 的分布列为故X 的数学期望E (X )=0×15+1×715+2×310+3×130=76.[一点通] 求离散型随机变量X 的均值的步骤: (1)理解X 的意义,写出X 可能取的全部值; (2)求X 取每个值的概率;(3)写出X 的概率分布表(有时可以省略);(4)利用定义公式E (X )=x 1p 1+x 2p 2+…+x n p n 求出均值.1.(广东高考)已知离散型随机变量X 的分布列为则X 的数学期望E (X )=________. 解析:E (X )=1×35+2×310+3×110=32.答案:322.若对于某个数学问题,甲、乙两人都在研究,甲解出该题的概率为23,乙解出该题的概率为45,设解出该题的人数为X, 求E (X ).解:记“甲解出该题”为事件A ,“乙解出该题”为事件B ,X 可能取值为0,1,2.P (X =0)=P (A B )=P (A )·P (B ) =⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-45=115, P (X =1)=P (A B )+P (A B ) =P (A )P (B )+P (A )P (B ) =23×⎝⎛⎭⎫1-45+⎝⎛⎭⎫1-23×45=25, P (X =2)=P (AB )=P (A )P (B )=23×45=815.所以,X 的分布列如下表:故E (X )=0×115+1×25+2×815=2215.[例2] 甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,记甲击中目标的次数为X ,乙击中目标的次数为Y .(1)求X 的概率分布; (2)求X 和Y 的数学期望.[思路点拨] 甲、乙击中目标的次数均服从二项分布.[精解详析] (1)P (X =0)=C 03⎝⎛⎭⎫123=18; P (X =1)=C 13⎝⎛⎭⎫123=38; P (X =2)=C 23⎝⎛⎭⎫123=38; P (X =3)=C 33⎝⎛⎭⎫123=18. 所以X 的概率分布如下表:(2)由(1)知E (X )=0×18+1×38+2×38+3×18=1.5,或由题意X ~B ⎝⎛⎭⎫3,12,Y ~B ⎝⎛⎭⎫3,23, 所以E (X )=3×12=1.5,E (Y )=3×23=2.[一点通] 超几何分布和二项分布是两种特殊的而且应用相当广泛的分布列,解题时如果能发现是这两种分布模型,就可以直接利用规律写出分布列,求出均值.3.某运动员投篮命中率为p =0.6. (1)求一次投篮时命中次数X 的数学期望; (2)求重复5次投篮时,命中次数Y 的数学期望. 解:(1)投篮一次,命中次数X 的概率分布如下表:则E (X )=p =0.6.(2)由题意,重复5次投篮,命中的次数Y 服从二项分布,即Y ~B (5,0.6). 则E (Y )=np =5×0.6=3.4.一个箱子中装有大小相同的1个红球,2个白球,3个黑球.现从箱子中一次性摸出3个球,每个球是否被摸出是等可能的.(1)求至少摸出一个白球的概率;(2)用X 表示摸出的黑球数,写出X 的概率分布并求X 的数学期望.解:记“至少摸出一个白球”为事件A ,则事件A 的对立事件A 为“摸出的3个球中没有白球”,则P (A )=C 34C 36=15,P (A )=1-P (A )=45,即至少摸出一个白球的概率等于45.(2)X 的所有可能取值为0,1,2,3.P (X =0)=C 33C 36=120,P (X =1)=C 13·C 23C 36=920,P (X =2)=C 23·C 13C 36=920,P (X =3)=C 33C 36=120.X 的概率分布为所以E (X )=0×120+1×920+2×920+3×120=32,即X 的数学期望为32.[例3] (判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的数学期望.[思路点拨] (1)第4局甲当裁判的前提是第2局甲胜,第3局甲参加比赛且负. (2)X 的取值为0,1,2.[精解详析] (1)记A 1表示事件“第2局结果为甲胜”,A 2表示事件“第3局甲参加比赛,结果为甲负”,A 表示事件“第4局甲当裁判”. 则A =A 1·A 2.P (A )=P (A 1·A 2)=P (A 1)P (A 2)=14.(2)X 的可能取值为0,1,2.记A 3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B 1表示事件“第1局结果为乙胜丙”,B 2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B 3表示事件“第3局乙参加比赛时,结果为乙负”.则P (X =0)=P (B 1·B 2·A 3)=P (B 1)P (B 2)P (A 3)=18,P (X =2)=P (B -1·B 3)=P (B -1)P (B 3)=14,P (X =1)=1-P (X =0)-P (X =2)=1-18-14=58,E (X )=0·P (X =0)+1·P (X =1)+2·P (X =2)=98.[一点通] 解答此类题目,应首先把实际问题概率模型化,然后利用有关概率的知识去分析相应各事件可能性的大小,并列出概率分布表,最后利用有关的公式求出相应的概率及数学期望.5.某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元,设一年内E 发生的概率为p ,为使公司收益的期望值等于a 的10%,公司应要求投保人交多少保险金?解:设保险公司要求投保人交x 元保险金,以保险公司的收益额X 作为随机变量,则不难得出其概率分布表如下:E (X )=x (1-p )+(x -a )p =x -ap ,由题意可知x -ap =0.1a ,解得x =(0.1+p )a .即投保人交(0.1+p )a 元保险金时,可使保险公司收益的期望值为0.1a .6.现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为34,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为23,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中两次的概率;(2)求该射手的总得分X 的分布列及数学期望.解:(1)记“该射手恰好命中两次”为事件A ,“该射手第一次射击甲靶命中”为事件B ,“该射手第二次射击甲靶命中”为事件C ,“该射手射击乙靶命中”为事件D .由题意知,P (B )=P (C )=34,P (D )=23,所以P (A )=P (BC D -)+P (B C -D )+P (B -CD ) =P (B )P (C )P (D -)+P (B )P (C -)P (D )+P (B -)P (C )P (D ) =34×34×⎝⎛⎭⎫1-23+34×⎝⎛⎭⎫1-34×23+⎝⎛⎭⎫1-34×34×23=716. (2)根据题意,X 的所有可能取值为0,1,2,3,4.P (X =0)=P (B -C -D -)=⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23=148,P (X =1)=P (B C -D -)+P (B -C D -)=34×⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×34×⎝⎛⎭⎫1-23=18. P (X =2)=P (BC D -)+P (B -C -D )=34×34×⎝⎛⎭⎫1-23+⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-34×23=1148, P (X =3)=P (B C -D )+P (B -CD )=34×⎝⎛⎭⎫1-34×23+⎝⎛⎭⎫1-34×34×23=14, P (X =4)=P (BCD )=34×34×23=38.故X 的分布列是所以E (X )=0×148+1×18+2×1148+3×14+4×38=176.1.求随机变量X 的数学期望,关键是正确求出X 的分布列,在求X 取每一个值的概率时,要联系概率的有关知识,如古典概型、互斥事件的概率、独立事件的概率等.2.对于aX +b 型的随机变量,可利用均值的性质求解,即E (aX +b )=aE (X )+b ;也可以先列出aX +b 的概率分布表,再用均值公式求解,比较两种方式显然前者较方便.[对应课时跟踪训练(十五)]一、填空题1.已知随机变量X 的概率分布为则E (X )=________.解析:由随机变量分布列的性质得,14+13+15+m +120=1,解得m =16,于是,X 的概率分布为所以E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.答案:-17302.若随机变量X ~B (n,0.6),且E (X )=3,则P (X =1)=________. 解析:∵X ~B (n,0.6),E (X )=3, ∴0.6n =3,即n =5.∴P (X =1)=C 15×0.6×(1-0.6)4=3×0.44=0.076 8.答案:0.076 83.考察一种耐高温材料的一个重要指标是看其是否能够承受600度的高温.现有一种这样的材料,已知其能够承受600度高温的概率是0.7,若令随机变量X =⎩⎪⎨⎪⎧1,能够承受600度高温,0,不能够承受600度高温,则X 的数学期望为________. 解析:依题意X 服从两点分布,其概率分布为所以X 的数学期望是E (X )=0.7. 答案:0.74.设10件产品中有3件次品,从中抽取2件进行检查,则查得次品数的数学期望为________.解析:设取得次品数为X (X =0,1,2),则P (X =0)=C 03C 27C 210=715,P (X =1)=C 13C 17C 210=715,P (X =2)=C 23C 210=115,∴E (X )=0×715+1×715+2×115=35. 答案:355.(湖北高考改编)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=________.解析:X 的取值为0,1,2,3且P (X =0)=27125,P (X =1)=54125,P (X =2)=36125,P (X =3)=8125,故E (X )=0×27125+1×54125+2×36125+3×8125=65.答案:65二、解答题6.两名战士在一次射击比赛中,战士甲得1分,2分,3分的概率分别为0.4,0.1,0.5;战士乙得1分,2分,3分的概率分别为0.1,0.6,0.3,那么两名战士中获胜希望较大的是哪一个?解:设这次射击比赛中战士甲得X 分,战士乙得Y 分,则它们的概率分布如下:根据数学期望公式,得E (X )=1×0.4+2×0.1+3×0.5=2.1, E (Y )=1×0.1+2×0.6+3×0.3=2.2. ∵E (Y )>E (X ),∴这次射击中战士乙得分的数学期望较大,即获胜的希望也较大.7.一接待中心有A ,B ,C ,D 四部热线电话,已知某一时刻电话A ,B 占线的概率均为0.5,电话C ,D 占线的概率均为0.4,各部电话是否占线相互间没有影响,假设该时刻有X 部电话占线,试求随机变量X 的概率分布和它的数学期望.解:P (X =0)=0.52×0.62=0.09,P (X =1)=C 12×0.52×0.62+C 12×0.52×0.4×0.6=0.3,P (X =2)=C 22×0.52×0.62+C 12C 12×0.52×0.4×0.6+C 22×0.52×0.42=0.37,P (X =3)=C 12×0.52×0.4×0.6+C 12C 22×0.52×0.42=0.2,P (X =4)=0.52×0.42=0.04.于是得到X 的概率分布列为所以E (X )=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.8.某种项目的射击比赛,开始时在距目标100 m 处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150 m 处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200 m 处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,且比赛结束.已知射手甲在100 m 处击中目标的概率为12,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.(1)求射手甲在这次射击比赛中命中目标的概率;(2)求射手甲在这次射击比赛中得分的数学期望.解:记第一、二、三次射击命中目标分别为事件A ,B ,C ,三次都未击中目标为事件D ,依题意P (A )=12, 设在x m 处击中目标的概率为P (x ),则P (x )=k x 2,且12=k 1002, ∴k =5 000,即P (x )=5 000x2, ∴P (B )=5 0001502=29, P (C )=5 0002002=18, P (D )=12×79×78=49144. 由于各次射击都是相互独立的,∴该射手在三次射击中击中目标的概率P =P (A )+P (A -·B )+P (A -·B -·C )=P (A )+P (A -)·P (B )+P (A -)·P (B -)·P (C )=12+⎝⎛⎭⎫1-12·29+⎝⎛⎭⎫1-12·⎝⎛⎭⎫1-29·18=95144. (2)依题意,设射手甲得分为X ,则P (X =3)=12, P (X =2)=12×29=19,P (X =1)=12×79×18=7144, P (X =0)=49144. 所以E (X )=3×12+2×19+1×7144+0×49144=255144=8548.。
数学知识点苏教版高中数学(选修2-3)1.5.3《二项式定理》word教案-总结

过程与方法:培养观察发现,抽象概括及分析解决问题的能力。
情感、态度与价值观:要启发学生认真分析书本图1-5-1
到一般,归纳猜想,合情推理得到二项式系数的性质再给出严格的
证明。
培养归纳猜想,抽象概括,演绎证明等理性思维能力,二项式定理和展开式的通
培养观察发现,抽象概括及分析解决问题的能力。
教具准备:与教材内容相关的资料。
教学设想:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
[推荐学习]2018-2019学年高中数学苏教版选修2-3教学案:2.3.2 事件的独立性-缺答案
![[推荐学习]2018-2019学年高中数学苏教版选修2-3教学案:2.3.2 事件的独立性-缺答案](https://img.taocdn.com/s3/m/72226ebfdaef5ef7ba0d3cf8.png)
2.3.2 事件的独立性[对应学生用书P33]有这样一项活动:甲箱里装有3个白球,2个黑球,乙箱里装有2个白球,2个黑球,从这两个箱子里分别摸出1个球,记事件A =“从甲箱里摸出白球”,B =“从乙箱里摸出白球”.问题1:事件A 发生会影响事件B 发生的概率吗? 提示:不影响.问题2:试求P (A ),P (B ). 提示:P (A )=35,P (B )=12.问题3:P (A |B )与P (A )相等吗? 提示:相等.问题4:P (AB )为何值? 提示:∵P (A |B )=P (AB )P (B )=P (A ),∴P (AB )=P (A )·P (B )=35×12=310.事件的独立性1.事件A 与B 相互独立就是事件A (或B )是否发生不影响事件B (或A )发生的概率.2.相互独立事件同时发生的概率:P (AB )=P (A )P (B ),这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积.[对应学生用书P33][例1] (1)“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”这两个事件是否相互独立?为什么?(2)“从8个球中任意取出1个,取出的是白球”与“把取出的1个白球放回容器,再从容器中任意取出1个,取出的是黄球”这两个事件是否相互独立?为什么?[思路点拨] 从相互独立事件的定义入手判断.[精解详析] (1)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47;若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.(2)由于把取出的白球放回容器,故对“从中任意取出1个,取出的是黄球”的概率没有影响,所以二者是相互独立事件.[一点通] 解决此类问题常用的两种方法:(1)定量计算法:利用相互独立事件的定义(即P (AB )=P (A )P (B ))可以准确地判定两个事件是否相互独立.(2)定性判断法:看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相互独立事件;有影响就不是相互独立事件.1.同时掷两颗质地均匀的骰子,A ={第一颗骰子出现奇数点},B ={第二颗骰子出现偶数点},判断事件A ,B 是否相互独立.解:同时掷两颗质地均匀的骰子,则A ={第一颗骰子出现1,3,5点},共有3种结果.B ={第二颗骰子出现2,4,6点},共有3种结果.AB ={第一颗骰子出现奇数点,第二颗骰子出现偶数点}, 共有C 13·C 13=9种结果.由于每种结果的出现均是等可能的,由古典概型的有关知识可知 P (A )=36=12,P (B )=36=12,P (AB )=C 13C 13C 16C 16=936=14.∴P (AB )=P (A )·P (B ), 即事件A 、事件B 相互独立.2.分别抛掷2枚质地均匀的硬币,设A 是事件“第1枚为正面”,B 是事件“第2枚为正面”,C 是事件“2枚结果相同”,问:A ,B ,C 中哪两个相互独立?解:P (A )=0.5,P (B )=0.5,P (C )=0.5,P (AB )=0.25,P (BC )=0.25,P (AC )=0.25,可以验证:P (AB )=P (A )P (B ),P (BC )=P (B )P (C ),P (AC )=P (A )P (C ).∴事件A 与B 相互独立,事件B 与C 相互独立,事件A 与C 相互独立.[例2] ,分别从它们制造的产品中任意抽取一件.(1)两件都是正品的概率; (2)两件都是次品的概率; (3)恰有一件正品的概率.[思路点拨] 两件都是正品(次品)的概率,就是正品(次品)的概率相乘;恰有一件正品的概率要用到互斥事件.[精解详析] 记“从甲机床抽到正品”为事件A ,“从乙机床抽到正品”为事件B ,“抽取的两件产品中恰有一件正品”为事件C ,由题意知A ,B 是相互独立事件.(1)P (AB )=P (A )·P (B )=0.90×0.80=0.72; (2)P (A -B -)=P (A -)·P (B -)=0.10×0.20=0.02;(3)P (C )=P (A B -)+P (A -B )=P (A )·P (B -)+P (A -)·P (B )=0.90×0.20+0.10×0.80=0.26. [一点通] 解决此类问题要明确互斥事件和相互独立事件的意义.若A ,B 相互独立,是A 与B ,A 与B ,A 与B 也是相互独立的.3.甲射击命中目标的概率为34,乙射击命中目标的概率为23,当两人同时射击同一目标时,该目标被击中的概率为________.解析:P =34×13+14×23+34×23=1112.答案:11124.在一次班委干部的选任中,甲、乙、丙三名同学被选上的概率分别为P (甲)=0.8,P (乙)=0.6,P (丙)=0.5,且知三人在选举中互不影响,则三人都被选上的概率为________,三人中至少有一人被选上的概率为________.解析:三人都被选上的概率为 P 1=P (甲)·P (乙)·P (丙) =0.8×0.6×0.5=0.24.三人中至少有一人被选中的概率为 P 2=1-(1-P (甲))·(1-P (乙))·(1-P (丙)) =1-0.2×0.4×0.5 =1-0.04=0.96. 答案:0.24 0.965.一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求: (1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率;(2)第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率.解:记:“第1次取出的2个球都是白球”的事件为A ,“第2次取出的2个球都是红球”的事件为B ,“第1次取出的2个球1个是白球、1个是红球”的事件为C ,很明显,由于每次取出后再放回,A ,B ,C 都是相互独立事件.(1)P (AB )=P (A )P (B )=C 23C 25·C 22C 25=310·110=3100.故第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率是3100.(2)P (CA )=P (C )P (A )=C 13·C 12C 25·C 23C 25=610·310=950.故第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率是950.[例3] 900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9 000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为19,110,111,且各车是否发生事故相互独立,求一年内该单位在此保险中:(1)获赔的概率;(2)获赔金额X 的分布列.[思路点拨] (1)利用对应条件去求获赔的概率; (2)分析X 的所有取值,写出分布列.[精解详析] 设A k 表示第k 辆车在一年内发生此种事故,k =1,2,3,由题意知A 1,A 2,A 3独立,且P (A 1)=19,P (A 2)=110,P (A 3)=111.∴P (A 1)=89,P (A -2)=910,P (A -3)=1011,(1)该单位一年内获赔的概率为 1-P (A -1A -2A -3)=1-P (A -1)P (A -2)P (A -3) =1-89×910×1011=311.(2)X 的所有可能值为0,9 000,18 000,27 000. P (X =0)=P (A -1A -2A -3)=P (A -1)P (A -2)P (A -3) =89×910×1011=811, P (X =9 000)=P (A 1A -2A -3)+P (A -1A 2A -3)+P (A -1A -2A 3) =P (A 1)P (A -2)P (A -3)+P (A -1)P (A 2)P (A -3)+P (A -1)P (A -2)P (A 3) =19×910×1011+89×110×1011+89×910×111 =242990=1145, P (X =18 000)=P (A 1A 2A -3)+P (A 1A -2A 3)+P (A -1A 2A 3) =P (A 1)P (A 2)P (A -3)+P (A 1)P (A -2)P (A 3)+P (A -1)P (A 2)P (A 3)=19×110×1011+19×910×111+89×110×111 =27990=3110. P (X =27 000)=P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3) =19×110×111=1990. 综上知,X 的分布列为[一点通] 解决此类问题要明确事件中关键词的意义,将事件合理分析:已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),则A ,B 中至少有一个发生的事件为A +B ;A ,B 都发生的事件为AB ;A ,B 都不发生的事件为A -B -;A ,B 恰有一个发生的事件为AB -+A -B ;A ,B 中至多有一个发生的事件为AB -+A -B +A -B -.6.2014年3月30日,深圳迎来今年首场强降雨.天气预报提示在未来24小时,深圳A ,B 两地区有强降雨的概率分别为56,25.则A ,B 两地在未来24小时至少有一处有强降雨的概率为________.(假设A ,B 两地距离较远,是否降雨相互独立)解析:转化为对立事件求解: P =1-16×35=1-110=910.答案:9107.某校田径队有三名短跑运动员,根据平时的训练情况统计,甲、乙、丙三人100 m 跑(互不影响)的成绩在13 s 内(称为合格)的概率分别是25,34,13.如果对这三名短跑运动员的100 m 跑成绩进行一次检测;(1)三人都合格的概率与三人都不合格的概率分别是多少? (2)出现恰有几人合格的概率最大?解:设“甲、乙、丙三人100 m 跑合格”分别为事件A ,B ,C ,显然A ,B ,C 相互独立,P (A )=25,P (B )=34,P (C )=13,所以P (A )=1-25=35,P (B )=1-34=14,P (C )=1-13=23.设恰有k 人合格的概率为P k (k =0,1,2,3).(1)三人都合格的概率为P 3=P (ABC )=P (A )P (B )P (C )=25×34×13=110.三人都不合格的概率为P 0=P (A -B -C -)=P (A -)P (B -)P (C -)=35×14×23=110.所以三人都合格的概率与三人都不合格的概率都是110.(2)因为ABC -,AB -C ,A -BC 两两互斥,所以恰有两人合格的概率为P 2=P (ABC -+AB -C+A -BC )=P (ABC -)+P (AB -C )+P (A -BC )=P (A )P (B )P (C -)+P (A )P (B -)P (C )+P (A -)P (B )P (C ) =25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率为P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512.由(1)(2)知P 0,P 1,P 2,P 3中P 1最大,所以出现恰有一人合格的概率最大.相互独立事件常与互斥事件、对立事件综合考查,解决此类问题的一般步骤: (1)列出题中涉及的各事件,并且用适当的符号表示;(2)理清事件之间的关系(互斥、对立、相互独立),列出关系式; (3)根据事件之间的关系准确选取概率公式进行计算;(4)当直接计算符合条件的事件的概率较复杂时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.[对应课时跟踪训练(十三)]一、填空题1.坛子中放有3个白球和2个黑球,从中进行有放回地摸球,用A 1表示第一次摸得白球,A 2表示第二次摸得白球,则A 1和A 2是________事件.解析:由题意知,A 1是否发生,对A 2发生的概率没有影响,所以A 1和A 2是相互独立事件.答案:相互独立2.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是________.解析:设“任取一书是文科书”的事件为A ,“任取一书是精装书”的事件为B ,则A ,B 是相互独立的事件,所求概率为P (AB ).据题意可知P (A )=40100=25,P (B )=70100=710,故P (AB )=P (A )P (B )=25×710=725.答案:7253.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为________.解析:问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34.答案:344.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一个被录取的概率为________.解析:P =0.6×0.3+0.4×0.7+0.6×0.7=0.88. 答案:0.885.一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数之和大于n 2,则算过关,那么,连过前两关的概率是________.解析:设过第一关为事件A ,当抛掷一次出现的点数为2,3,4,5,6点中之一时,通过第一关,所以P (A )=56.设过第二关为事件B ,记两次骰子出现的点数为(x ,y ),共有36种情况,第二关不能过有如下6种情况(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).P (B )=1-P (B )=1-636=56.所以连过前两关的概率为:P(A)P(B)=2536.答案:2536二、解答题6.天气预报,在元旦假期甲地的降雨概率为0.2,乙地的降雨概率是0.3,假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内:(1)甲、乙两地都降雨的概率;(2)甲、乙两地都不降雨的概率;(3)其中至少一个地方降雨的概率.解:(1)甲、乙两地都降雨的概率为P1=0.2×0.3=0.06.(2)甲、乙两地都不降雨的概率为P2=(1-0.2)×(1-0.3)=0.8×0.7=0.56.(3)至少一个地方降雨的概率为P3=1-P2=1-0.56=0.44.7.设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.(1)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少?(2)计算这个小时内至少有一台机器需要照顾的概率.解:记“机器甲需要照顾”为事件A,“机器乙需要照顾”为事件B,“机器丙需要照顾”为事件C.由题意,各台机器是否需要照顾相互之间没有影响,因此,A,B,C是相互独立事件.(1)由已知得P(AB)=P(A)P(B)=0.05,P(AC)=P(A)P(C)=0.1,P(BC)=P(B)P(C)=0.125.解得P(A)=0.2,P(B)=0.25,P(C)=0.5.所以甲、乙、丙每台机器需要照顾的概率分别为0.2,0.25,0.5.(2)记A的对立事件为A-,B的对立事件为B-,C的对立事件为C-,“这个小时内至少有一台机器需要照顾”为事件D,则P(A-)=0.8,P(B-)=0.75,P(C-)=0.5,于是P(D)=1-P(A-B-C-)=1-P(A-)P(B-)P(C-)=0.7.所以这个小时内至少有一台机器需要照顾的概率为0.7.8.据统计,某食品企业在一个月内被消费者投诉次数为0,1,2的概率分别为0.4,0.5,0.1.(1)求该企业在一个月内被消费者投诉不超过1次的概率;(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.解:(1)设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”,∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9.(2)设事件A i表示“第i个月被投诉的次数为0”,事件B i表示“第i个月被投诉的次数为1”,事件C i表示“第i个月被投诉的次数为2”,事件D表示“两个月内共被投诉2次”.∴P(A i)=0.4,P(B i)=0.5,P(C i)=0.1(i=1,2).∵两个月中,一个月被投诉2次,另一个月被投诉0次的概率为P(A1C2+A2C1),一、二月份均被投诉1次的概率为P(B1B2),∴P(D)=P(A1C2+A2C1)+P(B1B2)=P(A1C2)+P(A2C1)+P(B1B2).由事件的独立性得P(D)=0.4×0.1+0.1×0.4+0.5×0.5=0.33.。
[推荐学习]2018-2019学年高中数学苏教版选修2-3教学案:1.4 计数应用题-缺答案
![[推荐学习]2018-2019学年高中数学苏教版选修2-3教学案:1.4 计数应用题-缺答案](https://img.taocdn.com/s3/m/0d465c0daf45b307e871975f.png)
_1.4计数应用题[对应学生用书P16][例1]3个女生和5(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果甲必须排在乙的右面(可以不相邻),有多少种不同的排法?[思路点拨]本题涉及限制条件,要优先考虑有条件限制的元素或位置,相邻问题可采用捆绑法,不相邻问题可采用插空法.[精解详析](1)(捆绑法)因为3个女生必须排在一起,所以可先把她们看成一个整体,这样同5个男生合在一起共有6个元素,排成一排有A66种不同排法.对于其中的每一种排法,3个女生之间又有A33种不同的排法,因此共有A66·A33=4 320种不同的排法.(2)(插空法)要保证女生全分开,可先把5个男生排好,每两个相邻的男生之间留出一个空,这样共有4个空,加上两边两个男生外侧的两个位置,共有6个位置,再把3个女生插入这6个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于5个男生排成一排有A55种不同排法,对于其中任意一种排法,从上述6个位置中选出3个来让3个女生插入有A36种方法,因此共有A55·A36=14 400种不同的排法.(3)法一:(特殊位置优先法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有A25种不同排法,对于其中的任意一种排法,其余六位都有A66种排法,所以共有A25·A66=14 400种不同的排法.法二:(间接法)3个女生和5个男生排成一排共有A88种不同的排法,从中扣除女生排在首位的A13·A77种排法和女生排在末位的A13·A77种排法,但这样两端都是女生的排法在扣除女生排在首位时被扣去一次,在扣除女生排在末位时又被扣去一次,所以还需加一次,由于两端都是女生有A23·A66种不同的排法,所以共有A88-2A13·A77+A23·A66=14 400种不同的排法.法三:(特殊元素优先法)从中间6个位置中挑选出3个让3个女生排入,有A36种不同的排法,对于其中的任意一种排法,其余5个位置又都有A55种不同的排法,所以共有A36·A55=14 400种不同的排法.(4)法一:因为只要求两端不能都排女生,所以如果首位排了男生,则末位就不再受条件限制了,这样可有A 15·A 77种不同的排法;如果首位排女生,有A 13种排法,这时末位就只能排男生,这样可有A 13·A 15·A 66种不同的排法.因此共有A 15·A 77+A 13·A 15·A 66=36 000种不同的排法.法二:3个女生和5个男生排成一排有A 88种排法,从中扣去两端都是女生的排法有A 23·A 66种,就能得到两端不都是女生的排法种数.因此共有A 88-A 23·A 66=36 000种不同的排法.(5)(顺序固定问题)因为8人排队,其中两人顺序固定,共有A 88A 22=20 160种不同的排法. [一点通](1)排列问题的限制条件一般表现为:某些元素不能在某个位置,某个位置只能放某些元素等.要先处理特殊元素或先处理特殊位置,再去排其他元素.当用直接法比较麻烦时,可以用间接法,先不考虑限制条件,把所有的排列数算出,再从中减去全部不符合条件的排列数,这种方法也称为“去杂法”,但必须注意要不重复,不遗漏(去尽).(2)对于某些特殊问题,可采取相对固定的特殊方法,如相邻问题,可用“捆绑法”,即将相邻元素看成一个整体与其他元素排列,再进行内部排列;不相邻问题,则用“插空法”,即先排其他元素,再将不相邻元素排入形成的空位中.1.(四川高考改编)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有________种.解析:当最左端排甲时,不同的排法共有A 55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C 14A 44种.故不同的排法共有A 55+C 14A 44=9×24=216种.答案:2162.用5,6,7,8,9组成没有重复数字的五位数,其中有且仅有一个奇数夹在两个偶数之间的五位数的个数为________种.解析:符合题意的五位数有A 22C 13A 33=2×3×3×2=36.答案:363.某天某班的课程表要排入数学、语文、英语、物理、化学、体育六门课程,如果第一节不排体育,第六节不排数学,一共有多少种不同的排法?解:法一:(位置分析法)依第一节课和第六节课的情况进行分类;①第一节课排数学,第六节课排体育,共有A 44种排法;②第一节课排数学,第六节课不排体育,共有A 14A 44种排法;③第一节课不排数学,第六节课排体育,共有A 14A 44种排法;④第一节课不排数学,第六节课不排体育,共有A 24A 44种排法.由分类加法计数原理,所求的不同排法共有A 44+2A 14A 44+A 24A 44=504(种).法二:(排除法)不考虑受限条件下的排法有A 66种,其中包括数学课在第六节的排法有A 55种,体育课在第一节的排法有A 55种,但上面两种排法中同时含有数学课在第六节,体育课在第一节的情形有A 44种.故所求的不同排法有A 66-2A 55+A 44=504(种).[例2] 某龙舟队有2人既会划左舷又会划右舷,现要选派划左舷的3人,划右舷的3人,共6人参加比赛,则不同的选派方法有多少种?[思路点拨] 既会划左舷又会划右舷是特殊元素,可以从他们的参与情况入手分类讨论.[精解详析] 选派的3名会划左舷的选手中,没有既会划左舷又会划右舷的选手时,选派方法有C 33C 36种选派方法;选派的3名会划左舷的选手中,有一人是既会划左舷又会划右舷的选手时,选派方法有C 12C 23C 35种选派方法;选派的3名会划左舷的选手中,有两人是既会划左舷又会划右舷的选手时,选派方法有C 13C 34种选派方法.故共有C 33C 36+C 12C 23C 35+C 13C 34=20+60+12=92种选派方法.[一点通](1)解决简单的分配问题的一般思路是先选取,后分配.(2)如果涉及的元素有限制条件,则一般以特殊元素,特殊位置为分类标准.4.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种.(用数字作答)解析:分两步完成:第一步,将4名大学生按2,1,1分成三组,其分法有C 24C 12C 11A 22种;第二步,将分好的三组分配到3个乡镇,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A 33=36种.答案:365.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有________种.解析:先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有C12C24=12种安排方案.答案:126.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本.(2)一人得4本,一人得3本,一人得2本.解:(1)分3步完成:第1步,从9本不同的书中,任取4本分给甲,有C49种方法;第2步,从余下的5本书中,任取3本给乙,有C35种方法;第3步,把剩下的书给丙有C22种方法.所以,共有不同的分法为C49·C35·C22=1 260种.(2)分2步完成:第1步,按4本、3本、2本分成三组有C49·C35·C22种方法;第2步,将分成的三组书分给甲、乙、丙三个人,有A33种方法.所以,共有C49·C35·C22·A33=7 560种.[例3]从1到(1)能组成多少个没有重复数字的七位数?(2)上述七位数中3个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?(4)在(1)中任意两个偶数都不相邻的七位数有几个?[思路点拨]排数问题和站队问题是排列、组合中的两类典型问题,其解决的思路相似,需考虑特殊元素、特殊位置、相邻问题、不相邻问题等的处理方法.[精解详析](1)分步完成:第一步,在4个偶数中取3个,可有C34种情况;第二步,在5个奇数中取4个,可有C45种情况;第三步,3个偶数,4个奇数进行排列,可有A77种情况,所以符合题意的七位数有C34C45A77=100 800(个).(2)上述七位数中,3个偶数排在一起的有C 34C 45A 55A 33=14 400(个).(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34C 45A 33A 44A 22=5 760(个).(4)上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空,共有C 34C 45A 44A 35=28 800(个).[一点通] 解决排列、组合综合问题要遵循两个原则:(1)按事情发生的过程进行分步;(2)按元素的性质进行分类.解决时通常从三个途径考虑:①以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列或组合数.7.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有________种.解析:标号1,2的卡片放入同一封信有C 13种方法;其他四封信放入两个信封,每个信封两个有C 24A 22·A 22种方法,共有C 13·C 24A 22·A 22=18种. 答案:188.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲乙两人至少有一人参加.当甲乙同时参加时,他们两人的发言不能相邻.那么不同的发言顺序的种数为________.解析:若甲乙同时参加,则可以先从剩余的5人中选出2人,先排此两人,再将甲乙两人插入其中即可,则共有C 25A 22A 23种不同的发言顺序;若甲乙两人只有一人参加,则共有C 12C 35A 44种不同的发言顺序,综合可得不同的发言顺序有C 25A 22A 23+C 12C 35A 44=600种.答案:6009.某种产品有5件不同的正品,4件不同的次品,现在一件件地进行检测,直到4件次品全部测出为止.若次品恰好在第6次检测时被全部选出,则这样的检测方案有多少种?解:问题相当于从9件产品中取出6件的一个排列,第6位为次品,前五位有其余3件次品. 可分三步,先从4件产品中留出1件次品排第6位,有4种方法,再从5件正品中取2件,有C 25种方法,再把另3件次品和取出的2件正品排在前5位有A 55种方法,所以检测方案种数为4×C 25·A 55=4 800.解决排列组合问题的常用方法(1)位置分析法:以位置为主,特殊(受限)的位置优先考虑.有两个以上的约束条件时,往往是考虑一个条件的同时,也要兼顾其他条件.考虑两个条件之间是否有影响.(2)元素分析法:以元素为主,先满足特殊(受限)元素的要求,再处理其他元素.有两个以上的约束条件时,往往是考虑一个元素的同时,也要兼顾其他元素.(3)间接法:也叫排异法.直接考虑时情况较多,但其对立面情况较少,相对来讲比直接解答简捷,可先考虑逆向思考问题,在此方法中,对立面要“不重不漏”.(4)插空法:先把有限制的元素排好,然后将不能相邻的元素插入排好的元素的空中,要注意无限制元素的排列数及所形成空的个数.此方法适用于含有“不相邻”的问题(5)捆绑法:把要求在一起的“小集团”看作一个整体,与其他元素进行排列,同时不要忘记“小集团”内也要排列.此法比较适合“必须在一起”的问题.[对应课时跟踪训练(七)]一、填空题1.甲组有男同学5名,女同学3名,乙组有6名男同学,2名女同学,从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法有________种.解析:第一类,选出的1名女生出自甲组,选法为C15C13C26=225(种);第二类,1名女生出自乙组,选法为C25C16C12=120(种).共有225+120=345(种).答案:3452.某公司招聘了8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有________种.解析:据题意可先将两名英语翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13 A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步计数原理得共有2C13A22C13=36(种)分配方案.答案:363.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入1号瓶内,那么不同的放法共有________种.解析:分步完成:第一步,从甲、乙以外的8种种子中选1种放入1号瓶内;第二步,从剩下的9种种子中选5种放入余下的5个瓶子内;故不同的放法种数为C18A59=120 960(种).答案:120 9604.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有________种.解析:先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步计数原理可知共有不同的安排方法C16A25=120种.答案:1205.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________种.解析:根据题意,每级台阶最多站2人,所以,分两类:第一类,有2人站在同一级台阶,共有C23A27种不同的站法;第二类,一级台阶站1人,共有A37种不同的站法.根据分类计数原理,得共有C23A27+A37=336种不同的站法.答案:336二、解答题6.有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,根据这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?解:因为相邻的两个二极管不能同时点亮,所以需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C36种亮灯办法.然后分步确定每个二极管发光颜色有2×2×2=8(种)方法,所以这排二极管能表示的信息种数共有C36×2×2×2=160(种).7.现有4个不同的球,4个不同的盒子,把球全部放入盒内,(1)共有几种放法?(2)若恰有1个空盒,有几种放法?(3)若恰有2个盒子不放球,有几种放法?解:(1)44=256(种).(2)先从4个小球中取2个放在一起,有C24种不同的取法,再把取出的两个小球与另外2个小球看作三堆,并分别放入4个盒子中的3个盒子里,有A34种不同的放法.根据分步计数原理,共有C24A34=144种不同的放法.(3)恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中,有两类放法:第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有C34种,再放到2个小盒中有A24种放法,共有C34A24种放法;第二类,2个盒子中各放2个小球有C24C24种放法.故恰有2个盒子不放球的放法共有C34A24+C24C24=84种.8.已知抛物线y=ax2+bx+c的系数a、b、c是在集合{-3,-2,-1,0,1,2,3,4}中选取的3个不同的元素,求坐标原点在抛物线内部的抛物线有多少条?解:由图形特征分析得知,若a>0,开口向上,坐标原点在抛物线内部⇔f(0)=c<0,若a<0,开口向下,坐标原点在抛物线内部⇔f(0)=c>0;所以对于抛物线y=ax2+bx+c来讲,坐标原在其内部⇔af(0)=ac<0.确定抛物线时,可先定一正一负的a和c,再确定b.故满足题设的抛物线共有C13C14A22C16=144条.。
高中数学选修2-3二项式定理讲义含答案

二项式定理公式(a+b)n=C0n a n+C1n a n-1b+C2n a n-2b2+…+C r n a n-r b r所表示的规律叫做二项式定理.2、相关概念(1)公式右边的多项式叫做(a+b)n的二项展开式.(2)各项的系数C r n(r=0,1,2,…,n)叫做展开式的二项式系数.(3)展开式中的C r n a n-r b r叫做二项展开式的通项,记作:T r+1,它表示展开式的第r+1项.(4)在二项式定理中,如果设a=1,b=x,则得到公式(1+x)n=C0n+C1n x+C2n x2+…+C r n x r+…+C n n x n3、展开式具有以下特点(1)项数:共有n+1项;(2)二项式系数:依次为C0n,C1n,C2n,…,C r n,…,C n n;(3)每一项的次数是一样的,即为n次,展开式依a的降幂、b的升幂排列展开;(4)通项是第r+1项.[例1](1)用二项式定理展开(2x-32x2)5.(2)化简:C0n(x+1)n-C1n(x+1)n-1+C2n(x+1)n-2-…+(-1)r C r n(x+1)n-r+…+(-1)n C n n.[思路点拨](1)二项式的指数为5,可直接按二项式定理展开;(2)可先把x+1看成一个整体,分析结构形式,逆用二项式定理求解.[答案](1)(2x-32x2)5=C05(2x)5+C15(2x)4·(-32x2)+…+C55(-32x2)5=32x5-120x2+180x-135x4+4058x7-24332x10.(2)原式=C0n(x+1)n+C1n(x+1)n-1(-1)+C2n(x+1)n-2(-1)2+…+C r n(x+1)n-r(-1)r+…+C n n(-1)n=[(x +1)+(-1)]n=x n.1.求(3x+1x)4的展开式.解:法一:(3x+1x)4=C04(3x)4+C14(3x)3·1x+C24(3x)2·(1x)2+C34(3x)(1x)3+C44(1x)4=81x2+108x+54+12x+1x2.法二:(3x +1x)4=(3x +1)4x 2=1x 2(81x 4+108x 3+54x 2+12x +1)=81x 2+108x +54+12x +1x 2. 2.求C 26+9C 36+92C 46+93C 56+94C 66的值.解:原式=192(92C 26+93C 36+94C 46+95C 56+96C 66) =192(C 06+91C 16+92C 26+93C 36+94C 46+95C 56+96C 66)-192(C 06+91C 16) =192(1+9)6-192(1+6×9)=192(106-55)=12 345. [例2] (1)(x +12 x)8的展开式中常数项为( ) A.3516 B.358 C.354D .105(2)设二项式(x -a x)6(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________. [答案] (1)二项展开式的通项为 T r +1=C r 8(x )8-r (12 x)r =C r 8(12)r x 4-r. 当4-r =0时,r =4,所以展开式中的常数项为 C 48(12)4=358.故选B. (2)由题意得T r +1=C r 6x6-r (-a x)r =(-a )r C r 6x 36-2r, ∴A =(-a )2C 26,B =(-a )4C 46.又∵B =4A ,∴(-a )4C 46=4(-a )2C 26,解之得a 2=4.又∵a >0,∴a =2. 3.在(2x 2-1x )5的二项展开式中,x 的系数为( )4.A .10B .-10C .40D .-40解析:二项式(2x 2-1x )5的展开式的第r +1项为T r +1=C r 5(2x 2)5-r (-1x)r =C r 5·25-r ×(-1)r x 10-3r .当r =3时含有x ,其系数为C 35·22×(-1)3=-40.4.(1+3x )n (其中n ∈N 且n ≥6)的展开式中,若x 5与x 6的系数相等,则n = ( )A .6B .7C .8D .9解析:二项式(1+3x )n 的展开式的通项是T r +1=C r n 1n -r ·(3x )r =C r n ·3r ·x r.依题意得C 5n ·35=C 6n·36,即n (n -1)(n -2)(n -3)(n -4)5! =3×n (n -1)(n -2)(n -3)(n -4)(n -5)6!(n ≥6),解得n =7.5.在(32x -12)20的展开式中,系数是有理数的项共有( )A .4项B .5项C .6项D .7项解析:T r +1=C r 20(32x )20-r (-12)r =(-22)r ·(32)20-r C r 20·x 20-r . ∵系数为有理数,∴(2)r与20r 32-均为有理数,∴r 能被2整除,且20-r 能被3整除. 故r 为偶数,20-r 是3的倍数,0≤r ≤20, ∴r =2,8,14,20.引入:nb)+(a 的展开式的二次项系数,当n 取正整数时可以表示成如下形式:二项式系数的性质(1)每一行的两端都是1,其余每个数都等于它“肩上”两个数的和.即C 0n =C n n =1,C m n +1=C m -1n +C m n . (2)每一行中,与首末两端“等距离”的两个数相等,即C m n =C n -mn.(3)如果二项式的幂指数n 是偶数,那么其展开式中间一项12+n T 的二项式系数最大;如果n 是奇数,那么其展开式中间两项12121++++n n T T 的二项式系数相等且最大.(4)二项展开式的各二项式系数的和等于2n .即C 0n +C 1n +C 2n +…+C n n =2n .且C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.[例1] 如图,在“杨辉三角”中,斜线AB 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,….记其前n 项和为Sn ,求S19的值.[思路点拨] 由图知,数列中的首项是C 22,第2项是C 12,第3项是C 23,第4项是C 13,…,第17项是C 210,第18项是C 110,第19项是C 211.[答案] S 19=(C 22+C 12)+(C 23+C 13)+(C 24+C 14)+…+(C 210+C 110)+C 211=(C 12+C 13+C 14+…+C 110)+(C 22+C 23+…+C 210+C 211)=(2+3+4+…+10)+C 312=(2+10)×92+220=274.n 行的首尾两个数均为________.解析:由1,3,5,7,9,…可知它们成等差数列,所以an =2n -1.答案:2n -12.如图,由二项式系数构成的杨辉三角中,第________行从左到右第14个数与第15个数之比为2∶3.解析:设第n 行从左至右第14与第15个数之比为2∶3,则3C 13n =2C 14n ,即3n !13!(n -13)!=2n !14!(n -14)!.解得n =34. [例2] 设)(2x )-(12012201222102012R x x a x a x a a ∈++++=(1)求2012210a a a a ++++ 的值. (2)求2011531a a a a ++++ 的值. (3)求||||||||2012210a a a a ++++ 的值.[思路点拨] 先观察所要求的式子与展开式各项的特点,用赋值法求解.[答案] (1)令x =1,得a 0+a 1+a 2+…+a 2 012=(-1)2 012=1.①(2)令x =-1,得a 0-a 1+a 2-…+a 2 012=32 012.② ①-②得2(a 1+a 3+…+a 2 011)=1-32 012, ∴a 1+a 3+a 5+…+a 2 011=1-32 0122.(3)∵T r +1=C r 2 012(-2x )r =(-1)r ·C r 2 012·(2x )r,∴a 2k -1<0(k ∈N +),a 2k >0(k ∈N). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2 012| =a 0-a 1+a 2-a 3+…+a 2 012 =32 012.[总结] 赋值法是解决二项展开式中项的系数问题的常用方法.根据题目要求,灵活赋给字母不同值是解题的关键.一般地,要使展开式中项的关系变为系数的关系,令x =0可得常数项,令x =1可得所有项的和,令x =-1可得偶次项系数之和与奇次项系数之和的差.3.()()()nx x x ++++++1112的展开式中各项系数的和为( )A .12+n B .12-n C .121-+nD .221-+n解析:令x =1,则222222132-=+++++n n答案:D4.已知14141313221072)21x a x a x a x a a x x +++++=-+ a14x14.(1)求1413210a a a a a +++++ (2)求13531a a a a +++ 解:(1)令x =1,则1413210a a a a a +++++ =72=128. ①(2)令x =-1,则14133210a a a a a a +-+-+- =7)2(-=-128.②①-②得2(13531a a a a ++++ )=256,∴13531a a a a ++++ =128.[例3] (10分)已知(23x+3x 2)n 的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.[思路点拨] 根据已知条件求出n ,再根据n 为奇数或偶数确定二项式系数最大的项和系数最大的项.[答案] 令x =1,则展开式中各项系数和为(1+3)n =22n .(1分)又展开式中二项式系数和为2n , ∴22n 2n =2n=32,n =5. (2分)(1)∵n =5,展开式共6项,∴二项式系数最大的项为第三、四两项, (3分) ∴T 3=C 25(23x)3(3x 2)2=90x 6,(4分) T 4=C 35(23x)2(3x 2)3=270223x.(5分)(2)设展开式中第k +1项的系数最大, 则由T k +1=C k 5(23x)5-k (3x 2)k =3k C k51043k x+,(6分)得⎩⎪⎨⎪⎧3k C k 5≥3k -1C k -15,3k C k 5≥3k +1C k +15,,∴72≤k ≤92,∴k =4, (8分)即展开式中系数最大的项为T 5=C 45(23x)(3x 2)4=405263x.(10分)[总结] (1)求二项式系数最大的项,根据二项式系数的性质,当n 为奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组、解不等式的方法求得.变式训练5.若(x 3+1x 2)n 的展开式中第6项系数最大,则不含x 的项是( )A .210B .120C .461D .416解析:由题意知展开式中第6项二项式系数最大, n2+1=6,∴n =10, T r +1=C r 10x3(10-r )(1x2)r =C r 10x 30-5r . ∴30-5r =0.∴r =6.常数项为C 610=210. 答案:A 5.已知()nx 31+的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.解:由题意知C n n +C n -1n +C n -2n =121, 即C 0n +C 1n +C 2n =121,∴1+n+n(n-1)2=121,即n2+n-240=0,解得n=15或-16(舍).∴在(1+3x)15的展开式中二项式系数最大的项是第八、九两项,且T8=C715(3x)7=C71537x7,T9=C815(3x)8=C81538x8.1.二项式展开式中的常数项是()A.180B.90C.45D.3602.二项式的展开式中x3 的系数是()A.84B. -84C.126D. -1263.设,则=()A.﹣2014B.2014C.﹣2015D.20154.的展开式中含有常数项为第( )项A.4B.5C.6D.75.若对于任意的实数x ,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值为()A.3B.6C.9D.126.在二项式的展开式中,含x4 的项的系数是()A.﹣10B.10C.﹣5D.57.展开式中不含x4项的系数的和为( )A.-1B.0C.1D.28.812014 除以100的余数是()A.1B.79C.21D.819.除以9的余数为( )A.8B.7C.6D.510.二项式展开式中的常数项是()A.第7项B.第8项C.第9项D.第10项11.在二项式的展开式中,前三项的系数成等差数列,则该二项式展开式中x-2项的系数为()A.1B.4C.8D.1612.将二项式的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的指数是整数的项共有()个A.3B.4C.5D.613.已知展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4B.5C.6D.714.展开式中x3的系数为10,则实数a等于()A. -1B.C.1D.215.在的二项式展开式中,只有第5项的二项式系数最大,则n= ()A.6B.7C.8D.9二、填空题16.设的展开式的各项系数之和为M ,二项式系数之和为N ,若M-N=240 ,则n =________.17.的展开式中各项系数的和为2,则该展开式中常数项为________.18.(a+2x+3x2)(1+x)5的展开式中一次项的系数为-3 ,则x5的系数为________19.已知的展开式中的常数项为T ,f(x) 是以T 为周期的偶函数,且当时,f(x)=x ,若在区间[-1,3] 内,函数g(x)=f(x)-kx-k有4个零点,则实数k 的取值范围是________20.对任意实数x ,有,则a3 的值为________.三、解答题21.求的二项展开式中的第5项的二项式系数和系数.22.在二项式的展开式中:(1)求展开式中含x3项的系数;(2)如果第3k项和第k+2项的二项式系数相等,试求k的值.23.已知(+3x2)n的展开式中,各项系数和比它的二项式系数和大992,求:(1)展开式中二项式系数最大的项;(2)展开式中系数最大的项.24.已知,且.(1)求n的值;(2)求的值25.已知的展开式的二项式系数之和为32,且展开式中含x3项的系数为80.(1)求m和n的值;(2)求展开式中含x2项的系数.课堂运用答案解析一、选择题1.【答案】A【考点】二项式定理【解析】【解答】二项式展开式的通项为令得r=2所以二项式展开式中的常数项是.故选A.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式通项计算即可.2.【答案】B【考点】二项式系数的性质【解析】【解答】由于二项式的通项公式为,令9-2r=3,解得r=3,∴展开式中x3的系数是(−1)3• ,故答案为B.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质计算即可.3.【答案】D【考点】二项式定理的应用【解析】【解答】由题意可得即为展开式第2015项的系数,再根据通项公式可得第2015项的系数为:,故选D.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式定理的性质分析计算即可.4.【答案】B【考点】二项式定理【解析】【解答】由二项展开式公式:,当8-2r=0,即r=4时,T5为常数项,所以常数项为第5项.故选B【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式计算即可.5.【答案】B【考点】二项式定理的应用【解析】【解答】因为,所以,故选择B.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式的性质计算即可.6.【答案】B【考点】二项式系数的性质【解析】【解答】由二项式定理知,二项式的展开式通项为:,令,得,则的项的系数为:.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式定理的性质计算即可.7.【答案】B【考点】二项式系数的性质【解析】【解答】由二项式定理知,展开式中最后一项含x4,其系数为1,令x=1得,此二项展开式的各项系数和为,故不含x4项的系数和为1-1=0,故选B.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式的特征计算即可.8.【答案】C【考点】二项式定理的应用【解析】【解答】== 4,即除以100的余数为21.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式性质分析计算即可.9.【答案】B【考点】二项式定理的应用【解析】【解答】依题意S=++…+=227-1=89-1=(9-1)9-1=×99-×98+…+×9--1=9( ×98-×97+…+)-2.∴ ×98-×97+…+是正整数,∴S被9除的余数为7.选B.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式展开性质计算即可.10.【答案】C【考点】二项式定理【解析】【解答】根据二项式定理可得的第项展开式为,要使得为常数项,要求,所以常数项为第9项.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式定理的性质分析计算即可.11.【答案】A【考点】二项式系数的性质【解析】【解答】由题意可得,成等差数列,∴ ,解得n=8.故展开式的通项公式为,令,求得r=8,故该二项式展开式中项的系数为,故选:A.【分析】本题主要考查了二项式系数的性质,解决问题的关键是二项式性质计算即可.12.【答案】A【考点】二项式系数的性质【解析】【解答】展开式的通项为∴前三项的系数分别是,∴前三项系数成等差数列∴∴∴当时,∴,展开式中x 的指数是整数,故共有3个,答案为A.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据实际问题结合二项式系数的性质计算即可.13.【答案】C【考点】二项式系数的性质【解析】【解答】展开式中各项系数和为x取时式子的值,所以各项系数和为,而二项式系数和为,因此,所以,答案选C.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质分析计算即可. 14.【答案】D【考点】二项式定理【解析】【解答】二项式的展开式的通项,当5-2r=3 时,r=1,系数,解得a=2,答案选D.【分析】本题主要考查了二项式定理,解决问题的关键是根据二项式定理分析其通项计算即可.15.【答案】C【考点】二项式系数的性质【解析】【解答】因为在的二项式展开式中,只有第5项的二项式系数最大所以由此可得:,即所以即.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的单调性计算即可.二、填空题16.【答案】4【考点】二项式系数的性质【解析】【解答】由题设知:,解得:,所以答案应填:4.【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式系数的性质计算即可.17.【答案】40【考点】二项式系数的性质【解析】【解答】由题意,,解得:,所以的展开式中常数项为:所以答案应填:40.【分析】本题主要考查了二项式系数的性质,解决问题的关键是二项式系数的性质计算即可.18.【答案】39【考点】二项式系数的性质【解析】【解答】由题意:,解得:,所以,展开式中的系数为,所以答案应填:39【分析】本题主要考查了二项式系数的性质,解决问题的关键是根据二项式性质计算即可.19.【答案】""【解析】【解答】∴ 的常数项为∴f(x)是以2为周期的偶函数∴区间[-1,3]是两个周期∴区间[-1,3]内,函数有4个零点可转化为f(x)与有四个交点当k=0时,两函数图象只有两个交点,不合题意,当k≠0时,∴ ,两函数图象有四个交点,必有解得,故填:.【分析】本题主要考查了二项式定理的应用,解决问题的关键是根据二项式定理的性质结合函数性质计算即可.20.【答案】8【考点】二项式系数的性质【解析】【解答】,所以.【分析】本题主要考查了二项式系数的性质,解决问题的关键是要配成指定形式,再展开三、解答题21.【答案】【解答】解:,所以二项式系数为,系数为.【考点】二项式系数的性质【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是利用二项式定理的通项公式写出,再求出二项式系数与系数.22.【答案】(1)【解答】解:展开式第r+1项:令,解得r=2,∴展开式中含x3项的系数为(2)【解答】解:∴第3k项的二项式系数为,第k+2项的二项式系数∴故3k-1=k+1或3k-1+k+1=12 解得k=1或k=3【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是(1)写出二项式的展开式的特征项,当x的指数是3时,把3代入整理出k 的值,就得到这一项的系数的值.(2)根据上一问写出的特征项和第3k项和第k+2项的二项式系数相等,表示出一个关于k的方程,解方程即可.23.【答案】(1)解:令x=1,则展开式中各项系数和为(1+3)n=22n.又展开式中二项式系数和为2n,∴22n-2n=992,n=5∴n=5,展开式共6项,二项式系数最大的项为第3、4两项,∴T3=C52 ( )3(3x2)2=90x6,T4=C53 ( )2(3x2)3=(2)解:设展开式中第r+1项系数最大,则T r+1=C5r ( )5-r(3x2)r=3r C5r,∴ ,则,∴r=4,即展开式中第5项系数最大,T5=C54 ( )(3x2)4=405.【考点】二项式系数的性质【解析】【分析】本题主要考查了二项式系数的性质,解决问题的关键是(1)利用赋值法求出各项系数和,与二项式系数和求出值,利用二项式系数的性质求展开式中二项式系数最大的项;(2)设出展开式中系数最大的项,利用进行求解即可.24.【答案】(1)【解答】解:由已知得:,由于, 所以(2)【解答】解:当x=1时,当x=0时,所以,【考点】二项式系数的性质,二项式定理的应用【解析】【分析】本题主要考查了二项式系数的性质;二项式定理的应用,解决问题的关键是:(1)首先注意等式中n的取值应满足:且n为正整数,其次是公式和的准确使用,将已知等式转化为n的方程,解此方程即得;(2)应用赋值法:注意观察已知二项式及右边展开式,由于要求,所以首先令x=1,得;然后就只要求出a0的值来即可,因此需令x=0,得,从而得结果25.【答案】(1)【解答】解:由题意,,则n=5,由通项公式,则r=3,所以,所以m=2(2)【解答】解:=,所以展开式中含x2项的系数为.【考点】二项式系数的性质,二项式定理的应用【解析】【分析】本题主要考查了二项式系数的性质;二项式定理的应用,解决问题的关键是(1)二项式系数之和为:,令易求得n,其次利用二项展开式的通项公式中令r=3,易求得m;(2)在前小题已求得的m,n的基础上,要求展开式中求特定项(含x2项)的系数,只需把两个二项式展开,对于展开式中的常数项与展开式中的x2项的系数乘,一次项系数与其一次项系数乘,二次项系数与其常数项乘,再把所得值相加即为所求.一、选择题1.二项式展开式中的系数为()A.5B.16C.80D.2.在的展开式中,含的项的系数是()A.60B.160C.180D.2403.展开式的各项系数之和大于8,小于32,则展开式中系数最大的项是()A. B. C. D.或4.设,那么的值为()A. B. C. D.5.的展开式中含项的系数为()A. B. C. D.6.的展开式中,的系数为()A.15B.C.60D.7.的展开式中常数项为()A. B. C. D.8.的展开式中,各项系数之和为,各项的二项式系数之和为,且,则展开式中常数项为()A.6B.9C.12D.18二、填空题9.若的展开式中第三项与第五项的系数之比为,则展开式中常数项是________.10.在的展开式中,项的系数为________.(结果用数值表示)11.二项式的展开式中,前三项的系数依次成等差数列,则此展开式中有理项有________项.三、解答题12.已知在的展开式中,第6项为常数项.(1)求;(2)求含项的系数;(3)求展开式中所有的有理项.13.已知二项式.(1)若它的二项式系数之和为.①求展开式中二项式系数最大的项;②求展开式中系数最大的项;(2)若,求二项式的值被除的余数.14.已知在的展开式中,第5项的系数与第3项的系数之比是14∴1.(1)求展开式中的系数;(2)求展开式中系数绝对值最大的项;(3)求的值.课后作业答案解析1.【答案】C【考点】二项式定理,二项式系数的性质【解析】【解答】二项展开式的通项公式为,则当时,其展开式中的的系数为.故答案为:C.【分析】先求出二项的展开式的通项,然后令x的指数为1,求出r,从而可求出x的系数.2.【答案】D【考点】二项式定理的应用【解析】【解答】展开式的通项为,令,则,则含的项的系数为.故答案为:D.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为7得含x7项的系数.3.【答案】A【考点】二项式定理的应用【解析】【解答】令,可得各项系数的之和为,则,解得,中间一项的系数最大,则,故答案为:A.【分析】令x=1,可求出展开式中的各项系数之和,通过各项系数之和大于8,小于32由已知求出n,即可求解中间项系数最大.4.【答案】B【考点】二项式系数的性质【解析】【解答】时,;时,,∴ ,,∴ ,故答案为:B.【分析】利用展开式,分别令x=1与-1,两式相加或相减可得结论.5.【答案】A【考点】二项式定理的应用【解析】【解答】∴ ,故展开式中含项的系数为.故答案为:A.【分析】把(1+x)5 按照二项式定理展开,可得展开式中含x3项的系数.6.【答案】C【考点】二项式系数的性质【解析】【解答】,系数为.故答案为:C.【分析】根据二项式展开式的通项公式,利用展开式中x4y2,即可求出对应的系数.7.【答案】B【考点】二项式系数的性质,二项式定理的应用【解析】【解答】因为,常数项为,中常数项为,故展开式中常数项为,故答案为:B.【分析】把所给的三项式变为二项式,利用二项式展开式的通项公式,求得展开式中常数项.8.【答案】B【考点】二项式系数的性质【解析】【解答】由二项展开式的性质,可得,所以,所以.展开式的通项为,令可得,常数项为,故答案为:B.【分析】通过给x 赋值1得各项系数和,据二项式系数和公式求出B,列出方程求出n,利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.9.【答案】【考点】二项式定理的应用【解析】【解答】的展开式中第三项的系数为,第五项的系数为,由题意有,解得. 的展开式的通项为,由得,所以展开式的常数项为.【分析】利用二项展开式的通项公式求出展开式中第三项与第五项的系数,列出方程求出n;利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项.10.【答案】【考点】二项式定理的应用【解析】【解答】,令,得,,的展开式的通项为,则项的系数为.【分析】先把三项式写成二项式,求得二项式展开式的通项公式,再求一次二项式的展开式的通项公式,令x的幂指数等于4,求得r、m的值,即可求得x4项的系数.11.【答案】3【考点】二项式系数的性质,二项式定理的应用【解析】【解答】由题意可得成等差数列,即,化简可得,解得n=8,或n=1(舍去).二项式的展开式的通项公式为,为整数,可得r=0,4,8,故此展开式中有理项的项数是3.【分析】利用二项展开式的通项公式求出展开式的通项,求出前三项的系数,利用等差数列得到关于n的等式,求出n的值,将n的值代入通项,令x的指数为整数,得到r的值,得到展开式中有理项的项数.12.【答案】(1)解:的展开式的通项为= ,又第6项为常数项,则当r=5时,,即=0,可得n=10.(2)解:由(1)可得,,令,可得r=2,所以含x2项的系数为(3)解:由(1)可得,,若T r+1为有理项,则,且0≤r≤10,所以r=2,5,8,则展开式中的有理项分别为,,【考点】二项式系数的性质【解析】【分析】(1)利用通项公式即可得出.(2)根据通项公式,由题意得x的指数是整数,通过取值即可得出.13.【答案】(1)解:,通项为.①二项式系数最大的项为第项,.② ,则展开式中系数最大的项为第项,(2)解:,转化为被除的余数,,即余数为【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)根据二项式系数之和为2n=128 求得n的值,可得二项式系数最大的项为第四项和第五项,利用二项展开式的通项公式求出这2项.(2)假设第r+1项的系数最大,列出不等式组求得r的值,可得结论.14.【答案】(1)解:由题意得,解得.通项为,令,得,于是系数为(2)解:设第项系数的绝对值最大,则解得,于是只能为6,所以系数绝对值最大的项为(3)解:原式【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)利用二项展开式的通项公式求出展开式的通项,求出展开式中第3项与第5项的系数列出方程求出n的值.(2)设出第r+1项为系数的绝对值最大的项,即可列出关于r的不等式,解得即可,(3)利用二项式定理求得结果.。
江苏省高二数学苏教版选修2-3教案:1.5 二项式定理2
1.5二项式定理
课题
1.5二项式定理
二项式定理和二项展开式
第一课时
教学目标
知识与技能:掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。
过程与方法:培养归纳猜想,抽象概括,演绎证明等理性思维能力。
情感、态度与价值观:教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
(a+b)(a+b)……(a+b)的n个括号中选r个取b的方法种数。
具体地,
………………………………
构建数学
(a+b)n=
这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的,其中 (r=0,1,2,……,n)叫做,叫做二项展开式的通项,它是展开式的第项,展开式共有个项.
数学应用
例1用二项式定理展开:
(a+b)n=
这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的,其中 (r=0,1,2,……,n)叫做,叫做二项展开式的通项,它是展开式的第项,展开式共有个项.
掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。
培养归纳猜想,抽象概括,演绎证明等理性思维能力。教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体,教学过程中,要让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法。
教学重点
教学难点
二项式定理和二项展开式的通项公式.
培养归纳猜想,抽象概括,演绎证明等理性思维能力.
教具准备:与教材内容相关的资料。
高中数学新苏教版精品教案《苏教版高中数学选修2-3 1.5 二项式定理》2
二项式定理(1)教学设计 教学目标:1.掌握二项式定理及二项展开式的通项公式 2.会利用二项展开式及通项公式解决相关问题。 教学重点:分析nba展开式,得到二项式定理 教学难点:用计数原理分析二项式的展开过程,发现二项展开成单项式之和时各项系数的规律 教学过程 一.问题引入 (1)今天是星期几?15天后的今天是星期几?
(2)你能猜出1008后的今天是星期几吗? 【设计意图】从问题出发,抛出学生熟悉的问题,带学生进入情境,激发学生的求知欲,明确本课要解决的问题。 要解决这个问题就需要用到这节课要学习的二项式定理 二.引导探索,发现规律
二项式定理要研究nba的展开式
)()()()()(2)(3423222babababababa
bababa
100)(ba?
nba)(?
1.首先进行研究 ))()(()(3babababa 【设计意图】引导学生运用计数原理解决数学问题 (1)项: )3,2,1,0( 33223rbababbaarr (2)系数: CCCCCr333231303 分析ba2 ))()(()(3babababa从3个括号中取b的种数
(3)展开式3332232133033)(babbaabaCCCC 【探究1】4)(ba? 进一步猜想nba)(? 【设计意图】通过几个问题层层递进,分析各项产生的原理,分析各项的形式,项的系数 个nn
babababa)())(()(
(1)项:nrrnnnbbabaa 1 (2)系数:CCCCnnrnnn 10 分析rrnba n个)(ba相乘,其中r个)(ba 中选中b,rn个 )(ba中选a,得到系数Crn
【探究2】nba)(?
【设计意图】通过类比得到nba)(
(3)展开式: rnnrrnrnnnnnnnnbbababaabaCCCCC222110)()(*Nn
教育最新K122018-2019学年高中数学苏教版选修2-3教学案:1.1 第一课时 分类计数原理与分步计数原理-缺答案
_1.1两个基本计数原理第一课时分类计数原理与分步计数原理1.2014南京青奥会期间,一名志愿者从北京赶赴南京为游客提供导游服务,每天有7次航班,5列火车.问题1:该志愿者从北京到南京可乘的交通工具可分为几类?提示:两类,即乘飞机、乘火车.问题2:这几类方法相同吗?提示:不同.问题3:该志愿者从北京到南京共有多少种不同的方法?提示:7+5=12(种).2.甲盒中有3个不同的红球,乙盒中有5个不同的白球,某同学要从甲盒或乙盒中摸出一球.问题4:不同的摸法有多少种?提示:3+5=8(种).3.某班有男生26人,女生24人,从中选一位同学为生活委员.问题5:不同选法的种数为多少?提示:26+34=50.完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.1.2014南京青奥会期间,一名志愿者从北京赶赴南京为游客提供导游服务,但需在天津停留,已知从北京到天津有7次航班,从天津到南京有5列火车.问题1:该志愿者从北京到南京需要经历几个步骤?提示:两个,即从北京到天津、从天津到南京.问题2:这几个步骤之间相互有影响吗?提示:没有,第一个步骤采取什么方式完成与第二个步骤采用的方式没有任何关系.问题3:该志愿者从北京到南京共有多少种不同的方法?提示:7×5=35 种.2.若x∈{2,3,5},y∈{6,7,8}.问题4:能组成的集合{x,y}的个数为多少?提示:3×3=9(个).3.某班有男生26人,女生24人,从中选一位男同学和一位女同学担任生活委员.问题5:不同的选法的种数为多少?提示:26×24=624种.完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n 种不同的方法.1.分类计数原理中的每一种方法都可以完成这件事情,而分步计数原理的每一个步骤只是完成这件事情的中间环节,不能独立完成这件事情.2.分类计数原理考虑的是完成这件事情的方法被分成不同的类别,求各类方法之和;而分步计数原理考虑的是完成这件事情的过程被分成不同的步骤,求各步骤方法之积.[对应学生用书P3][例1]29人,A型血的共有7人,B型血的共有9人,AB型血的共有3人,从中任选1人去献血,共有多少种不同的选法?[思路点拨]先按血型分类,再求每一类的选法,然后求和.[精解详析]从中选1人去献血的方法共有4类:第一类:从O型血的人中选1人去献血共有29种不同的方法;第二类:从A型血的人中选1人去献血共有7种不同的方法;第三类:从B型血的人中选1人去献血共有9种不同的方法;第四类:从AB型血的人中选1人去献血共有3种不同的方法.利用分类计数原理,可得选1人去献血共有29+7+9+3=48种不同的选法.[一点通]利用分类计数原理,首先搞清要完成的“一件事”是什么,其次确定一个合理的分类标准,将完成“这件事”的方法进行分类;然后,对每一类中的方法进行计数,最后由分类计数原理计算总方法数.1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出1种种植,不同的种植方法有________种.解析:分4种品种种植,根据分类计数原理可知,共有4种不同的种植方法.答案:42.所有边长均为整数,且最大边长均为11的三角形的个数为________.解析:假设另两边长分别为a,b(a,b∈Z),不妨设a≤b≤11,要构成三角形,必有a +b≥12,因此b≥6.当b=11时,a可取1,2,3,...11;当b=10时,a可取2,3, (10)当b=6时,a只能是6.故所有三角形的个数为11+9+7+5+3+1=36.答案:363.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:解:这名同学可以选择A,B两所大学中的一所,在A大学中有5种专业选择方法,在B大学中有4种专业选择方法,因此根据分类计数原理,这名同学可能的专业选择共有5+4=9(种).[例2]每个人值多天或不值班,但相邻两天不准由同一个人值班,此值班表共有多少种不同的排法?[思路点拨]该问题是计数问题,完成一件事是排值班表,因而需一天一天的排,用分步计数原理,分步进行.[精解详析]先排第一天,可排5人中任一人,有5 种排法;再排第二天,此时不能排第一天已排的人,有4 种排法;再排第三天,此时不能排第二天已排的人,有4 种排法;同理,第四、五天各有 4 种排法.由分步计数原理可得值班表不同的排法共有:N=5×4×4×4×4=1 280 (种).[一点通]利用分步计数原理解决问题应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的;(2)各步中的方法互相依存,缺一不可,只有各个步骤都完成才算完成这件事.4.用6种不同的颜色给图中的“笑脸”涂色,要“眼睛”(如图A,B所示区域)用相同颜色,则不同的涂色方法共有________种.解析:第1步涂眼睛有6种涂法,第2步涂鼻子有6种涂法,第三步涂嘴有6种涂法,所以共有63=216种涂法.答案:2165.现有4件不同款式的上衣和3条不同颜色的长裤,若一条长裤与一件上衣配成一套,则不同的配法种数为________.解析:要完成长裤与上衣配成一套,分两步:第一步,选上衣,从4件中任选一件,有4种不同选法;第二步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.答案:126.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,问:(1)点P可表示平面上多少个不同的点?(2)点P可表示平面上多少个第二象限内的点?解:(1)确定平面上的点P(a,b),可分两步完成:第一步确定a的值,有6种不同方法;第二步确定b的值,也有6种不同方法.根据分步计数原理,得到平面上点P的个数为6×6=36.(2)确定平面上第二象限内的点P,可分两步完成:第一步确定a的值,由于a<0,所以有3种不同方法;第二步确定b的值,由于b>0,所以有2种不同方法.由分步计数原理,得到平面上第二象限内的点P的个数为3×2=6.[例3](1)若只需一人参加,有多少种不同选法?(2)若需老师、男同学、女同学各一人参加,有多少种不同选法?(3)若需一名老师,一名学生参加,有多少种不同选法?[思路点拨](1)从老师、男、女同学中选1人,用分类计数原理.(2)从老师、男、女同学中各选1人,用分步计数原理.(3)分类计数原理与分步计数原理的综合.[精解详析](1)有三类选人的方法:3名老师中选一人,有3种方法;8名男同学中选一人,有8种方法;5名女同学中选一人,有5种方法.由分类计数原理,共有3+8+5=16种选法.(2)分三步选人:第一步选老师,有3种方法;第二步选男同学,有8种方法;第三步选女同学,有5种方法.由分步计数原理,共有3×8×5=120种选法.(3)可分两类,每一类又分两步.第一类:选一名老师再选一名男同学,有3×8=24种选法;第二类:选一名老师再选一名女同学,共有3×5=15种选法.由分类计数原理,共有24+15=39种选法.[一点通]用两个计数原理解决具体问题时,首先要分清是“分类”还是“分步”,其次要清楚“分类”或“分步”的具体标准.在“分类”时要做到“不重不漏”,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性.7.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的直线共有________条.解析:解决这件事分两类完成:第1类,当A或B中有一个为0时,表示直线为y=0或x=0,共2条;第2类,当A,B都不为0时,直线Ax+By=0被确定需分两步完成.第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法.由分步计数原理,共可确定4×3=12(条)直线.所以由分类计数原理,方程所表示的不同直线共有2+12=14(条).答案:148.从5名医生和8名护士中选出1名医生和1名护士组成一个两人医疗组,共有________种不同的选法.解析:完成这件事需分两步:第一步,从5名医生中选一名,有5种不同的选法;第二步,从8名护士中选一名,有8种不同的选法,故共有5×8=40种不同的选法.答案:409.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明的爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?解:(1)小明的爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法.根据分类计数原理,小明的爸爸共有8+6=14种坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14个凳子中选一个坐下,共有14种坐法;第二步,小明的爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,(小明坐下后,空闲凳子数变成13)共13种坐法.由分类计数原理,小明与爸爸分别就坐共有14×13=182种坐法.1.利用分类计数原理解题的步骤(1)分类:理解题意,确定分类标准,做到不重不漏;(2)计数:求出每一类中的方法数;(3)结论:将每一类中的方法数相加得最终结果.2.利用分步计数原理解题的步骤(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.[对应课时跟踪训练(一)]一、填空题1.一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这项工作,不同选法有________.解析:由分类计数原理知,有3+5=8种不同的选法.答案:82.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有________种.解析:分四步完成:第一步:第1位教师有3种选法;第二步:由第一步教师监考班的数学老师选有3种选法;第三步:第3位教师有1种选法;第四步:第4位教师有1种选法.共有3×3×1×1=9种监考的方法.答案:93.3名学生报名参加艺术体操、美术、计算机、游泳课外兴趣小组,每人选报一种,则不同的报名种数有________种.解析:第1名学生有4种选报方法;第2、3名学生也各有4种选报方法,因此,根据分步计数原理,不同的报名种数有4×4×4=64.答案:644.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种.(用数字作答)解析:分两类,第一棒是丙有1×2×4×3×2×1=48(种);第一棒是甲、乙中一人有2×1×4×3×2×1=48(种),根据分类计数原理得:共有方案48+48=96(种).答案:965.从集合A={1,2,3,4}中任取2个数作为二次函数y=x2+bx+c的系数b,c,且b≠c,则可构成________个不同的二次函数.解析:分成两个步骤完成:第一步选出b,有4种方法;第二步选出c,由于b≠c,则有3种方法.根据分步计数原理得:共有4×3=12个不同的二次函数.答案:12二、解答题6.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列有多少个?解:当公比为2时,等比数列可为1,2,4;2,4,8;当公比为3时,等比数列可为1,3,9;时,等比数列可为4,6,9.同时,4,2,1;8,4,2;9,3,1和9,6,4也是等比数列,共8个.当公比为327.已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示多少个不同的圆?解:按a,b,r取值顺序分步考虑:第一步:a从3,4,6中任取一个数,有3种取法;第二步:b从1,2,7,8中任取一个数,有4种取法;第三步:r从8、9中任取一个数,有2种取法;由分步计数原理知,表示的不同圆有N=3×4×2=24(个).8.书架上层放有6本不同的数学书,下层放有5本不同的语文书.(1)从中任取一本,有多少种不同的取法?(2)从中任取数学书与语文书各一本,有多少种不同的取法?解:(1)从书架上任取一本书,有两类方法:第一类方法是从上层取一本数学书,有6种方法;第二类方法是从下层取一本语文书,有5种方法.根据分类计数原理,得到不同的取法的种数是6+5=11.答:从书架上任取一本书,有11种不同的取法.(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种取法;第二步取一本语文书,有5种取法.根据分步计数原理,得到不同的取法的种数是6×5=30.答:从书架上取数学书与语文书各一本,有30种不同的取法.。
配套K122018-2019学年高中数学苏教版选修2-2教学案:第1章 1.5 1.5.3 微积分基
1.5.3 微积分基本定理[对应学生用书P28]已知函数f (x )=2x +1,F (x )=x 2+x . 问题1:f (x ) 和F (x )有何关系? 提示:F ′(x )=f (x ).问题2:利用定积分的几何意义求⎠⎛20(2x +1)d x 的值. 提示:⎠⎛20(2x +1)d x =6.问题3:求F (2)-F (0)的值. 提示:F (2)-F (0)=4+2=6. 问题4:你得出什么结论?提示:⎠⎛20f (x )d x =F (2)-F (0),且F ′(x )=f (x ).问题5:已知f (x )=x 3,F (x )=14x 4,试探究⎠⎛10f (x )d x 与F (1)-F (0)的关系. 提示:因⎠⎛10f (x )d x =⎠⎛10x 3d x =14.F (1)-F (0)=14,有⎠⎛10f (x )=F (1)-F (0)且F ′(x )=f (x ).微积分基本定理对于被积函数f (x ),如果F ′(x )=f (x ),那么⎠⎛b a f (x )d x =F (b )-F (a ),即⎠⎛b aF ′(x )d x =F (b )-F (a ).1.微积分基本定理表明,计算定积分⎠⎛a bf (x )d x 的关键是找到满足F ′(x )=f (x )的函数F (x ).通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F (x ).2.微积分基本定理揭示了导数与定积分之间的内在联系,最重要的是它也提供了计算定积分的一种有效方法.[对应学生用书P29][例1] (1)⎠⎛21(x 2+2x +3)d x ; (2)⎠⎛π0(sin x -cos x )d x ; (3)⎠⎛0-π(cos x -e x )d x . [思路点拨] 先求被积函数的原函数,然后利用微积分基本定理求解. [精解详析] (1)取F (x )=x 33+x 2+3x ,则F ′(x )=x 2+2x +3,从而⎠⎛12(x 2+2x +3)d x =⎠⎛12F ′(x )d x =F (2)-F (1)=253. (2)取F (x )=-cos x -sin x , 则F ′(x )=sin x -cos x ,从而⎠⎛0π(sin x -cos x )d x =⎠⎛0πF ′(x )d x =F (π)-F (0)=2.(3)取F (x )=sin x -e x ,则F ′(x )=cos x -e x ,从而⎠⎛0-π(cos x -e x )d x =⎠⎛0-πF ′(x )d x =F (0)-F (-π)=1e π-1. [一点通] 求简单的定积分关键注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限.1.(江西高考改编)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =____________.解析:∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =⎝⎛⎭⎫13x 3+2x ⎠⎛01f (x )d x 10=13+2⎠⎛01f (x )d x .∴⎠⎛01f (x )d x =-13. 答案:=-132.⎠⎛0π(cos x +1)d x =________.解析:∵(sin x +x )′=cos x +1,∴⎠⎛π0(cos x +1)d x =(sin x +x )|π0=(sin π+π)-(sin 0+0)=π. 答案:π3.求下列定积分:(1)∫π20sin 2x 2d x ;(2)⎠⎛23(2-x 2)(3-x )d x .解:(1)sin 2x 2=12-cos x2,而⎝⎛⎭⎫12x -12sin x ′=12-12cos x , 所以∫π20sin 2x2d x =∫π20⎝⎛⎭⎫12-12cos x d x =⎝⎛⎭⎫12x -12sin x |π20=π4-12=π-24. (2)原式=⎠⎛32(6-2x -3x 2+x 3)d x=⎝⎛⎭⎫6x -x 2-x 3+14x 4|32 =⎝⎛⎭⎫6×3-32-33+14×34-⎝⎛⎭⎫6×2-22-23+14×24 =-74.[例2] (1)设f (x )=⎩⎪⎨⎪⎧x ,x ≤0,cos x -1,x >0.求⎠⎛1-1f (x )d x ; (2)求⎠⎛a -a x 2d x (a >0). [思路点拨] 按照函数f (x )的分段标准,求出每一段上的积分,然后求和. [精解详析] (1)⎠⎛1-1f (x )d x =⎠⎛0-1x 2d x +⎠⎛01(cos x -1)d x=13x 3|0-1+(sin x -x )|10=sin 1-23. (2)由x 2=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,得⎠⎛a -a x 2d x =⎠⎛a 0x d x +⎠⎛0-a (-x )d x =12x 2|a 0-12x 2|0-a =a 2. [一点通] (1)分段函数在区间[a ,b ]上的积分可分成几段积分的和的形式.(2)分段的标准是使每一段上的函数表达式确定,按照原函数分段的情况分即可,无需分得过细.4.⎠⎛3-4|x +2|d x =________. 解析:∵|x +2|=⎩⎪⎨⎪⎧x +2,(-2<x ≤3)-x -2,(-4≤x ≤-2)∴⎠⎛3-4|x +2|d x =⎠⎛3-2(x +2)d x +⎠⎛-4-2(-x -2)d x=⎝⎛⎭⎫12x 2+2x |3-2+⎝⎛⎭⎫-12x 2-2x |-2-4=292. 答案:2925.设f (x )=⎩⎪⎨⎪⎧lg x , x >0,x +∫a 03t 2d t ,x ≤0,若f (f (1))=1,则a =________. 解析:显然f (1)=lg 1=0,故f (0)=0+∫a 0 3t 2d t =t 3|a0=1,得a =1. 答案:1[例3] 求由曲线 [思路点拨]在坐标系中作出图象→求曲线与直线的交点→利用定积分求面积.[精解详析] 画出草图,如图所示.解方程组⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3, 得A (0,3),B (3,6).所以S =⎠⎛30(x +3)d x -⎠⎛30(x 2-2x +3)d x ,取F (x )=12x 2+3x ,则F ′(x )=x +3,取H (x )=13x 3-x 2+3x ,则H ′(x )=x 2-2x +3,从而S =F (3)-F (0)-[H (3)-H (0)] =⎝⎛⎭⎫12×32+3×3-0-⎣⎡⎦⎤⎝⎛⎭⎫13×33-32+3×3-0 =92. [一点通] 利用定积分求曲线所围成的平面图形的面积的步骤: (1)根据题意画出图形;(2)找出范围,定出积分上、下限; (3)确定被积函数;(4)写出相应的定积分表达式,即把曲边梯形面积表示成若干个定积分的和或差; (5)用微积分基本定理及其运算性质计算定积分,求出结果.6.曲线y = x ,直线y =x -2及y 轴所围成的图形的面积为________. 解析:所围成的图形如图阴影部分所示,点A (0,-2),由⎩⎪⎨⎪⎧ y =x ,y =x -2,得⎩⎪⎨⎪⎧x =4,y =2,所以B (4,2),因此所围成的图形的面积为∫40()x -x +2d x =⎪⎪⎝⎛⎭⎫23x 32-12x 2+2x 40=163. 答案:1637.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 解析:由已知得S =⎠⎛0ax d x =23x 32|a 0=23a 32=a 2,所以a 12=23,所以a =49. 答案:491.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)求被积函数是分段函数的定积分,应分段求定积分再求和.(3)对于含有绝对值符号的被积函数,要去掉绝对值符号后才能积分. 2.利用定积分求曲边梯形的面积(1)在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观地确定出被积函数以及积分的上、下限.(2)要把定积分和用定积分计算平面图形的面积这两个概念区分开,定积分是一种积分和的极限,可为正,也可为负或零;而平面图形的面积在一般意义下总为正,因此当f (x )≤0时要通过绝对值处理为正,一般情况下是借助定积分求出两个曲边梯形的面积,然后相加起来.[对应课时跟踪训练(十一)]一、填空题 1.⎠⎛1e1x d x =________.解析:⎠⎛1e1x d x =ln x |e 1=ln e -ln 1=1. 答案:12.⎠⎛0π(2sin x -3e x +2)d x =________.解析:⎠⎛0π(2sin x -3e x +2)d x =(-2cos x -3e x +2x )|π0=7+2π-3e π.答案:7+2π-3e π3.(江西高考改编)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为________.解析:S 1=13x 3⎪⎪⎪ 21=83-13=73,S 2=ln x ⎪⎪⎪ 21=ln 2<ln e =1,S 3=e x ⎪⎪⎪21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S3.答案:S 2<S 1<S 34.设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则⎠⎛02f (x )d x =________. 解析:⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3|10+(2x -12x 2)|21=56.答案:565.(福建高考)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.解析:因为函数y =e x 与函数y =ln x 互为反函数,其图象关于直线y =x 对称,又因为函数y =e x 与直线y =e 的交点坐标为(1,e),所以阴影部分的面积为2(e ×1-⎠⎛01e x d x )=2e -2e x |10=2e -(2e -2)=2,由几何概型的概率计算公式, 得所求的概率P =S 阴影S 正方形=2e 2.答案:2e 2二、解答题6.f (x )是一次函数,且∫ 10f (x )d x =5,∫ 10xf (x )d x =176, 求f (x )的解析式.解:设f (x )=ax +b (a ≠0),则⎠⎛01(ax +b )d x =⎝⎛⎭⎫12ax 2+bx |10=12a +b =5. ⎠⎛01x (ax +b )d x =⎠⎛01(ax 2+bx )d x =⎝⎛⎭⎫13ax 3+12bx 2|10=13a +12b =176,所以由⎩⎨⎧12a +b =5,13a +12b =176,解得a =4,b =3,故f (x )=4x +3.7.求由曲线y =x 2与直线x +y =2围成的面积.解:如图,先求出抛物线与直线的交点,解方程组⎩⎪⎨⎪⎧y =x 2,x +y =2,得⎩⎪⎨⎪⎧ x 1=1,y 1=1或⎩⎪⎨⎪⎧x 2=-2,y 2=4,即两个交点为(1,1),(-2,4).直线为y =2-x ,则所求面积S 为:S =⎠⎛1-2[(2-x )-x 2]d x =⎝⎛⎭⎫2x -x 22-x 33|1-2=92. 8.设f (x )是二次函数,其图象过点(0,1),且在点(-2,f (-2))处的切线方程为2x +y +3=0.(1)求f (x )的表达式;(2)求f (x )的图象与两坐标轴所围成图形的面积;(3)若直线x =-t (0<t <1)把f (x )的图象与两坐标轴所围成图形的面积二等分,求t 的值. 解:(1)设f (x )=ax 2+bx +c , ∵其图象过点(0,1),∴c =1,又∵在点(-2,f (-2))处的切线方程为2x +y +3=0,∴⎩⎪⎨⎪⎧f (-2)=1,f ′(-2)=-2. ∵f ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧a ·(-2)2+b ·(-2)+1=1,2a ·(-2)+b =-2.∴a =1,b =2,故f (x )=x 2+2x +1.(2)依题意,f (x )的图象与两坐标轴所围成的图形如图中阴影部分所示,故所求面积S =∫0-1(x 2+2x +1)d x =⎪⎪⎝⎛⎭⎫13x 3+x 2+x 0-1=13. (3)依题意,有12S=∫0-t(x2+2x+1)d x=⎪⎪⎝⎛⎭⎫13x3+x2+x0-t=16,即13t3-t2+t=16,∴2t3-6t2+6t-1=0,∴2(t-1)3=-1,∴t=1-1 32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学+初中+高中 小学+初中+高中 1.5.1 二项式定理 [对应学生用书P19]
问题1:我们在初中学习了(a+b)2=a2+2ab+b2,试用多项式的乘法推导(a+b)3,(a+b)4的展开式. 提示:(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4. 问题2:上述两个等式的右侧有何特点? 提示:展开式中的项数是n+1项,每一项的次数为n. 问题3:你能用组合的观点说明(a+b)4是如何展开的吗? 提示:因(a+b)4=(a+b)(a+b)(a+b)(a+b).由多项式乘法法则知,从四个a+b中选a
或选b是任意的.若有一个选b,则其余三个都选a,其方法有C14种,式子为C14a3
b;若有
两个选b,则其余两个选a,其方法有C24种,式子为C24a2b2
.
问题4:能用类比方法写出(a+b)n(n∈N*)的展开式吗? 提示:能,(a+b)n=C0nan+C1nan-1b+…+Cnnbn.
1.二项式定理 公式(a+b)n=C0nan+C1nan-1b+…+Crnan-rbr+…+Cnnbn(n∈N*),叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式,它一共有n+1项. 2.二项展开式的通项 Crnan-rbr叫做二项展开式的第r+1项(也称通项),用Tr+1表示,即Tr+1=Crnan-rbr. 3.二项式系数 Crn(r=0,1,2,…,n)叫做第r+1项的二项式系数.
1.(a+b)n中,n∈N*,a,b为任意实数. 2.二项展开式中各项之间用“+”连接. 3.二项式系数依次为组合数C0n,C1n,…,Crn,…,Cnn. 4.(a+b)n的二项展开式中,字母a的幂指数按降幂排列,从第一项开始,次数由n逐次减1直到0;字母b的幂指数按升幂排列,从第一项开始,次数由0逐次加1直到n. 小学+初中+高中 小学+初中+高中 [对应学生用书P19] 二项式的展开 [例1] 求下列各式的展开式:
(1)(a+2b)4;(2)2x-32x25. [思路点拨] 可直接利用二项式定理展开,对于(2)也可以先化简再展开. [精解详析] (1)根据二项式定理 (a+b)n=C0nan+C1nan-1b+…+Crnan-rbr+…+Cnnbn, 得(a+2b)4=C04a4+C14a32b+C24a2(2b)2+C34a(2b)3+C44(2b)4 =a4+8a3b+24a2b2+32ab3+16b4.
(2)法一:2x-32x25=C05(2x)5+C15(2x)4-32x2+ C25(2x)3-32x22+C35(2x)2-32x23+C45(2x)·-32x24+C55-32x25 =32x5-120x2+180x-135x4+4058x7-24332x10. 法二:2x-32x25=4x3-3532x10=132x10[C05(4x3)5+ C15(4x3)4·(-3)+…+C45(4x3)·(-3)4+C55·(-3)5] =132x10(1 024x15-3 840x12+5 760x9-4 320x6+1 620x3-243)
=32x5-120x2+180x-135x4+4058x7-24332x10. [一点通] 形式简单的二项式展开时可直接由二项式定理展开,展开时注意二项展开式的特点:前一个字母是降幂,后一个字母是升幂.含负号的二项展开式形如(a-b)n的展开式中会出现正负间隔的情况.
1.写出(1+2x)4的展开式. 解:(1+2x)4=C04×14×(2x)0+C14×13×(2x)1+C24×12×(2x)2+C34×11×(2x)3+C44
×10×(2x)4 =1+8x+24x2+32x3+16x4
.
2.求x-12x4的展开式. 小学+初中+高中 小学+初中+高中 解:法一:x-12x4=C04()x4-C14()x3·12x+C24(x)2·12x2-C34x·
1
2x3+C44
12x4=x2-2x+32-12x+1
16x2.
法二:x-12x4=2x-12x4=116x2(2x-1)4 =116x2(16x4-32x3+24x2-8x+1) =x2-2x+32-12x+116x2.
求二项展开式的特定项 [例2] 已知二项式
x2+
1
2x10.
(1)求展开式中的第5项; (2)求展开式中的常数项. [思路点拨] (1)直接利用通项公式求解;
(2)利用通项公式Tr+1=Crnan-rbr
a=x2,b=
1
2x,设第r+1项为常数项,令x的指数
等于0即可求出r. [精解详析] (1)
x2+
1
2x10的展开式的第5项为
T5=C410·(x2)6·12x4 =C410·124· x12·1x4=1058x10. (2)设第r+1项为常数项, 则Tr+1=Cr10·(x2)10-r·12xr =Cr10·x20-52r·12r(r=0,1,2,…,10), 令20-52r=0,得r=8, 所以T9=C810·128=45256, 即第9项为常数项,其值为45256. [一点通] 小学+初中+高中 小学+初中+高中 (1)二项展开式的通项Tr+1=Crnan-rbr表示二项展开式中的任意项,只要n与r确定,该项也随之确定.对于一个具体的二项式,通项Tr+1依赖于r,公式中的二项式的第一个量a与第二个量b的位置不能随便交换,且它们的指数和一定为n. (2)利用二项式的通项公式求二项展开式中具有某种特征的项是关于二项式定理的一类典型题型.常见的有求二项展开式中的第r项、常数项、含某字母的r次方的项等.其通常解法就是根据通项公式确定Tr+1中r的值或取值范围以满足题设的条件.
3.(x-2y)6 展开式中的第4项为________. 解析:由二项展开式的通项得,(x-2y)6展开式中的第4项为C36x6-3·(-2y)3=-160x3y3. 答案:-160x3y3 4.二项式x3+1x2n的展开式中含有非零常数项,则正整数n的最小值为________. 解析:二项展开式的通项是Tr+1=Crnx3n-3rx-2r=Crnx3n-5r,令3n-5r=0,得n=5r3(r=0,1,2,…,n),故当r=3时,n有最小值5. 答案:5
5.求x-124x8的展开式中的有理项.
解:
x-
1
24x8的展开式的通项为
Tr+1=Cr8(x)8-r-124xr =
-
1
2rCr8x16-3r4(r=0,1,2,…,8),
为使Tr+1为有理项,r必须是4的倍数,所以r=0,4,8,故共有3个有理项,分别是T1
=-120C08x4=x4,
T5=-124C48x=358x,T9=-128C88x-2=1256x2. 二项式系数与项的系数 [例3] 已知二项式
3x-
2
3x10. 小学+初中+高中 小学+初中+高中 (1)求展开式中第4项的二项式系数; (2)求展开式中第4项的系数. [思路点拨] 利用二项式的通项直接求第4项的二项式系数及第4项的系数.
[精解详析]
3x-
2
3x10的二项展开式的通项是
Tr+1=Cr10()3x10-r·-23xr(r=0,1,…,10). (1)第4项的二项式系数为C310=120. (2)第4项的系数为C31037-233=-77 760. [一点通] 要注意区分二项式系数与指定某一项的系数的差异,前者只与二项式的指数及项数有关,与二项式无关,它是一个组合数Crn;后者与二项式、二项式的指数及项的字母和系数均有关.
6.(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中,x2的系数等于________. 解析:x2的系数是四个二项展开式中4个含x2的系数和,则有-C02(-1)0+C13(-1)1-
C24(-1)2+C35(-1)3=-(C02+C13+C24+C35)=-20. 答案:-20 7.在二项式(1-x2)20的展开式中,第4r项和第r+2项的二项式系数相等,则r=________. 解析:第4r项与第r+2项的二项式系数分别为C4r-120和Cr+120,由题设得C4r-120=Cr+120. 由组合数性质得4r-1=r+1或4r-1=20-(r+1). 4r-1=r+1没有整数解. 由4r-1=20-(r+1),得r=4,所以r=4. 答案:4 8.求(2x2+1x)9的展开式中第3项的二项式系数及第4项的系数.
解:通项公式为Tr+1=Cr9(2x2)9-r·1xr=29-r·Cr9x18-3r,故第3项的二项式系数为C29=
36,第4项的系数为 26C39=5 376.
1.求二项展开式特定项的一般步骤