美国FDA分析方法验证指南中英文对照

合集下载

美国FDA生产过程(工艺)验证总则指南中英文版

美国FDA生产过程(工艺)验证总则指南中英文版

GUIDELINEON GENERAL PRINCIPLES OFPROCESS VALIDATIONMay, 1987Prepared by: Center for Drugs and Biologics andCenter for Devices and Radiological HealthFood and Drug AdministrationMaintained by: Division of Manufacturing and Product Quality (HFN-320)Office of ComplianceCenter for Drugs and BiologicsFood and Drug Administration5600 Fishers LaneRockville, Maryland 20857General Principles of Process Validation May 1987GENERAL PRINCIPLES OF PROCESS VALIDATIONI. PURPOSEThis guideline outlines general principles that FDA considers to beacceptable elements of process validation for the preparation ofhuman and animal drug products and medical devices.II. SCOPEThis guideline is issued under Section 10.90 (21 CFR 10.90) and isapplicable to the manufacture of pharmaceuticals and medicaldevices. It states principles and practices of generalapplicability that are not legal requirements but are acceptable tothe FDA. A person may rely upon this guideline with the assurance of its acceptability to FDA, or may follow different procedures.When different procedures are used, a person may, but is notrequired to, discuss the matter in advance with FDA to prevent theexpenditure of money and effort on activities that may later bedetermined to be unacceptable. In short, this guideline listsprinciples and practices which are acceptable to the FDA for theprocess validation of drug products and medical devices; it doesnot list the principles and practices that must, in all instances,be used to comply with law.-1-This guideline may be amended from time to time. Interestedpersons are invited to submit comments on this document and anysubsequent revisions. Written comments should be submitted to the Dockets Management Branch (HFA-305), Food and Drug Administration,Room 4-62, 5600 Fishers Lane, Rockville, Maryland 20857. Receivedcomments may be seen in that office between 9\a.m. and 4\p.m.,Monday through Friday.III. INTRODUCTIONProcess validation is a requirement of the Current GoodManufacturing Practices Regulations for Finished Pharmaceuticals,21 CFR Parts 210 and 211, and of the Good Manufacturing PracticeRegulations for Medical Devices, 21 CFR Part 820, and therefore, isapplicable to the manufacture of pharamaceuticals and medicaldevices.Several firms have asked FDA for specific guidance on what FDAexpects firms to do to assure compliance with the requirements forprocess validation. This guideline discusses process validationelements and concepts that are considered by FDA as acceptableparts of a validation program. The constituents of validationpresented in this document are not intended to be all-inclusive.FDA recognizes that, because of the great variety of medicalproducts (drug products and medical devices), processes and-2-manufacturing facilities, it is not possible to state in onedocument all of the specific validation elements that areapplicable. Several broad concepts, however, have generalapplicability which manufacturers can use successfully as a guidein validating a manufacturing process. Although the particular requirements of process validation will vary according to such factors as the nature of the medical product (e.g., sterile vsnon-sterile) and the complexity of the process, the broad concepts stated in this document have general applicability and provide an acceptable framework for building a comprehensive approach to process validation.DefinitionsInstallation qualification - Establishing confidence that process equipment and ancillary systems are capable of consistently operating within established limits and tolerances.Process performance qualification - Establishing confidence thatthe process is effective and reproducible.Product performance qualification - Establishing confidence through appropriate testing that the finished product produced by aspecified process meets all release requirements for functionalityand safety.-3-Prospective validation - Validation conducted prior to thedistribution of either a new product, or product made under arevised manufacturing process, where the revisions may affect the product's characteristics.Retrospective validation - Validation of a process for a product already in distribution based upon accumulated production, testing and control data.Validation - Establishing documented evidence which provides a high degree of assurance that a specific process will consistentlyproduce a product meeting its pre-determined specifications and quality attributes.Validation protocol - A written plan stating how validation will be conducted, including test parameters, product characteristics, production equipment, and decision points on what constitutes acceptable test results.Worst case - A set of conditions encompassing upper and lowerprocessing limits and circumstances, including those withinstandard operating procedures, which pose the greatest chance ofprocess or product failure when compared to ideal conditions. Such conditions do not necessarily induce product or process failure.-4-IV. GENERAL CONCEPTSAssurance of product quality is derived from careful attention to anumber of factors including selection of quality parts andmaterials, adequate product and process design, control of theprocess, and in-process and end-product testing. Due to thecomplexity of today's medical products, routine end-product testingalone often is not sufficient to assure product quality for severalreasons. Some end-product tests have limited sensitivity.1 Insome cases, destructive testing would be required to show that themanufacturing process was adequate, and in other situationsend-product testing does not reveal all variations that may occurin the product that may impact on safety and effectiveness.2The basic principles of quality assurance have as their goal theproduction of articles that are fit for their intended use. These1 For example, USP XXI states: "No sampling plan for applyingsterility tests to a specified proportion of discrete unitsselected from a sterilization load is capable of demonstrating withcomplete assurance that all of the untested units are in factsterile."2 As an example, in one instance a visual inspection failed to detecta defective structural weld which resulted in the failure of aninfant warmer. The defect could only have been detected by usingdestructive testing or expensive test equipment.-5-principles may be stated as follows: (1) quality, safety, and effectiveness must be designed and built into the product; (2) quality cannot be inspected or tested into the finished product;and (3) each step of the manufacturing process must be controlled to maximize the probability that the finished product meets all quality and design specifications. Process validation is a key element in assuring that these quality assurance goals are met.It is through careful design and validation of both the process and process controls that a manufacturer can establish a high degree of confidence that all manufactured units from successive lots will be acceptable. Successfully validating a process may reduce the dependence upon intensive in-process and finished product testing. It should be noted that in most all cases, end-product testingplays a major role in assuring that quality assurance goals are met; i.e., validation and end-product testing are not mutually exclusive.The FDA defines process validation as follows:Process validation is establishing documented evidence which provides a high degree of assurance that a specific process will consistently produce a product meeting its pre-determinedspecifications and quality characteristics.-6-It is important that the manufacturer prepare a written validation protocol which specifies the procedures (and tests) to be conducted and the data to be collected. The purpose for which data are collected must be clear, the data must reflect facts and becollected carefully and accurately. The protocol should specify a sufficient number of replicate process runs to demonstrate reproducibility and provide an accurate measure of variability among successive runs. The test conditions for these runs should encompass upper and lower processing limits and circumstances, including those within standard operating procedures, which pose the greatest chance of process or product failure compared to ideal conditions; such conditions have become widely known as "worst case" conditions. (They are sometimes called "most appropriate challenge" conditions.) Validation documentation should include evidence of the suitability of materials and the performance and reliability of equipment and systems.Key process variables should be monitored and documented. Analysisof the data collected from monitoring will establish thevariability of process parameters for individual runs and willestablish whether or not the equipment and process controls areadequate to assure that product specifications are met.-7-Finished product and in-process test data can be of value inprocess validation, particularly in those situations where qualityattributes and variabilities can be readily measured. Wherefinished (or in-process) testing cannot adequately measure certainattributes, process validation should be derived primarily fromqualification of each system used in production and fromconsideration of the interaction of the various systems.V. CGMP REGULATIONS FOR FINISHED PHARMACEUTICALS Process validation is required, in both general and specific terms,by the Current Good Manufacturing Practice Regulations for FinishedPharmaceuticals, 21 CFR Parts 210 and 211. Examples of suchrequirements are listed below for informational purposes, and arenot all-inclusive.A requirement for process validation is set forth in general termsin section\211.100 -- Written procedures; deviations -- whichstates, in part:"There shall be written procedures for production and processcontrol designed to assure that the drug products have theidentity, strength, quality, and purity they purport or arerepresented to possess."-8-Several sections of the CGMP regulations state validationrequirements in more specific terms. Excerpts from some ofthese sections are:Section 211.110, Sampling and testing of in-processmaterials and drug products.(a) "....control procedures shall be established to monitor theoutput and VALIDATE the performance of those manufacturingprocesses that may be responsible for causing variability in thecharacteristics of in-process material and the drug product."(emphasis added)Section 211.113, Control of Microbiological Contamination.(b) "Appropriate written procedures, designed to preventmicrobiological contamination of drug products purporting to besterile, shall be established and followed. Such proceduresshall include VALIDATION of any sterilization process."(emphasis added)VI. GMP REGULATION FOR MEDICAL DEVICESProcess validation is required by the medical device GMPRegulations, 21 CFR Part\820. Section 820.5 requires everyfinished device manufacturer to:"...prepare and implement a quality assurance program that isappropriate to the specific device manufactured..."-9-Section 820.3(n) defines quality assurance as:"...all activities necessary to verify confidence in the qualityof the process used to manufacture a finished device."When applicable to a specific process, process validation is anessential element in establishing confidence that a process willconsistently produce a product meeting the designed qualitycharacteristics.A generally stated requirement for process validation is containedin section\820.100:"Written manufacturing specifications and processing proceduresshall be established, implemented, and controlled to assure thatthe device conforms to its original design or any approvedchanges in that design."Validation is an essential element in the establishment andimplementation of a process procedure, as well as in determiningwhat process controls are required in order to assure conformanceto specifications.Section 820.100(a)(1) states:"...control measures shall be established to assure that thedesign basis for the device, components and packaging iscorrectly translated into approved specifications."-10-Validation is an essential control for assuring that thespecifications for the device and manufacturing process areadequate to produce a device that will conform to the approveddesign characteristics.VII. PRELIMINARY CONSIDERATIONSA manufacturer should evaluate all factors that affect productquality when designing and undertaking a process validation study.These factors may vary considerably among different products andmanufacturing technologies and could include, for example,component specifications, air and water handling systems,environmental controls, equipment functions, and process controloperations. No single approach to process validation will beappropriate and complete in all cases; however, the followingquality activities should be undertaken in most situations.During the research and development (R&D) phase, the desiredproduct should be carefully defined in terms of itscharacteristics, such as physical, chemical, electrical and-11-performance characteristics.3 It is important to translate theproduct characteristics into specifications as a basis fordescription and control of the product.Documentation of changes made during development providetraceability which can later be used to pinpoint solutions tofuture problems.The product's end use should be a determining factor in thedevelopment of product (and component) characteristics andspecifications. All pertinent aspects of the product which impacton safety and effectiveness should be considered. These aspects3 For example, in the case of a compressed tablet, physicalcharacteristics would include size, weight, hardness, and freedomfrom defects, such as capping and splitting. Chemicalcharacteristics would include quantitative formulation/potency;performance characteristics may include bioavailability (reflectedby disintegration and dissolution). In the case of blood tubing,physical attributes would include internal and external diameters,length and color. Chemical characteristics would include rawmaterial formulation. Mechanical properties would include hardness and tensile strength; performance characteristics would includebiocompatibility and durability.-12-include performance, reliability and stability. Acceptable rangesor limits should be established for each characteristic to set upallowable variations.4 These ranges should be expressed inreadily measurable terms.The validity of acceptance specifications should be verifiedthrough testing and challenge of the product on a sound scientificbasis during the initial development and production phase.Once a specification is demonstrated as acceptable it is importantthat any changes to the specification be made in accordance withdocumented change control procedures.VIII. ELEMENTS OF PROCESS VALIDATIONA. Prospective ValidationProspective validation includes those considerations that should bemade before an entirely new product is introduced by a firm or whenthere is a change in the manufacturing process which may affect theproduct's characteristics, such as uniformity and identity. Thefollowing are considered as key elements of prospective validation.4 For example, in order to assure that an oral, ophthalmic, orparenteral solution has an acceptable pH, a specification may beestablished by which a lot is released only if it has been shown tohave a pH within a narrow established range. For a device, aspecification for the electrical resistance of a pacemaker leadwould be established so that the lead would be acceptable only ifthe resistance was within a specified range.-13-1. Equipment and ProcessThe equipment and process(es) should be designed and/or selectedso that product specifications are consistently achieved. Thisshould be done with the participation of all appropriate groupsthat are concerned with assuring a quality product, e.g.,engineering design, production operations, and quality assurancepersonnel.a. Equipment: Installation QualificationInstallation qualification studies establish confidence thatthe process equipment and ancillary systems are capable ofconsistently operating within established limits andtolerances. After process equipment is designed orselected, it should be evaluated and tested to verify thatit is capable of operating satisfactorily within theoperating limits required by the process.5 This phase ofvalidation includes examination of equipment design;determination of calibration, maintenance, and adjustmentrequirements; and identifying critical equipment featuresthat could affect the process and product. Informationobtained from these studies should be used to establishwritten procedures covering equipment calibration,maintenance, monitoring, and control.5 Examples of equipment performance characteristics which maybe measured include temperature and pressure of injectionmolding machines, uniformity of speed for mixers,temperature, speed and pressure for packaging machines, andtemperature and pressure of sterilization chambers.-14-In assessing the suitability of a given piece of equipment,it is usually insufficient to rely solely upon therepresentations of the equipment supplier, or uponexperience in producing some other product.6 Soundtheoretical and practical engineering principles andconsiderations are a first step in the assessment.It is important that equipment qualification simulate actualproduction conditions, including those which are "worstcase" situations.6 The importance of assessing equipment suitability based uponhow it will be used to attain desired product attributes isillustrated in the case of deionizers used to producePurified Water, USP. In one case, a firm used such water tomake a topical drug product solution which, in view of itsintended use, should have been free from objectionablemicroorganisms. However, the product was found to becontaminated with a pathogenic microorganism. The apparentcause of the problem was failure to assess the performanceof the deionizer from a microbiological standpoint. It isfairly well recognized that the deionizers are prone tobuild-up of microorganisms--especially if the flow rates arelow and the deionizers are not recharged and sanitized atsuitable intervals. Therefore, these factors should havebeen considered. In this case, however, the firm reliedupon the representations of the equipment itself, namely the"recharge" (i.e., conductivity) indicator, to signal thetime for regeneration and cleaning. Considering the desiredproduct characteristics, the firm should have determined theneed for such procedures based upon pre-use testing, takinginto account such factors as the length of time theequipment could produce deionized water of acceptablequality, flow rate, temperature, raw water quality,frequency of use, and surface area of deionizing resins.-15-Tests and challenges should be repeated a sufficient numberof times to assure reliable and meaningful results. Allacceptance criteria must be met during the test orchallenge. If any test or challenge shows that theequipment does not perform within its specifications, anevaluation should be performed to identify the cause of thefailure. Corrections should be made and additional testruns performed, as needed, to verify that the equipmentperforms within specifications. The observed variability ofthe equipment between and within runs can be used as a basisfor determining the total number of trials selected for thesubsequent performance qualification studies of theprocess.7Once the equipment configuration and performancecharacteristics are established and qualified, they shouldbe documented. The installation qualification shouldinclude a review of pertinent maintenance procedures, repairparts lists, and calibration methods for each piece ofequipment. The objective is to assure that all repairs canbe performed in such a way that will not affect the7 For example, the AAMI Guideline for Industrial EthyleneOxide Sterilization of Medical Devices approved 2 December 1981, states: "The performance qualification should includea minimum of 3 successful, planned qualification runs, inwhich all of the acceptance criteria are met.....(5.3.1.2.).-16-characteristics of material processed after the repair. Inaddition, special post-repair cleaning and calibrationrequirements should be developed to prevent inadvertentmanufacture a of non-conforming product. Planning during the qualification phase can prevent confusion duringemergency repairs which could lead to use of the wrongreplacement part.b. Process: Performance QualificationThe purpose of performance qualification is to providerigorous testing to demonstrate the effectiveness andreproducibility of the process. In entering the performance qualification phase of validation, it is understood that theprocess specifications have been established and essentially proven acceptable through laboratory or other trial methods and that the equipment has been judged acceptable on thebasis of suitable installation studies.Each process should be defined and described with sufficient specificity so that employees understand what is required.-17-Parts of the process which may vary so as to affectimportant product quality should be challenged.8In challenging a process to assess its adequacy, it isimportant that challenge conditions simulate those that willbe encountered during actual production, including "worstcase" conditions. The challenges should be repeated enoughtimes to assure that the results are meaningful andconsistent.8 For example, in electroplating the metal case of animplantable pacemaker, the significant process steps todefine, describe, and challenge include establishment andcontrol of current density and temperature values forassuring adequate composition of electrolyte and forassuring cleanliness of the metal to be plated. In theproduction of parenteral solutions by aseptic filling, thesignificant aseptic filling process steps to define andchallenge should include the sterilization anddepyrogenation of containers/closures, sterilization ofsolutions, filling equipment and product contact surfaces,and the filling and closing of containers.-18-Each specific manufacturing process should be appropriatelyqualified and validated. There is an inherent danger inrelying on what are perceived to be similarities betweenproducts, processes, and equipment without appropriatechallenge.9c. Product: Performance QualificationFor purposes of this guideline, product performancequalification activities apply only to medical devices.These steps should be viewed as pre-production qualityassurance activities.9 For example, in the production of a compressed tablet, afirm may switch from one type of granulation blender toanother with the erroneous assumption that both types have similar performance characteristics, and, therefore,granulation mixing times and procedures need not bealtered. However, if the blenders are substantiallydifferent, use of the new blender with procedures used forthe previous blender may result in a granulation with poorcontent uniformity. This, in turn, may lead to tabletshaving significantly differing potencies. This situationmay be averted if the quality assurance system detects theequipment change in the first place, challenges the blender performance, precipitates a revalidation of the process, and initiates appropriate changes. In this example,revalidation comprises installation qualification of the newequipment and performance qualification of the processintended for use in the new blender.-19-Before reaching the conclusion that a process has beensuccessfully validated, it is necessary to demonstrate thatthe specified process has not adversely affected thefinished product. Where possible, product performancequalification testing should include performance testingunder conditions that simulate actual use. Productperformance qualification testing should be conducted usingproduct manufactured from the same type of productionequipment, methods and procedures that will be used forroutine production. Otherwise, the qualified product maynot be representative of production units and cannot be usedas evidence that the manufacturing process will produce aproduct that meets the pre-determined specifications andquality attributes.1010 For example, a manufacturer of heart valves receivedcomplaints that the valve-support structure was fracturingunder use. Investigation by the manufacturer revealed thatall material and dimensional specifications had been met butthe production machining process created microscopicscratches on the valve supporting wireform. These scratchescaused metal fatigue and subsequent fracture. Comprehensivefatigue testing of production units under simulated useconditions could have detected the process deficiency.In another example, a manufacturer recalled insulin syringesbecause of complaints that the needles were clogged.Investigation revealed that the needles were clogged bysilicone oil which was employed as a lubricant duringmanufacturing. Investigation further revealed that themethod used to extract the silicone oil was only partiallyeffective. Although visual inspection of the syringesseemed to support that the cleaning method was effective,actual use proved otherwise.-20-After actual production units have sucessfully passed product performance qualification, a formal technical review should be conducted and should include:o Comparison of the approved product specifications and the actual qualified product.o Determination of the validity of test methods used to determine compliance with the approved specifications.o Determination of the adequacy of the specification change control program.2. System to Assure Timely RevalidationThere should be a quality assurance system in place which requires revalidation whenever there are changes in packaging, formulation, equipment, or processes which could impact on product effectiveness or product characteristics, and whenever there are changes in product characteristics. Furthermore, when a change is made in raw material supplier, the manufacturer should consider subtle, potentially adverse differences in theraw material characteristics. A determination of adverse differences in raw material indicates a need to revalidate the process.-21-One way of detecting the kind of changes that should initiate revalidation is the use of tests and methods of analysis whichare capable of measuring characteristics which may vary. Such tests and methods usually yield specific results which go beyond the mere pass/fail basis, thereby detecting variations within product and process specifications and allowing determination of whether a process is slipping out of control.The quality assurance procedures should establish the circumstances under which revalidation is required. These may be based upon equipment, process, and product performance observed during the initial validation challenge studies. It is desirable to designate individuals who have the responsibilityto review product, process, equipment and personnel changes to determine if and when revalidation is warranted.。

美国FDA分析方法验证指南中文译稿[1]

美国FDA分析方法验证指南中文译稿[1]

1II. 背景 (2)III. 分析方法的类型 (3)A. 法定分析方法 (3)B. 可选择分析方法 (3)3 C. 稳定性指示分析 (3)IV. 对照品……………………………………………………………………………4A. 对照品的类型 (4)B. 分析报告单 (4)C. 对照品的界定 (4)V. IND 中的分析方法验证 (6)VI. NDA, ANDA, BLA 和PLA 中分析方法验证的内容和格式 (6)A. 原则 (6)B. 取样 (7)C. 仪器和仪器参数 (7)D. 试剂 (7)E. 系统适应性实验 (7)F. 对照品的制备 (7)G. 样品的制备 (8)H. 分析方法 (8)L. 计算 (8)J. 结果报告 (8)VII. NDA,ANDA,BLA 和PLA 中的分析方法验证 (9)A.非法定分析方法 (9)1.验证项目 (9)2. 其它分析方法验证信息 (10)a. 耐用性 (11)b. 强降解实验 (11)c. 仪器输出/原始资料 (11)3.各类检测的建议验证项目 (13)B.法定分析方法 (15)VIII. 统计分析…………………………………………………………………………15A. 总则 (15)C. 统计 (16)IX. 再验证 (16)X. 分析方法验证技术包:内容和过程……………………………………………17A. 分析方法验证技术包 (17)B. 样品的选择和运输 (18)C. 各方责任 (19)XI. 方法………………………………………………………………………………20A. 高效液相色谱(HPLC) (20)B. 气相色谱(GC) (22)C. 分光光度法,光谱学,光谱法和相关的物理方法 (23)D. 毛细管电泳 (23)E. 旋光度 (24)F. 粒径相关的分析方法 (25)G. 溶出度 (26)H. 其它仪器分析方法 (27)附件A:NDA,ANDA,BLA 和PLA 申请的内容 (28)附件B:分析方法验证的问题和延误 (29)参考文献……………………………………………………………………………………30术语表………………………………………………………………………………………32This guidance provides recommendations to applicants on submitting analytical procedures, validation data, and samples to support the documentation of the identity, strength, quality, purity, and potency of drug substances and drug products.1. 绪论本指南旨在为申请者提供建议,以帮助其提交分析方法,方法验证资料和样品用于支持原料药和制剂的认定,剂量,质量,纯度和效力方面的文件。

准备FDA认证前检查中英文对照文档

准备FDA认证前检查中英文对照文档
பைடு நூலகம்
? When is the ANDA reviewed by FDA?
FDA什么时候审查ANDA
? After the ANDA holder files the ANDA ANDA 持有人将 ANDA归档后
? Because of backlogs, expect at least 6 month delay before reviewing 由于积压,预计至少延迟 6个月才能被审查
? Ensure that the ANDA or DMF submission is an accurate reflection of what is being done at the facility
确保ANDA或DMF中提交的是设施正在进行的情况的准确反应
Richard Needham, RFL Associates
? Ensure that data submitted in the ANDA or DMF submission is supported by raw data at the facility
确保在ANDA或DMF文件中提交的数据以设施的原始数据为依据
? Data and original records must be documented according to cGMP standards 原始数据和记录必须根据cGMP标准进行
? Two adjacent conference rooms 两个相邻的会议室
配备两个人通常是指
? Two Interpreters (provided by the firm, at present) 两名翻译员(目前由公司提供的)
? The interpreters are extremely important to the smooth running of the inspection 翻译员对于检查顺利进行是非常重要的

FDA清洁验证指南(中英文对照)

FDA清洁验证指南(中英文对照)

Validation of Cleaning Processes清洁工艺验证GUIDE TO INSPECTIONS VALIDATION OF CLEANING PROCESSES清洁工艺验证检查指南Mike Ma Sort outXiao GangNote: This document is reference material for investigators and other FDA personnel. The document does not bind FDA, and does no confer any rights, privileges, benefits, or immunities for or on any person(s).注意:本指南是审计官和其他FDA人员的参考资料。

FDA不受本指南的约束,也没有授予任何人任何权利、特权、收益或豁免权。

1 of 14ContentI. INTRODUCTION 简介 (3)II. BACKGROUND 背景 (3)III. GENERAL REQUIREMENTS 常规要求 (5)IV. EVALUATION OF CLEANING VALIDATION清洁验证的评估 (6)V. ESTABLISHMENT OF LIMITS 确定限度 (11)VI. OTHER ISSUES 其他问题 (12)VII. REFERENCES 参考资料 (13)2 of 14Validation of cleaning procedures has generated considerable discussion since agency documents, including the Inspection Guide for Bulk Pharmaceutical Chemicals and the Biotechnology Inspection Guide, have briefly addressed this issue. These Agency documents clearly establish the expectation that cleaning procedures (processes) be validated.自从机构文件,包括化学原料药制剂检查指南和生物技术制剂检查指南简明的提及清洁验证规程以来,就对清洁规程验证产生了大量的讨论。

FDA最新版-药物分析程序及方法验证指导原则-中文翻译版

FDA最新版-药物分析程序及方法验证指导原则-中文翻译版

药品及生物制品的分析方法和方法验证指导原则目录1.介绍 (1)2.背景 (2)3.分析方法开发 (3)4.分析程序内容 (3)A.原则/范围 (4)B.仪器/设备 (4)C.操作参数 (4)D.试剂/标准 (4)E.样品制备 (4)F. .................................................................................................................... 标准对照品溶液的制备 (5)G.步骤 (5)H.系统适应性 (5)I.计算 (5)J.数据报告 (5)5.参考标准和教材 (6)6 分析方法验证用于新药,仿制药,生物制品和DMF (6)A.非药典分析方法 (6)B.验证特征 (7)C.药典分析方法 (8)7.统计分析和模型 (8)A.统计 (8)B.模型 (8)8.生命周期管理分析程序 (9)A.重新验证 (9)B.分析方法的可比性研究 (10)1.另一种分析方法 (10)2.分析方法转移的研究 (11)C.报告上市后变更已批准的新药,仿制药,或生物制品 (11)9.美国FDA 方法验证 (12)10.参考文献前言本指导原则草案,定稿后,将代表美国食品和药物管理局(FDA)目前关于这个话题目前的想法。

它不会创造或赋予或任何人的任何权利,不约束FDA 或公众。

您可以使用另一种方法,如果该方法符合适用的法律和法规的要求。

如果你想讨论一个替代方法,请与FDA 工作人员负责实施本指南。

如果你不能确定适当的FDA 工作人员,请拨打本指南的标题页上所列的电话号码。

介绍:该修订指南草案将取代行业2000 年的指导分析方法和方法验证草案,并最终确定后,也将取代1987 年美国FDA 行业指南《提交的样品和分析数据的方法验证》。

该草案提供了有关申请人如何提交分析程序和方法验证数据来支持说明原料药和制剂具有强度、质量、纯度和效用的文件。

准备FDA认证前检查中英文对照文档

准备FDA认证前检查中英文对照文档
认证量成果isoproducts产品简介allapisalldosageformsproduceonsite所有api和所有剂型的生产现场nonusmarkets美国和非美国市场销路inspectionalhistoryusfdausfdasfda食品药品监督管理局otherregulatoryagencies其他管理机构customeraudits消费者协会other其他richardneedhamrflassociates15flowpreapprovalinspection认证前检查流程companypresentation3045minutes公司介绍3045分钟plantlayoutplanphotographs工厂布局平面图和照片productionareasaudit说明fda将审查的生产区域indicatewarehouseareas请注明仓库区indicateqclaboratorylocation标明qc实验室位置giveareasquaremeterseachworkshopwarehouseqclaboratory注明各车间仓库qc实验室面积平方米richardneedhamrflassociates16flowpreapprovalinspection认证前检查companypresentation3045minutes公司介3045分钟organizationalchart组织机构图whole公司是一个整体qualityunitqaqcorganizationalchart质量部门qaqc的组织机构图qualitysystem质量体系简介manufacturingprocess制造工艺概述richardneedhamrflassociates17flowpreapprovalinspection认证前检查qclaboratory56hours生产和qc实验室巡检56小时warehouses仓库productionareas生产区cleanfinishingarea洁净完成区labeling包装和标签qclaboratoryqc实验室waterairvacuumpressuresystems水通风真空压力系统richardneedhamrflassociates18flowpreapprovalinspection认证前检查流程recordsreview2212days文件和记录的审查2

201507FDA行业指南:分析方法验证(中英文)(上)

201507FDA行业指南:分析方法验证(中英文)(上)

201507FDA行业指南:分析方法验证(中英文)(上)Analytical Procedures and Methods Validation for Drugs and Biologics药品和生物制品分析方法验证Guidance for Industry行业指南U.S. Department of Health and Human ServicesFood and Drug AdministrationCenter for Drug Evaluation and Research (CDER)Center for Biologics Evaluation and Research (CBER)July 2015Pharmaceutical Quality/CMCAnalytical Procedures and Methods Validation for Drugs and BiologicsGuidance for IndustryAdditional copies are available from:Office of Communications, Division of Drug InformationCenter for Drug Evaluation and ResearchFood and Drug Administration10001 New Hampshire Ave., Hillandale Bldg., 4th FloorSilver Spring, MD 20993Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email:****************.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidan ces/default.htmand/orOffice of Communication, Outreach and DevelopmentCenter for Biologics Evaluation and ResearchFood and Drug Administration10903 New Hampshire Ave., Bldg. 71, Room 3128Silver Spring, MD 20993Phone: 800-835-4709 or 240-402-7800Email:************.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInf ormation/Guidances/default.htmU.S. Department of Health and Human ServicesFood and Drug AdministrationCenter for Drug Evaluation and Research (CDER)Center for Biologics Evaluation and Research (CBER)July 2015Pharmaceutical Quality/CMCAnalytical Procedures and Methods Validation for Drugs and Biologics药物和生物制品分析方法验证Guidance for Industry[1]行业指南This guidance represents the current thinking of the Food and Drug Administration (FDA or Agency) on this topic. It does not create any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff responsible for this guidance as listed on the title page.本指南代表了FDA对本专题的当前想法。

美国FDA分析方法验证指南中英文对照

美国FDA分析方法验证指南中英文对照

I. INTRODUCTIONThis guidance provides recommendations to applicants on submitting analytical procedures, validation data, and samples to support the documentation of the identity, strength, quality, purity, and potency of drug substances and drug products.1. 绪论本指南旨在为申请者提供建议,以帮助其提交分析方法,方法验证资料和样品用于支持原料药和制剂的认定,剂量,质量,纯度和效力方面的文件。

This guidance is intended to assist applicants in assembling information, submitting samples, and presenting data to support analytical methodologies. The recommendations apply to drug substances and drug products covered in new drug applications (NDAs), abbreviated new drug applications (ANDAs), biologics license applications (BLAs), product license applications (PLAs), and supplements to these applications.本指南旨在帮助申请者收集资料,递交样品并资料以支持分析方法。

这些建议适用于NDA,ANDA,BLA,PLA及其它们的补充中所涉及的原料药和制剂。

The principles also apply to drug substances and drug products covered in Type II drug master files (DMFs). If a different approach is chosen, the applicant is encouraged to discuss the matter in advance with the center with product jurisdiction to prevent the expenditure of resources on preparing a submission that may later be determined to be unacceptable.这些原则同样适用于二类DMF所涉及的原料药和制剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I. INTRODUCTIONThis guidance provides recommendations to applicants on submitting analytical procedures, validation data, and samples to support the documentation of the identity, strength, quality, purity, and potency of drug substances and drug products.1. 绪论本指南旨在为申请者提供建议,以帮助其提交分析方法,方法验证资料和样品用于支持原料药和制剂的认定,剂量,质量,纯度和效力方面的文件。

This guidance is intended to assist applicants in assembling information, submitting samples, and presenting data to support analytical methodologies. The recommendations apply to drug substances and drug products covered in new drug applications (NDAs), abbreviated new drug applications (ANDAs), biologics license applications (BLAs), product license applications (PLAs), and supplements to these applications.本指南旨在帮助申请者收集资料,递交样品并资料以支持分析方法。

这些建议适用于NDA,ANDA,BLA,PLA及其它们的补充中所涉及的原料药和制剂。

The principles also apply to drug substances and drug products covered in Type II drug master files (DMFs). If a different approach is chosen, the applicant is encouraged to discuss the matter in advance with the center with product jurisdiction to prevent the expenditure of resources on preparing a submission that may later be determined to be unacceptable.这些原则同样适用于二类DMF所涉及的原料药和制剂。

如果使用了其它方法,鼓励申请者事先和FDA药品评审中心的官员进行讨论,以免出现这种情况,那就是花了人力物力所准备起来的递交资料后来发现是不可用的。

The principles of methods validation described in this guidance apply to all types of analytical procedures. However, the specific recommendations in this guidance may not be applicable to certain unique analytical procedures for products such as biological, biotechnological, botanical, or radiopharmaceutical drugs.本指南中所述的分析方法验证的原则适用于各种类型的分析方法。

但是,本指南中特定的建议可能不适用于有些产品所用的特殊分析方法,如生物药,生物技术药,植物药或放射性药物等。

For example, many bioassays are based on animal challenge models, 39 immunogenicity assessments, or other immunoassays that have unique features that should be considered when submitting analytical procedure and methods validation information. 比如说,许多生物分析是建立在动物挑战模式,免疫原性评估或其它有着独特特性的免疫分析基础上的,在递交分析方法和分析方法验证资料时需考虑这些独特的性质。

Furthermore, specific recommendations for biological and immunochemical tests that may be necessary for characterization and quality control of many drug substances and drug products are beyond the scope of this guidance document.而且,许多原料药和制剂的界定和质量控制所需的生物和免疫化学检测并不在本指南的范围之内。

Although this guidance does not specifically address the submission of analytical procedures and validation data for raw materials, intermediates, excipients, container closure components, and other materials used in the production of drugsubstances and drug products, validated analytical procedures should be used to analyze these materials.尽管本指南并不专门叙述原料,中间体,赋形剂,包装材料及原料药和制剂生产中所用的其它物料的分析方法及分析方法验证资料的递交,但是应该应用验证过的分析方法来分析检测这些物质。

For questions on appropriate validation approaches for analytical procedures or submission of information not addressed in this guidance, applicants should consult with the appropriate chemistry review staff at FDA.对于本指南中未提及的关于分析方法验证和资料提交方面的问题,请向FDA相关的化学评审人员咨询。

This guidance, when finalized, will replace the FDA guidance for industry on Submitting Samples and Analytical Data for Methods Validation (February 1987). 本指南,一旦定稿,将取代FDA于1987年2月份发布的工业指南:分析方法验证所需提交的样品和分析资料。

II. BACKGROUNDEach NDA and ANDA must include the analytical procedures necessary to ensure the identity, strength, quality, purity, and potency of the drug substance and drug product, including bioavailability of the drug product (21 CFR 314.50(d)(1) and 314.94(a)(9)(i)).II. 背景每个NDA和ANDA都必需包括必要的分析方法以确保原料药和制剂的认定,剂量,质量,纯度和效力,还包括制剂的生物利用度(21 CFR 314.50(d)(1) 和314.94(a)(9)(i))。

FDA验证文件现场备查,可以不与DMF一起交。

Data must be available to establish that the analytical procedures used in testing meet proper standards of accuracy and reliability (21 CFR 211.165(e) and 211.194(a)(2)).必须要有资料来论证所用的分析方法是符合一定的准确度和可靠性标准的。

Methods validation is the process of demonstrating that analytical procedures are suitable for their intended use. The methods validation process for analytical procedures begins with the planned and systematic collection by the applicant of the validation data to support the analytical procedures.分析方法验证是论证某一分析方法适用于其用途的过程。

分析方法的验证过程是从申请者有计划地系统性收集验证资料以支持分析方法开始的。

The review chemist evaluates the analytical procedures and validation data submitted in the NDA or ANDA.审评化学家会对NDA或ANDA中的分析方法和验证资料进行评审。

On request from FDA, an NDA or ANDA applicant must submit samples of drug product, drug substance, noncompendial reference standards, and blanks so that the applicant's drug substance and drug product analytical procedures can be evaluated by FDA laboratories (21 CFR 314.50(e) and 314.94(a)(10)).一旦FDA有要求,则NDA或ANDA的申请者必须提交制剂,原料药,非药典对照品和空白以使FDA实验室能对申请者所用分析方法进行评审(21 CFR 314.50(e) and 314.94(a)(10))。

相关文档
最新文档