USP堆密度标准方法

合集下载

《中国药典》2020年版第四部通用技术要求主要特点和增修订内容

《中国药典》2020年版第四部通用技术要求主要特点和增修订内容

《中国药典》2020年版第四部通⽤技术要求主要特点和增修订内容主要特点和增修订内容2.1制剂通则论述框架和技术要求进⼀步完善2.1.1系统修订制剂通则整体框架0100制剂通则旨在通过对药物制剂的总体论述来指导医药⼯作者对不同剂型、亚剂型进⾏合理的应⽤。

《中国药典》2015年版制剂通则是《中国药典》2010年版中药、化学药和⽣物制品制剂通则的简单整合,缺少关键考察项的汇总和归纳。

为进⼀步引导⽣产企业全⾯关注制剂⽣产质量控制和整体要求,对0100制剂通则进⾏修订,主要修改包括两个⽅⾯:⾸先完善了叙述结构。

从药物制剂制备的原则“安全、有效、可控、依从性”的⾓度出发,增加对剂量单位均匀性、稳定性、安全性与有效性、剂型与给药途径、包装与贮藏和标签与说明书等部分的分论述;强调中药制剂在整个⽣产过程中的关键质量属性,关注每个关键环节的量值传递规律。

其次,完善了具体内容。

提出剂量单位均匀性的要求,保障制剂⽣产质量的批间和批内药物含量等的⼀致性,体现制剂全过程控制的理念;在稳定性中提出复检期概念,促进⽣产企业根据产品⾃⾝的稳定性特性进⾏前瞻性的质量考察;在安全性与有效性中提出“通过⼈体临床试验证明药物的安全有效性后,药物才能最终获得上市与临床应⽤”,提⽰上市制剂的处⽅和⼯艺不得随意变更。

2.1.2系统修订各制剂通则的框架和表述《中国药典》2020年版制剂通则统⼀了各剂型论述框架及主要制备技术的简单论述。

除0110糊剂及0186膏剂外,其他36个剂型均不同程度修订了体例格式。

为进⼀步统⼀⽬前各剂型的表述问题,规范统⼀“⽣产与贮藏期间应符合下列规定”项下内容,按照原辅料→⼯艺与技术→质量与控制→包装与使⽤→贮存与运输等五⽅⾯的技术要点,着重补充⼤多数剂型缺少的⼯艺与技术⽅⾯的阐述。

增加特殊亚剂型临床使⽤关注点,如泡腾⽚不得直接吞服等,指导临床合理⽤药。

2.1.3收载和整合临床成熟剂型和亚剂型收载和整合临床成熟剂型和亚剂型,体现《中国药典》的先进性和对我国临床成熟新制剂技术的⽀持。

USP和ICH分析方法验证

USP和ICH分析方法验证

USP和ICH分析方法验证一、USP和ICH分析方法验证的基本概念USP(美国药典)和ICH(人用药品注册技术要求国际协调会)的分析方法验证是确保药品质量的重要环节。

咱就说啊,这就好比给药品做个超级严格的体检,看看它是不是真的合格、安全又有效。

USP呢,那可是美国在药品标准方面的权威,它规定的分析方法验证准则,那是相当细致的。

ICH呢,是国际上大家都认可的一个协调会,它弄出来的分析方法验证指南也是为了让不同国家在药品研发、生产和质量控制方面能有个统一的标准。

二、分析方法验证的参数1. 准确度这就像咱考试要考高分一样,准确度就是看分析方法能不能准确地测量出药品中的成分含量。

比如说,药品里实际有10克的某种成分,咱们用这个分析方法测出来要是接近10克,那这个准确度就比较高。

如果偏差很大,那就不行啦。

就像我们去买东西,称出来的重量和实际重量差太多,那肯定是有问题的。

2. 精密度精密度呢,就是看这个分析方法在多次测量同一样品的时候,结果是不是很接近。

比如说,咱们测了5次同一个药品样品,每次得到的结果都差不多,那这个精密度就不错。

这就好比我们投篮,每次都能投到差不多的位置,那说明我们投篮的技术很稳定呢。

3. 专属性专属性就像是一把钥匙开一把锁。

它是看这个分析方法能不能准确地检测出目标成分,而不受其他成分的干扰。

比如说,药品里有好多成分,但是我们只想检测其中一种特定的成分,这个分析方法就要能把这个特定成分单独拎出来检测,不能被其他成分给忽悠了。

4. 检测限和定量限检测限就是这个分析方法能够检测到的最低含量,就像我们的眼睛能看到的最小的东西一样。

定量限呢,就是不仅能检测到,还能准确地定量的最低含量。

比如说,我们能看到地上有个小蚂蚁,这就是检测到了,但是如果我们还能知道这个蚂蚁有多重,那就是定量了。

三、USP和ICH在分析方法验证中的不同要求1. USP的要求USP对分析方法验证的要求非常详细,在很多方面都有具体的数值规定。

水飞蓟提取物国际商务标准编制说明

水飞蓟提取物国际商务标准编制说明

《国际商务标准水飞蓟提取物》编制说明1 任务来源本标准的制定工作,是由中国医药保健品进出口商会提出而进行的,国际商务标准植物提取物编号为WM 。

本标准由长沙康隆生物制品有限公司与盘锦天源药业有限公司共同起草。

2 标准制定的意义水飞蓟提取物是由菊科植物水飞蓟(Silybum marianuml(L.)Gaertn.) 的干燥成熟果实中提取得到的黄酮类化合物,主要包括水飞蓟亭、水飞蓟宁、水飞蓟宾、异水飞蓟宾等。

水飞蓟宾(Silybin) 为主要有效成分, 包括水飞蓟宾A和水飞蓟宾B。

溶于丙酮、乙酸乙酯、甲醇及乙醇,不溶于水。

它具有保护肝脏、改善肝功能、增强肝细胞再生等作用,对急慢性肝炎、肝硬化及代谢中毒性肝损伤等均有较好疗效。

水飞蓟提取物含量的测定主要按水飞蓟宾计。

水飞蓟提取物是用于治疗肝脏疾病的常用药物。

药理作用表明水飞蓟提取物主要是通过限制ROS(reactive oxygen species)的活性来实现其治疗作用的,也常被用于保健食品中。

美国药典USP35–NF30 中水飞蓟提取物(Powdered Milk Thistle Extract)和欧洲药典(European pharmacopoeia 7.0)中水飞蓟提取物(MILK THISTLE DRY EXTRACT,REFINED AND STANDARDISED)中都有关于水飞蓟提取物的技术指标及检验标准,《中华人民共和国药典》2010版一部上收录了水飞蓟标准,但是国内并没有关于水飞蓟提取物的完善标准依据。

当前外贸出口贸易中的食品安全形式十分严峻,为保障国家外贸经济运行的安全和我国人民群众的食品卫生安全,加强标准建设,促进与国际水飞蓟提取物标准接轨,及时建立水飞蓟提取物国际商务标准的国内质控标准具有重要的现实意义。

3 标准编写规则本标准遵循GB/T1.1-2009《标准化工作导则第1部分:标准的结构和编写规则》;GB/T20001.2-2001《标准化工作指南第2部分:采用国际标准的规则》和GB/T20001.4-2001《标准编写规则第4部分:化学分析方法》规则编写。

1225药典分析方法验证(USP37)

1225药典分析方法验证(USP37)
质量部、质量研究部、QC
警告:相关责任部门和责任人务必于执行之日前完成本程序的培训
变 更 记 载
文件编号/版本
变 更 内 容
执行日期
SOP.NO:QC-6606-00
1、目的:建立药典分析方法验证(USP)标准操作规程。
2、范围:药典分析方法验证(USP)。
3、责任者:质量研究部、QC化验员。
4、程序:
对于杂质定量分析,原料药或制剂中加入已知量杂质,测得准确度。如不可能得到某些杂质或降解产物,可以将测定结果与另一方法测得结果进行比对。如没有其他方法,可比较杂质和被测物质的响应值,即等量杂质和被测物响应值比值(相对响应因子),如果已知该比值,可用于计算杂质含量。
准确度为样品中被测物已知加入量含量测定的百分回收率,或平均值与可接受真值的偏差,同时报告置信区间。
测定对于原料药含量测定,用分析方法测定已知纯度的供试品(如对照品),或用被验证方法测定结果与其他已知准确度的方法测定结果进行比较,测得准确度。
对于制剂中药物的含量测定,用分析方法测定制剂成分混合物中按照方法范围加入的已知量被测物,测得准确度。如不能获得全部制剂成分,可向制剂中加入已知量被测物(加样法)进行测定,或用被验证方法测定结果与其他已知准确度的方法测定结果进行比较。
具有基线噪音的仪器分析方法,ICH有关文件叙述了一个常用方法,即将含已知低浓度被分析物样品测得的信号与空白样品信号比较。可以确定可靠检出被分析物的最低浓度。一般可接受的信噪比为2:1或3:1。其他方法如按照标准曲线的斜率和响应值的标准偏差计算检测限的。无论用那种方法,必须用接近检测限或制备成检测限浓度的数个样品,对检测限进行最性系指在一定范围内样品中被分析物测定结果与其浓度直接或经适当数学转换呈正比关系,所以,在本段中“线件”就是浓度和测定结果关系的线性。有时,浓度和/或测定结果需经转换方能求得线性结果。(注:用转换方法时,回归分析用的权重因子可能会改变)。常用的转换如对数转换、平方根转换或倒数转换,或其他适宜的转换方法。如果无法得到线性关系,可用非线性模型。无论是线性还是非线性,目的是求得浓度与响应值的关系。

USP部分内容

USP部分内容

麻烦帮忙翻译USP35中一下内容:(编号为页码)<11>USP对照标准品<21>温度计<31>容量仪器<41>重量与天平<429>粒度的光衍射测定<467>残留溶剂<616>松装密度/堆密度和振实密度<621>色谱分析法<641>溶液的澄清度<699>固体密度<724>药物释放度(P442)-2<786>通过分析筛选估计粒度分布/通过筛分法估算粒子分布<791>pH<811>粉体细度/粉剂细度<851>分光光度法与光散射(P577)-6<905>含量均匀度(P593)-3<921>水分测定<1051>清洗玻璃容器(P754)<1087>内部的溶出度(P871)-3<1092>溶出程序:开发与验证(P889)<1216>片剂的脆碎度(P1120)<1217>片剂破碎力<1251>在分析天平上称量(标红的部分为已翻译完成)<197>分光光度鉴别测试(P196)红外吸收干燥待测样品和分析用对照品的制备有7种方法。

各论中引用<197K>意味着待测物质与溴化钾完全混合。

各论中引用<197M>意味着待测物质经过精细的磨碎,并溶于矿物油中。

各论中引用<197F>意味着待测物质悬浮在不同的盘中(plate)(如,氯化钠或溴化钾)。

各论中引用<197S>意味着制备指定浓度的溶液,且溶解于各个各论中指定的溶剂中,除非各个各论中对光程长吸收池(cell path length)另有规定,否则溶液的检测应在0.1mm吸收池(cell)中进行。

各论中引用<197A>意味着待测物质与内反射元件亲密接触,用于衰减全反射(ATR)分析。

辅料

辅料

辅料详述1.淀粉 (2)2.羟丙甲纤维素 (3)1.淀粉2.羟丙甲纤维素2.1物理性状溶于水及大多数极性c和适当比例的乙醇/水、丙醇/水、二氯乙烷等,在乙醚、丙酮、无水乙醇中不溶,在冷水中溶胀成澄清或微浊的胶体溶液。

水溶液具有表面羟丙基甲基纤维素分子式[1]活性,透明度高、性能稳定。

HPMC具有热凝胶性质,产品水溶液加热后形成凝胶析出,冷却后又溶解,不同规格的产品凝胶温度不同。

溶解度随粘度而变化,粘度越低,溶解度越大,不同规格的HPMC其性质有一定差异,HPMC在水中溶解不受PH值影响。

颗粒度:100目通过率大于98.5%。

堆密度:0.25-0.70g/ (通常0.4g/ 左右),比重1.26-1.31。

变色温度:180-200℃,炭化温度:280-300℃。

甲氧基值[2]19.0%一30.0%,羟丙基值4%~12%。

黏度(22℃,2%)5~200000mPa .s。

凝胶温度(0.2%)50一90℃。

HPMC具有增稠能力,排盐性、PH稳定性、保水性、尺寸稳定性、优良的成膜性以及广泛的耐酶性、分散性和粘结性等特2.2 羟丙甲纤维素(HPMC)羟丙甲纤维素(Hypromellose)本品为2-羟丙基醚甲基纤维素,性状呈白色或类白色纤维状或颗粒状粉末;无臭。

在冷水中溶胀成澄清或微浑浊的胶状溶液,在无水乙醇、乙醚、丙酮中几乎不溶。

安徽山河型号种类型号黏度甲氧基含量(%)羟丙氧基含量(%)热凝胶温度应用2910 SHE3 3mPa·s28.0-30.0%7.0-12.0%60℃湿法制粒的粘合剂,常规的薄膜包衣材料SHE5 5 mPa·sSHE15 15 mPa·sSHE30 30 mPa·sSHE50 50 mPa·sSHE100 100 mPa·s2208 SHK4M 4000mPa·s19.0-24.0%4.0-12.0% 75℃应用于缓控释制剂骨架片SHK10M 10000mPa·sSHK15M 15000mPa·sSHK100M 100000mPa·s美国陶氏型号商品名/牌号化学类别规格、型号典型用量Methocel® E医药级羟丙甲基纤维素2910(LV)E3、E5、E6、E15、E50 Lv 0.5-6.0%Methocel® E医药级羟丙甲基纤维素2910(CR)E4M、E10M 5.0-75%Methocel® K医药级羟丙甲基纤维素2208(CR)K100LV、K4M、K15M、K100M 5.0-75%Methocel® A医药级甲基纤维素A15LV、A4C、A15C、A4M 5.0-75%信越化学工业株式会社-产品列表PHARMACOAT 羟丙甲纤维素 ( 低粘度 ) —薄膜包衣 / 湿法制粒粘合剂种类型号标记粘度( 厘泊 )甲氧基(%)羟丙氧基(%)平均粒度(μm)典型应用羟丙甲纤维素 USP( 替代型号2910 ) 羟丙甲纤维素 PhEur羟丙甲纤维素2910 JP 60360661564536154.529 9 60湿法制粒粘合剂常规的薄膜包衣薄膜包衣,高膜强度羟丙甲纤维素 USP( 替代型号2208 )羟丙甲纤维素 PhEur羟丙甲纤维素2208 JP904423660糖衣粘合剂METOLOSE 甲基纤维素 / 羟丙甲纤维素—缓控释 / 增稠剂种类型号标记粘度( 厘泊 )甲氧基(%)羟丙氧基(%)热凝胶温度( ℃ )平均粒度(μm)典型应用甲基纤维素 USP / PhEur/ JPSM-4SM-15SM-25SM-100SM-400SM-1500SM-4000415251004001500400029 - 5570颗粒包衣 ( 低粘性 )增稠剂溶剂性泻剂羟丙甲纤维素 USP( 替代型号2910)羟丙甲纤维素 PhEur羟丙甲纤维素2910 JP 60SH-5060SH-400060SH-100005040001000029975增稠剂羟丙甲纤维素 USP( 替代型号2906)羟丙甲纤维素 PhEur羟丙甲纤维素2906 JP 65SH-5065SH-40065SH-150065SH-4000504001500400029775增稠剂羟丙甲纤维素 USP( 替代型号2208 )羟丙甲纤维素 PhEur羟丙甲纤维素2208 JP90SH-10090SH-40090SH-400090SH-1500090SH-10000010040040001500010000023 8 85增稠剂METOLOSE SR 羟丙甲纤维素,替代型号 2208 —亲水骨架缓释材料L-HPC 低取代羟丙纤维素—具有粘合特性的崩解剂种类型号羟丙氧基(%)平均粒度*1( μm)粒型典型应用低取代羟丙纤维素NF/JP LH-111150长纤维直接压片 ( 抗顶裂 )LH-2140中等纤维常规型号 ( 干法混合,湿法造粒 )LH-228 低羟丙氧基含量 ( 具有更好的崩解效果 ) LH-B111 50 无纤维直接压片,高剂量配方LH-311120 微粒微粒制剂 (挤出滚圆法制微丸,药物层积 ) LH-328HPMCP 羟丙甲纤维素邻苯二甲酸酯—肠溶衣剂(有机溶剂包衣体系)Shin-Etsu AQOAT 醋酸羟丙基甲基纤维素琥珀酸酯—肠溶衣剂(多层包衣法)种类型号标记粘度(mm2 /s)乙酰基(%)琥珀酰基(%)平均粒度(μm)溶解时 PH *1 典型应用醋酸羟丙甲纤维素琥珀酸酯JPEAS-LF38155* 2≧ 5.5 微粉型(用于水分散包衣体系)AS-MF911 ≧ 6.0AS-HF12 6 ≧ 6.5AS-LG8151000≧ 5.5 颗粒型(用于有机溶剂包衣体系)AS-MG911 ≧ 6.0AS-HG12 6 ≧ 6.5种类型号标记粘度( 厘泊 )甲氧基(%)羟丙氧基(%)平均粒度(μm)典型应用羟丙甲纤维素 USP( 替代型号2208 ) 羟丙甲纤维素 PhEur羟丙甲纤维素2208 JP90SH-100SR90SH-4000SR90SH-15000SR90SH-100000SR100400015000100000231050缓释作用种类型号标记粘度( 厘泊 )邻苯二甲酰含量(%)平均粒度(μm)溶解时 PH*3典型应用羟丙甲纤维素邻苯二甲酸酯NF/ PhEur/JPHP-55HP-55SHP-50401705531 *124 *224 *21000≧ 5.5≧ 5.5≧ 5.0常规型号加强型在较低 PH条件下溶解2.3应用1、包衣材料羟丙基甲基纤维素(HPMC) 为目前应用较广、效果较好的一种包衣材料, 其特点是成膜性好。

相对密度测定标准操作规程

目的:建立相对密度测定法(一部)检验标准操作规程,并按规程进行检验,保证检验操作规范化。

依据:《中华人民共和国药典》2010年版一部范围:适用于所有用相对密度测定法(一部)测定的供试品。

责任:QC主管、QC检验员。

程序:1. 简述。

1.1. 相对密度系指在相同的温度、压力条件下,某物质的密度与水的密度之比。

除另有规定外,温度为20℃。

1.2. 纯物质的相对密度在特定的条件下为不变的常数。

但如物质的纯度不够,则其相对密度的测定值会随着纯度的变化而改变。

因此,测定药品的相对密度,可用以检查药品的纯杂程度。

1.3. 液体药品的相对密度,一般用比重瓶(如图1)测定;测定易挥发液体的相对密度,可用韦氏比重秤(图2)。

1.4. 用比重瓶测定时的环境(指比重瓶和天平的放置环境)温度应略低于20℃或各品种项下规定的温度。

2. 方法。

2.1. 比重瓶法。

2.1.1. 取洁净、干燥并精密称定重量的比重瓶(如图1a),装满供试品(温度应低于20℃或各品种项下规定的温度)a b图1比重瓶后,装上温度计(瓶中应无气泡),置20℃(或各品种项下规定的温度)的水浴中放置若干分钟,使内容物的温度达到20℃(或各品种项下规定的温度),用滤纸除去溢出侧管的液体,立即盖上罩。

然后将比重瓶自水浴中取出,再用滤纸将比重瓶的外面擦净,精密称定,减去比重瓶的重量,求得供试品的重量后,将供试品倾去,洗净比重瓶,装满新沸过的冷水,再照上法测得同一温度时水的重量,按下式计算,即得。

供试品重量供试品的相对密度=水重量2.1.2. 取洁净、干燥并精密称定重量的比重瓶(图1b),装满供试品(温度应低于20℃或各品种项下规定的温度)后,插入中心有毛细孔的瓶塞,用滤纸将从塞孔溢出的液体擦干,置20℃(或各品种项下规定的温度)恒温水浴中,放置若干分钟,随着供试液温度的上升,过多的液体将不断从塞孔溢出,随时用滤纸将瓶塞顶端擦干,待液体不再由塞孔溢出,迅即将比重瓶自水浴中取出,照上述(1)法,自“再用滤纸将比重瓶的外面擦净”起,依法测定,即得。

堆积密度测定法

堆积密度测定法
堆积密度测定法一适用产品名:所有产品
二参考文献:1、M-006 :2、USP:PAGE 3976 三仪器和器材:量筒,天平,药匙
四步骤:QC:一组样品中做一个平行样
1、在天平上放置一个50ml的量筒,清零。

2、用干净的药匙移取约25ml的待测样品至量筒中,称重记下待测样品的质量M。

3、取下量筒竖放在水平台上轻轻地来回平移,直到样品颗粒间没有较大的空隙,此时记
录量筒的读数V1,精确到0.5ml。

注意:读取刻度时,如样品高低不平,此时应用手轻轻拍
打筒壁,直至样品在量筒中能正常读数。

4、紧握住量筒,用手在软垫上上下敲动量筒底部,直至待测样品的体积读数不再变化,
此时记下量筒的读数V2。

五计算公式和结果记录:
Bulk Density=M/V1
Tap Density=M/V2
堆积密度单位:g/ml
数据精确到小数点后两位。

精细陶瓷 粉末堆积密度的测定 松装密度-最新国标

精细陶瓷粉末堆积密度的测定松装密度1范围本文件规定了通过定容测量法测定粒状或非粒状陶瓷粉末的松装密度的试验方法。

本文件适用于精细陶瓷的粒状或非粒状陶瓷粉末,其它陶瓷粉末可参照本文件执行。

2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。

其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T6005试验筛金属丝编织网、穿孔板和电成型薄板筛孔的基本尺寸(GB/T6005-2008,ISO565:1990,MOD)GB/T8170数值修约规则与极限数值的表示和判定3术语和定义下列术语和定义适用于本文件。

3.1松装密度untapped density粉末试样自然地充填规定的容器时,单位容积粉末的质量。

4原理已知体积粉末在避免振动的情况下,自由落入固定容器,测定其质量。

测试所得粉末净质量除以粉末体积得出其松装密度。

5试验仪器5.1漏斗漏斗应由非磁性、耐腐蚀的金属材料制成,例如不锈钢(例如304不锈钢),具有足够的壁厚和硬度以承受变形和过度磨损。

漏斗孔口直径为2.5mm或孔口直径为5.0mm(如图1所示)。

单位为毫米图1漏斗示意图5.2圆柱形容器不锈钢材质,容积为100cm3,径高比约为1,如图2所示。

单位为毫米图2圆柱形容器示意图5.3试验筛按照GB/T6005的规定,筛孔尺寸为0.71mm。

5.4天平精度为0.1g或0.01g。

测量非常蓬松的粉末时,应使用精度为0.01g的天平,例如气相二氧化硅。

5.5直边板用于去除锥形容器上方多余粉末。

单位为毫米图3直边板示意图5.6支架和水平无振动底座支撑漏斗与圆柱形容器同心的支架,漏斗孔的底部大约高于圆柱形容器顶部50mm,如图4所示。

单位为毫米图4支架和底座示意图6取样6.1一般情况下,粉末应在原始状态下进行测试。

在某些情况下粉末可以干燥。

如需干燥,应在(110±5)℃条件下干燥至少1h,并在干燥器中冷却至室温。

usp34-616-堆敲密度

616 BULK DENSITY AND TAPPED DENSITY OF POWDERSBULK DENSITYThis general chapter has been harmonized with the corresponding texts of the European Pharmacopoeia and/or the Japanese Pharmacopoeia. The portion that is not harmonized is markedwith symbols () to specify this fact.The bulk density of a powder is the ratio of the mass of an untapped powder sample and its volume including the contribution of the interparticulate void volume. Hence, the bulk density depends on both the density of powder particles and the spatial arrangement of particles in the powder bed. The bulk density is expressed in grams per mL (g/mL) although the international unit is kilogram per cubic meter (1 g/mL = 1000 kg/m3) because the measurements are made using cylinders. It may also be expressed in grams per cubic centimeter (g/cm3). The bulking properties of a powder are dependent upon the preparation, treatment, and storage of the sample, i.e., how it was handled. The particles can be packed to have a range of bulk densities; however, the slightest disturbance of the powder bed may result in a changed bulk density. Thus, the bulk density of a powder is often very difficult to measure with good reproducibility and, in reporting the results, it is essential to specifiy how the determination was made. The bulk density of a powder is determined by measuring the volume of a known weight of powder sample, that may have been passed through a screen, into a graduated cylinder (Method I), or by measuring the mass of a known volume of powder that has been passed through a volumeter into a cup (Method II) or a measuring vessel (Method III).Method I and Method III are favored.Method I—Measurement in a Graduated CylinderProcedure— Pass a quantity of material sufficient to complete the test through a sieve with apertures greater than or equal to 1.0 mm, if necessary, to break up agglomerates that may have formed during storage; this must be done gently to avoid changing the nature of the material. Into a dry graduated 250-mL cylinder (readable to 2 mL) introduce, without compacting, approximately 100 g of test sample, M, weighed with 0.1% accuracy. Carefully level the powder without compacting, if necessary, and read the unsettled apparent volume (V) to the nearest graduated unit. Calculate the bulk density in g/mL by. Generally, replicate determinations are desirable for the determination of thisthe formula m/Vproperty. If the powder density is too low or too high, such that the test sample has an untapped apparent volume of either more than 250 mL or less than 150 mL, it is not possible to use 100 g of powder sample. Therefore, a different amount of powder has to be selected as the test sample, such that its untapped apparent volume is 150 mL to 250 mL (apparent volume greater than or equal to 60% of the total volume of the cylinder); the weight of the test sample is specified in the expression of results. For test samples having an apparent volume between 50 mL and 100 mL, a 100-mL cylinder readable to 1 mL can be used; the volume of the cylinder is specified in the expression of results.Method II—Measurement in a VolumeterApparatus— The apparatus (Figure 1) consists of a top funnel fitted with a 1.0-mm screen1. The funnel is mounted over a baffle box containing four glass baffle plates over which the powder slidesand bounces as it passes. At the bottom of the baffle box is a funnel that collects the powder and allows it to pour into a cup of specified capacity mounted directly below it. The cup may be cylindrical (25.00 ± 0.05 mL volume with an inside diameter of 30.00 ± 2.00 mm) or a square (16.39 ± 0.2 mL volume with inside dimensions of 25.4 ± 0.076 mm).Figure 1.Procedure— Allow an excess of powder to flow through the apparatus into the sample receiving cup until it overflows, using a minimum of 25 cm3 of powder with the square cup and 35 cm3 of powder with the cylindrical cup. Carefully scrape excess powder from the top of the cup by smoothly moving the edge of the blade of a spatula perpendicular to and in contact with the top surface of the cup, taking care to keep the spatula perpendicular to prevent packing or removal of powder from the cup. Remove any material from the sides of the cup, and determine the weight, M, of the powder to the nearest0.1%. Calculate the bulk density, in g per mL, by the formula:(M)/(V)is the volume, in mL, of the cup. Record the average of three determinations using threein which Vdifferent powder samples.Method III—Measurement in a VesselApparatus— The apparatus consists of a 100-mL cylindrical vessel of stainless steel with dimensions as specified in Figure 2.Figure 2.Procedure— Pass a quantity of powder sufficient to complete the test through a 1.0-mm sieve, if necessary, to break up agglomerates that may have formed during storage, and allow the obtained sample to flow freely into the measuring vessel until it overflows. Carefully scrape the excess powder) of the powder to the from the top of the vessel as described for Method II. Determine the weight (Mnearest 0.1% by subtraction of the previously determined mass of the empty measuring vessel. Calculate the bulk density (g/mL) by the formula M/100, and record the average of threedeterminations using three different powder samples.TAPPED DENSITYThe tapped density is an increased bulk density attained after mechanically tapping a container containing the powder sample. Tapped density is obtained by mechanically tapping a graduated measuring cylinder or vessel containing a powder sample. After observing the initial powder volume or weight, the measuring cylinder or vessel is mechanically tapped, and volume or weight readings are taken until little further volume or weight change is observed. The mechanical tapping is achieved by raising the cylinder or vessel and allowing it to drop under its own weight a specified distance by either of three methods as described below. Devices that rotate the cylinder or vessel during tapping may be preferred to minimize any possible separation of the mass during tapping down.Method IApparatus— The apparatus (Figure 3) consists of the following:● A 250-mL graduated cylinder (readable to 2 mL with a mass of 220 ± 44 g● A settling apparatus capable of producing, in 1 minute, either nominally 250 ± 15 taps from aheight of 3 ± 0.2 mm, or nominally 300 ± 15 taps from a height of 14 ± 2 mm. The support for the graduated cylinder, with its holder, has a mass of 450 ± 10 g.Figure 3.Procedure— Proceed as described above for the determination of the bulk volume (V0). Secure the cylinder in the holder. Carry out 10, 500, and 1250 taps on the same powder sample and read thecorresponding volumes V10, V500, and V1250to the nearest graduated unit. If the difference betweenV 500 and V1250is less than 2 mL, V1250is the tapped volume. If the difference between V500andV1250exceeds 2 mL, repeat in increments such as 1250 taps, until the difference between succeeding measurements is less than 2 mL. Fewer taps may be appropriate for some powders, when validated.Calculate the tapped density (g/mL) using the formula m/VF in which VFis the final tapped volume.Generally, replicate determinations are desirable for the determination of this property. Specify the drop height with the results. If it is not possible to use a 100-g test sample, use a reduced amount and a suitable 100-mL graduated cylinder (readable to 1 mL) weighing 130 ± 16 g and mounted on a holder weighing 240 ± 12 g. The modified test conditions are specified in the expression of the results.Method IIApparatus and Procedure— Proceed as directed under Method I except that the mechanical tester provides a fixed drop of 3 ± 0.2 mm at a nominal rate of 250 taps per minute.Method IIIApparatus and Procedure— Proceed as directed in Method III—Measurement in a Vessel for measuring bulk density using the measuring vessel equipped with the cap shown in Figure 2. The measuring vessel with the cap is lifted 50–60 times per minute by the use of a suitable tapped densitytester. Carry out 200 taps, remove the cap, and carefully scrape excess powder from the top of the measuring vessel as described in Method III —Measurement in a Vessel for measuring the bulkdensity. Repeat the procedure using 400 taps. If the difference between the two masses obtained after 200 and 400 taps exceeds 2%, carry out a test using 200 additional taps until the difference between succeeding measurements is less than 2%. Calculate the tapped density (g/mL) using the formula M F /100 where M F is the mass of powder in the measuring vessel. Record the average of three determinations using three different powder samples.MEASURES OF POWDER COMPRESSIBILITYBecause the interparticulate interactions influencing the bulking properties of a powder are also the interactions that interfere with powder flow, a comparison of the bulk and tapped densities can give a measure of the relative importance of these interactions in a given powder. Such a comparison is often used as an index of the ability of the powder to flow, for example the Compressibility Index or the Hausner Ratio as described below.The Compressibility Index and Hausner Ratio are measures of the propensity of a powder to be compressed as described above. As such, they are measures of the powder ’s ability to settle, and they permit an assessment of the relative importance of interparticulate interactions. In a free-flowing powder, such interactions are less significant, and the bulk and tapped densities will be closer in value. For poorer flowing materials, there are frequently greater interparticle interactions, and a greater difference between the bulk and tapped densities will be observed. These differences are reflected in the Compressibility Index and the Hausner Ratio.Compressibility Index — Calculate by the formula:100(V 0 V F )/V 0V 0 = unsettled apparent volumeV F = final tapped volumeHausner Ratio —V 0/V FDepending on the material, the compressibility index can be determined using V 10 instead of V 0.[NOTE —If V 10 is used, it will be clearly stated in the results. ]1 The apparatus (the Scott Volumeter) conforms to the dimensions in ASTM 329 90.Auxiliary Information — Please check for your question in the FAQs before contacting USP.USP34–NF29 Page 241Pharmacopeial Forum : Volume No. 36(5) Page 1408 Topic/QuestionContact Expert Committee General Chapter Kevin T. Moore, Ph.D.Senior Scientific Liaison1-301-816-8369(GCPA2010) General Chapters - Physical Analysis。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

616 BULK DENSITY AND TAPPED DENSITYThe bulk density of a solid is often very difficult to measure since the slightest disturbance of the bed may result in a new bulk density. Moreover, it is clear that the bulking properties of a powder are dependent on the “history” of the powder (e.g., how it was handled), and that it can be packed to have a range of bulk densities. Thus, it is essential in reporting bulk density to specify how the determination was made.Because the interparticulate interactions that influence the bulking properties of a powder are also the interactions that interfere with powder flow, a comparison of the bulk and tapped densities can give a measure of the relative importance of these interactions in a given powder. Such a comparison is often used as an index of the ability of the powder to flow. The bulk density often is the bulk density of the powder “as poured” or as passively filled into a measuring vessel. The tapped density is a limiting density attained after “tapping down,” usually in a device that lifts and drops a volumetric measuring cylinder containing the powder a fixed distance.BULK DENSITYBulk density is determined by measuring the volume of a known mass of powder sample that has been passed through a screen into a graduated cylinder (Method I) or through a volume-measuring apparatus into a cup (Method II).Method I—Measurement in a Graduated CylinderProcedure— Unless otherwise specified, pass a quantity of material sufficient to complete the test through a 1.00-mm (No. 18) screen to break up agglomerates that may have formed during storage. Into a dry 250-mL cylinder introduce, without compacting, approximately 100 g of test sample, M, weighed with 0.1% accuracy. If it is not possible to use 100 g, the amount of the test sample and the volume of the cylinder may be modified and the test conditions specified with the results. Select a sample mass having an untapped apparent volume of 150 to 250 mL. A 100-mL cylinder is used for apparent volumes between 50 mL and 100 mL. Carefully level the powder without compacting, if, to the nearest graduated unit. necessary, and read the unsettled apparent volume, VoCalculate the bulk density, in g per mL1, by the formula:).(M) / (VoGenerally replicate determinations are desirable for the determination of this property.Method II—Measurement in a VolumeterThe apparatus (Fig. 1),Fig. 1. Scott Volumeter.conforming to the dimensions in ASTM B 329-90 (Scott Volumeter)2, consists of a top funnel fitted with a 1.00-mm (No. 18) screen or the screen opening specified in the individual monograph. The funnel is mounted over a baffle box containing four glass baffle plates over which the powder slides and bounces as it passes. At the bottom of the baffle box is a funnel that collects the powder and allows it to pour into a cup of specified capacity mounted directly below it. The cup may be cylindrical (25.00 ± 0.05 mL volume with an inside diameter of 30.00 ± 2.00 mm) or a square (16.39 ± 0.05 mL volume with inside dimensions of 25.4 ± 0.076 mm).Procedure— Allow an excess of powder to flow through the apparatus into the sample receiving cup until it overflows, using a minimum of 25 cm3of powder with the square cup and 35 cm3 of powder with the cylindrical cup. Carefully scrape excess powder from the top of the cup by smoothly moving the edge of the blade of a spatula perpendicular to and in contact with the top surface of the cup, taking care to keep the spatula perpendicular to prevent packing or removal of powder from the cup. Remove any material from the sides of the cup, and determine the weight, M, of the powder to the nearest 0.1%. Calculate the bulk density, in g per mL, by the formula:)(M ) / (Vois the volume, in mL, of the cup. Generally replicate determinations arein which Vodesirable for the determination of this property.TAPPED DENSITYTapped density is achieved by mechanically tapping a measuring cylinder containing a powder sample. After observing the initial volume, the cylinder is mechanically tapped,and volume readings are taken until little further volume change is observed. Themechanical tapping is achieved by raising the cylinder and allowing it to drop under its own weight a specified distance by either of two methods as described below. Devices that rotate the cylinder during tapping may be preferred to minimize any possible separation of the mass during tapping down.Method IProcedure — Unless otherwise specified, pass a quantity of material sufficient tocomplete the test through a 1.00-mm (No. 18) screen to break up agglomerates that may have formed during storage. Into a dry 250-mL glass graduated cylinder (readable to 2 mL) weighing 220 ± 44 g and mounted on a holder weighing 450 ± 10 g introduce,without compacting, approximately 100 g of test sample, M, weighed with 0.1% accuracy. If it is not possible to use 100 g, the amount of the test sample may be reduced and the volume of the cylinder may be modified by using a suitable 100-mL graduated cylinder (readable to 1 mL) weighing 130 ± 16 g and mounted on a holder weighing 240 ± 12 g. The modified test conditions are specified with the results. Carefully level the powder without compacting, if necessary, and read the unsettled apparent volume, V o , to the nearest graduated unit.Mechanically tap the cylinder containing the sample by raising the cylinder and allowing it to drop under its own weight using a suitable mechanical tapped density tester that provides a fixed drop of 14 ± 2 mm at a nominal rate of 300 drops per minute. Unless otherwise specified, tap the cylinder 500 times initially and measure the tapped volume, V a , to the nearest graduated unit. Repeat the tapping an additional 750 times and measure the tapped volume, V b , to the nearest graduated unit. [NOTE —Fewer taps may be appropriate, if validated, for some powders.] If the difference between the two volumes is less than 2%, V b is the final tapped volume, V f . Repeat in increments of 1250 taps, as needed, until the difference between succeeding measurements is less than 2%. Calculate the tapped density, in g per mL, by the formula:(M ) / (V f ).Generally replicate determinations are desirable for the determination of this property.Method IIProceed as directed under Method I except that a suitable mechanical tapped density tester that provides a fixed drop of 3 mm (±10%) at a nominal rate of 250 drops per minute is used.MEASURES OF POWDER COMPRESSIBILITYThe Compressibility Index and Hausner Ratio are measures of the propensity of a powder to be compressed. As such, they are measures of the relative importance ofinterparticulate interactions. In a free-flowing powder, such interactions are generally less significant, and the bulk and tapped densities will be closer in value. For poorer flowing materials, there are frequently greater interparticle interactions, and a greater difference between the bulk and tapped densities will be observed. These differences are reflected in the Compressibility Index and the Hausner Ratio.Compressibility Index — Calculate by the formula:Hausner Ratio — Calculate by the formula:1 The density of solids normally is expressed in g per cm 3and that of liquids is normally expressed in g per mL; however, because powder volumes are measured in cylinders graduated in mL, bulk and tappeddensities will be expressed in g per mL. By definition, the mL and the cm 3 are equivalent volumes.2 Apparatus may be purchased from scientific supply companies and is usually described as a “Scott, Schaeffer and White Paint Pigment Volumeter.”Auxiliary Information — Please check for your question in the FAQs before contacting USP.USP32–NF27 Page 226Topic/QuestionContact Expert Committee General Chapter Robert H. Lafaver, B.A.Scientist1-301-816-8335(EGC05) Excipient General Chapters页码,5/5 Pharmacopeial Forum: Volume No. 31(3) Page 909。

相关文档
最新文档