2012年四边形中考试题集
2012年山西中考数学真题卷含答案解析

山西省2012年高中阶段教育阶段学校招生统一考试数学10A(满分:120分 时间:120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求)1.计算-2-5的结果是( )A.-7B.-3C.3D.72.如图,直线AB ∥CD,AF 交CD 于点E,∠CEF=140°,则∠A 等于( )A.35°B.40°C.45°D.50° 3.下列运算正确的是( )A.√4=±2B.2+√3=2√3C.a 2·a 4=a 8D.(-a 3)2=a 64.为了实现街巷硬化工程高质量“全覆盖”,我省今年1~4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为( ) A.0.927×1010元 B.92.7×108元 C.9.27×1011元 D.9.27×109元5.如图,一次函数y=(m-1)x-3的图象分别与x 轴、y 轴的负半轴相交于点A 、B,则m 的取值范围是( )A.m>1B.m<1C.m<0D.m>06.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( )A.14B.13C.12D.237.如图所示的工件的主视图是()8.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,且EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A.13B.23C.12D.349.如图,AB是☉O的直径,C、D是☉O上的点,∠CDB=20°,过点C作☉O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°10.已知直线y=ax(a≠0)与双曲线y=kx(k≠0)的一个交点坐标为(2,6),则它们的另一个交点坐标是()A.(-2,6)B.(-6,-2)C.(-2,-6)D.(6,2)11.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE 的长是()A.5√3cmB.2√5cmC.485cm D.245cm12.如图是某公园的一角,∠AOB=90°,AB⏜的半径OA长是6米,C是OA的中点,点D在AB⏜上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.(12π-92√3)米2B.(π-92√3)米2 C.(6π-92√3)米2 D.(6π-9√3)米2第Ⅱ卷(非选择题,共96分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.不等式组{3-2x <5,x -2≤1的解集是 .14.化简x 2-1x 2-2x+1·x -1x 2+x +2x的结果是 . 15.某市民政部门举行“即开式福利彩票”销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元) 10 000 5 000 1 000 500 100 50 数量(个) 1 4 20 40 100 200如果花2元钱购买1张彩票,那么所得奖金不少于1 000元的概率是 .16.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 (用含有n 的代数式表示).17.图1是边长为30 cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.18.如图,在平面直角坐标系中,矩形OABC 的对角线AC 平行于x 轴,边OA 与x 轴正半轴的夹角为30°,OC=2,则点B 的坐标是 .三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本题共2个小题,第1小题5分,第2小题7分,共12分) (1)计算:(-5)0+√12cos 30°-(13)-1; (2)先化简,再求值.(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-√3.20.(本题7分)解方程:23x-1-1=36x-2.10B21.(本题6分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等的圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形;(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.22.(本题8分)今年太原市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”.某校德育处为了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)填空:该校共调查了名学生;(2)请分别把条形统计图和扇形统计图补充完整;(3)若该校共有3000名学生,请你估计全校对“诚信”最感兴趣的人数.23.(本题9分)如图,为了开发利用海洋资源,某勘测飞机欲测量一岛屿两端A、B的距离,飞机在距海平面垂直高度为100米的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D处测得端点B的俯角为45°,求岛屿两端A、B的距离.(结果精确到0.1米.参考数据:√3≈1.73,√2≈1.41)24.(本题10分)山西特产专卖店销售核桃,其进价为每千克40元.按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?25.(本题12分)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC 于点N,试判断线段OM与ON的数量关系,并说明理由.图1探究展示:小宇同学展示出如下正确的解法:解:OM=ON.证明如下:连结CO,则CO是AB边上的中线.∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:;(2)你有与小宇不同的思考方法吗?请写出你的证明过程;拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连结OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.图226.(本题14分)综合与探究:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q.试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形.若存在,请直接写出....符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.山西省2012年高中阶段教育阶段学校招生统一考试一、选择题1.A将有理数的减法转化为有理数的加法,-2-5=-2+(-5)=-7,故选A.2.B本题考查平行线的性质.因为∠CEF=140°,所以∠FED=40°,又AB∥CD,所以∠A=40°,故选B.3.D根据运算法则进行判断,√4=2,故A错误;由于有理数与无理数不能合并,故B错误;a2·a4=a6,故C错误;(-a3)2=(-1)2·(a3)2=a6,D正确,故选D.评析熟练掌握运算法则是解决此类问题的关键.4.D92.7亿=92.7×108=9.27×109,故选D.评析本题主要考查用科学记数法表示一个较大数的方法.熟记科学记数法的表示形式即a×10n或a×10-n(其中1≤|a|<10,n为整数)是解题关键,注意数字后带有单位时不可忽略其单位.5.B本题考查一次函数的性质,由图象知一次函数y=(m-1)x-3经过二、三、四象限,得m-1<0,解得m<1,故选B.6.A本题考查概率的计算,将摸球情况列树状图或列表如下:第一次第二次白球黑球白球白球,白球白球,黑球黑球黑球,白球黑球,黑球从树状图或列表法分析可知随机摸出一球,摸两次共有四种情况,其中两次都摸到黑球的情况只有一种,所以两次都摸到黑球的概率是14,故选A.7.B主视图即为从正面看到的图形,主视图看到的是一个梯形与一个三角形,故选B.8.C根据三角形面积公式及矩形的面积公式得矩形ABFE的面积是三角形ABM面积的2倍,矩形EFCD的面积是三角形CDN面积的2倍,故阴影部分的面积等于矩形ABCD的面积的一半,所以飞镖落在阴影部分的概率是12,故选C.9.B连结OC,则∠OCE=90°,由同弧所对的圆周角相等得∠A=∠CDB=20°,所以∠COE=40°,所以∠E=90°-40°=50°,故选B.10.C正比例函数图象与双曲线的图象的交点关于原点中心对称,所以由一个交点坐标为(2,6),可以推得另一个交点坐标是(-2,-6),故选C.11.D由菱形的性质知菱形边长为√32+42=5(cm),所以S菱形=12×6×8=5AE,解得AE=245(cm),故选D.评析菱形面积的两种计算方法:一是对角线乘积的一半,二是底乘以高.12.C因为∠AOB=90°,CD∥OB,所以∠OCD=90°,又因为C为OA的中点,所以OD=OA=2OC,所以∠BOD=∠CDO=30°,所以∠DOC=60°,所以CD=sin60°·OD=sin60°·OA=3√3,S阴影=S扇形AOD -S△DOC=60×π×62360-12×3×3√3=(6π-92√3)米2,故此题选C.二、填空题13.答案-1<x≤3解析解不等式3-2x<5得x>-1,解不等式x-2≤1得x≤3,所以不等式组的解集是-1<x≤3.评析 本题主要考查确定不等式组的解集的两种方法:一是数轴法,即分别将两个不等式的解集表示在数轴上,然后通过观察数轴确定不等式组的解集;二是口诀法,即根据大大取大,小小取小,大小小大中间找,大大小小为空集的原则确定不等式组的解集. 14.答案 3x解析x 2-1x 2-2x+1·x -1x 2+x +2x=(x+1)(x -1)(x -1)2·x -1x(x+1)+2x =1x +2x =3x.15.答案 1 4 000(或0.000 25)解析 观察统计表可以知道所得奖金不少于1 000元的彩票有1+4+20=25张,所以所得奖金不少于1 000元的概率是25100 000=14 000(或0.000 25).16.答案 4n-2(或2+4(n-1))解析 第一个图案有正三角形2个;第二个图案有正三角形6个;第三个图案有正三角形10个;第四个图案有正三角形14个;……,即后面的每一个图案比前面一个图案多4个正三角形,所以第n 个图案中正三角形的个数用含有n 的代数式表示是4n-2(或2+4(n-1)). 17.答案 1 000解析 设长方体的高为x cm,则长方体的宽为2x cm,由题图可知x+2x+x+2x=30,解得x=5,所以长方体的宽为10 cm,故长方体的长为30-2×5=20(cm),故长方体的体积为5×10×20=1 000(cm 3).18.答案 (2,2√3)解析 作BE ⊥y 轴于E,BF ⊥AC 交AC 于F,设BC 交y 轴于点M,AC 交y 轴于点N,由于OA 与x 轴正半轴的夹角为30°,所以∠CON=30°,因为OC=2,所以CN=1,ON=√3,在△CNM 中,因为∠MCN=30°,所以MN=√33,由题意得BF=EN=ON=√3,所以EM=2√33,因为△CNM ∽△BEM,所以EM NM =EBCN ,所以2√33√33=EB1,解得BE=2,所以点B 的坐标是(2,2√3).评析 本题主要考查矩形的性质、相似三角形的判定和性质以及坐标系中点的坐标特征的综合应用,在填空题中,属于较难题.三、解答题19.解析(1)原式=1+2√3×√32-3(4分)=1+3-3=1.(5分)(2)原式=4x2-9-4x2+4x+x2-4x+4(8分)=x2-5.(10分)当x=-√3时,原式=(-√3)2-5=3-5=-2.(12分)20.解析方程两边同时乘以2(3x-1),得4-2(3x-1)=3.(2分)化简,得-6x=-3,解得x=12.(6分)检验:x=12时,2(3x-1)=2×(3×12-1)≠0.所以,x=12是原方程的解.(7分)评分说明:检验时,将x=12代入原方程检验或写“经检验……”,均可给分.21.解析(1)在题图3中设计出符合题目要求的图形.(2分)(2)在题图4中画出符合题目要求的图形.(6分)评分说明:此题为开放性试题,答案不唯一,只要符合题目要求即可给分.22.解析(1)500.(2分)(2)补全条形统计图(如图1).图1(4分)补全扇形统计图(如图2).图2(6分)(3)3000×25%=750(人),或3000×125500=750(人).答:该校对“诚信”最感兴趣的学生约750人.(8分)23.解析过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,则四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=100,CD=500.(2分)在Rt△AEC中,∠C=60°,AE=100.∴CE=AEtan60°=√3=1003√3.(4分)在Rt△BFD中,∠BDF=45°,BF=100,∴DF=BFtan45°=1001=100.(6分)∴AB=EF=CD+DF-CE=500+100-1003√3≈600-1003×1.73≈600-57.67≈542.3(米).(8分)答:岛屿两端A、B的距离为542.3米.(9分)评分说明:其他解法请参照给分.24.解析(1)设每千克核桃应降价x元.(1分)根据题意,得(60-x-40)(100+x2×20)=2240.(4分)化简,得x2-10x+24=0.解得x1=4,x2=6.(6分)答:每千克核桃应降价4元或6元.(7分)(2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.(8分)此时,售价为60-6=54(元),5460×100%=90%.(9分)答:该店应按原售价的九折出售.(10分)25.解析(1)依据1:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合).(1分)依据2:角平分线的性质(或角平分线上的点到角的两边的距离相等).(2分)评分说明:考生答案只要与定理内容意思相同即可给分.(2)证明:∵CA=CB,∴∠A=∠B.∵O是AB的中点,∴OA=OB.∵DF⊥AC,DE⊥BC,∴∠AMO=∠BNO=90°.∴△OMA≌△ONB(AAS).(4分)∴OM=ON.(5分)评分说明:此题有多种证法,其他证法可参照给分.(3)OM=ON,OM⊥ON.(6分)(注:两个结论都正确只给1分,若考生此处未写两个结论,但在证明过程中有此结论,且证明正确,可不扣分)证明如下:证法一:如图1.连结CO,则CO是AB边上的中线.图1∵∠ACB=90°,∴OC=12AB=OA.(7分)又∵CA=CB,∴∠CAB=∠B=45°,∠1=∠2=45°, ∠AOC=∠BOC=90°. ∴∠2=∠CAB=45°,∴∠OCN=∠OAM=135°.(8分)∵FM ⊥MC,∴∠DMC=90°.∵∠3=∠CAB=45°,∴∠4=45°.∴∠3=∠4.∴DM=AM.(9分)∵∠ACB=90°,∴∠NCM=90°.又∵BN ⊥DE,∴∠DNC=90°.∴ 四边形DMCN 是矩形.∴DM=CN.∴AM=CN.(10分)∴△OAM ≌△OCN(SAS).∴OM=ON,∠5=∠6.(11分)∵∠AOC=90°,即∠5+∠7=90°.∴∠6+∠7=90°,即∠MON=90°.∴OM ⊥ON.(12分) 证法二:如图2.连结CO,则CO 是AB 边上的中线.图2∵∠ACB=90°,∴OC=12AB=OB.(7分) 又∵CA=CB,∴∠CAB=∠B=45°, ∠1=∠2=45°,∠AOC=∠BOC=90°. ∴∠1=∠B.(8分)∵BN ⊥DE,∴∠BND=90°.又∵∠B=45°,∴∠3=45°.∴∠3=∠B.∴DN=NB.同证法一可得,四边形DMCN 是矩形.∴DN=MC.(9分)∴MC=NB.(10分)∴△MOC ≌△NOB(SAS).∴OM=ON.(11分) ∠MOC=∠NOB.∴∠MOC-∠4=∠NOB-∠4. 即∠MON=∠BOC=90°.∴OM ⊥ON.(12分)评分说明:此题还有其他证法(如过点O 作OP ⊥AC 于点P,OQ ⊥BC 于点Q,通过证明Rt △OPM ≌Rt △OQN 得证),可参照给分.26.解析 (1)当y=0时,-x 2+2x+3=0,解得x 1=-1,x 2=3.∵点A 在点B 的左侧,∴A 、B 的坐标分别为(-1,0)、(3,0).当x=0时,y=3.∴C 点的坐标为(0,3).设直线AC 的解析式为y=k 1x+b 1(k 1≠0),则{b 1=3,-k 1+b 1=0,解得{k 1=3,b 1=3,∴直线AC 的解析式为y=3x+3.∵y=-x 2+2x+3=-(x-1)2+4.∴顶点D 的坐标为(1,4).(4分)评分说明:求出直线AC 的解析式给2分,求出B 、D 两点的坐标各1分,共4分.(2)抛物线上有三个这样的点Q,分别为Q 1(2,3),Q 2(1+√7,-3),Q 3(1-√7,-3).(7分)(3)过点B 作BB'⊥AC 于点F,使B'F=BF,则B'为点B 关于直线AC 的对称点.连结B'D 交直线AC 于点M,则点M 为所求.(8分)过点B'作B'E ⊥x 轴于点E.∵∠1和∠2都是∠3的余角,∴∠1=∠2. ∴Rt △AOC ∽Rt △AFB.∴CO BF =CA AB , 由A(-1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3.∴AC=√10,AB=4. ∴3BF =√104.∴BF=√.∴BB'=2BF=√.(10分)由∠1=∠2可得Rt △AOC ∽Rt △B'EB, ∴AO B'E =CO BE =CA BB',∴1B'E =3BE =√1024√10,即1B'E =3BE =512. ∴B'E=125,BE=365.∴OE=BE-OB=365-3=215. ∴B'点的坐标为(-215,125).(12分) 设直线B'D 的解析式为y=k 2x+b 2(k 2≠0). ∴{k 2+b 2=4,-215k 2+b 2=125,解得{k 2=413,b 2=4813,∴y=413x+4813.(13分) 由{y =3x +3,y =413x +4813,解得{x =935,y =13235, ∴M 点的坐标为(935,13235).(14分)评分说明:其他解法可参照给分.。
中考数学复习《四边形》经典题型及测试题(含答案)

中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。
2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题

2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题一、选择题二、填空题1. (2012陕西省3分)在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=2x+6-的图象无.公共点,则这个反比例函数的表达式是 ▲ (只写出符合条件的一个即可). 【答案】5y x=(答案不唯一)。
【考点】开放型问题,反比例函数与一次函数的交点问题,一元二次方程根与系数的关系。
【分析】设反比例函数的解析式为:k y x =, 联立y=2x+6-和k y x=,得k 2x+6x -=,即22x 6x+k 0-= ∵一次函数y=2x+6-与反比例函数k y x= 图象无公共点, ∴△<0,即268k 0<--(),解得k >92。
∴只要选择一个大于92的k 值即可。
如k=5,这个反比例函数的表达式是5y x=(答案不唯一)。
2. (2012广东湛江4分) 请写出一个二元一次方程组 ▲ ,使它的解是x=2y=1⎧⎨-⎩. 【答案】x+y=1x+2y=0⎧⎨⎩(答案不唯一)。
【考点】二元一次方程的解。
【分析】根据二元一次方程解的定义,围绕x=2y=1⎧⎨-⎩列一组等式,例如: 由x +y=2+(-1)=1得方程x +y=1;由x -y=2-(-1)=3得方程x -y=3;由x +2y=2+2(-1)=0得方程x +2y=0;由2x +y=4+(-1)=3得方程2x +y=3;等等,任取两个组成方程组即可,如x+y=1x+2y=0⎧⎨⎩(答案不唯一)。
3. (2012广东梅州3分)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是▲ (写出符合题意的两个图形即可)【答案】正方形、菱形(答案不唯一)。
【考点】平行投影。
【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行。
所以,在同一时刻,这块正方形木板在地面上形成的投影是平行四边形或特殊的平行四边形,例如,正方形、菱形(答案不唯一)。
2012年河北省中考数学试卷(含解析版)

2012年河北省中考数学试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,为负数的是( )A.0 B.-2 C.1 D.1 22.计算(ab)3的结果是( )A.ab3B.a3b C.a3b3D.3ab3.如图中几何体的主视图是( )A. B. C. D.4.下列各数中,为不等式组230,40xx->⎧⎨-<⎩的解的是( )A.-1 B.0 C.2 D.45.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是( )A.AE>BE B.AD=BCC.∠D=12∠AEC D.△ADE∽△CBE6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A .每两次必有1次正面向上B .可能有5次正面向上C .必有5次正面向上 D. 不可能有10次正面向上7.如图,点C 在∠A O B 的O B 边上,用尺规作出了C N ∥O A ,作图痕迹中,FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧8.用配方法解方程x 2+4x +1=0,配方后的方程是( )A .(x+2)2=3B .(x -2)2=3C .(x -2)2=5D .(x+2)2=59.如图,在□ABCD 中,∠A =70°,将□ABCD 折叠,使点D ,C 分别落在点F ,E 处(点F ,E 都在AB 所在的直线上),折痕为MN ,则∠A MF 等于( )A .70°B .40°C .30°D .20° 10.化简的结果是22111x x ÷--( ) A .21x - B .321x - C .21x + D .2(x+1)11.如图,两个正方形的面积分别为16和9,两阴影部分的面积分别为a ,b (a >b ),则a-b 等于( )A.7 B.6 C.5 D.412.如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC.其中正确的结论是( )A.①②B.②③C.③④D.①④卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小是,每小题3分,共18分,把答案写在题中横线上)13.-5的相反数是___________.14.如图,AB、CD相交于点O,AC⊥CD于点C,若∠B O D=38°,则∠A等于_______°.15.已知y=x-1,则(x-y)2+(y-x)+1的值为_______.16.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为________.17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1)……这样得到的20个数的积为________.18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1.用n个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则n的值为____________.三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:|-5|--3)0+6×(1132)+(-1)2.20.(本小题满分8分)如图,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC -CB.这两条公路围成等腰梯形ABCD,其中DC∥AB,AB:AD:DC=10:5:2.(1)求外环公路总长和市区公路长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h.返回时沿外环公路行驶,平均速度是80km/h,结果比去时少用了110h.求市区公路的长.某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表(1)a =_______,x乙=________; (2)请完成图11中表示乙变化情况的折线;(3)①观察图11,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=m x (x>0)的图象经过点D,点P是一次函数y=k x+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=k x+3-3k(k≠0)的图象一定经过点C;(3)对于一次函数y=k x+3-3k(k≠0),当y随x的增大而增大时,确定点P横坐标的取值范围(不必写出过程).如图1,点E是线段BC的中点,分别以B,C为直角顶点的△EAB和△EDC均是等腰直角三角形,且在BC的同侧.(1)AE和ED的数量关系为_________,AE和ED的位置关系为__________;(2)在图1中,以点E为位似中心,作△E GF与△EAB位似,点H是BC所在直线上的一点,连接GH,H D,分别得到了图2和图3.①在图2中,点F在BE上,△E GF与△EAB的相似比为1:2,H是EC的中点.求证:GH=H D,GH⊥H D.②在图3中,点F在BE的延长线上,△E GF与△EAB的相似比是k:1,若BC=2,请直接写出C H的长为多少时,恰好使得GH=H D且GH⊥H D(用含k的代数式表示).某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,变长(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长40cm 的薄板,获得的利润是26元;(利润=出厂价-成本价) ①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线y =ax 2+bx +c(a ≠0)的顶点坐标是(2b a-,244ac b a-).如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CB O=45°,CD∥AB,∠CDA =90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BC P=15°时,求t的值;(3)以点P为圆心,P C为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.如图1和图2,在△ABC中,AB=13,BC=14,cos∠ABC=5.13探究如图1,A H⊥BC于点H,则A H=________,AC=________,△ABC的面积S△ABC =________.拓展如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD的垂线,垂足为E,F.设BD=x,AE=m,C F=n.(当点D与点A重合时,我们认为S△ABD=0)(1)用含x,m或n的代数式表示S△ABD和S△CBD;(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x的值,有时只能确定唯一的点D,指出这样的x的取值范围.发现请你确定一条直线,使得A,B,C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.2012年河北省中考数学试卷参考答案与试题解析1.【答案】B【思路分析】考点解剖:本题考查负数的概念与有理数的分类,解题的关键掌握有理数的概念.【解题思路】直接根据负数的概念,可以确定其中的负数只有-2.解答过程:【解答】A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【规律总结】对提供的实数,确定其是正数还是负数时,往往先对其进行化简,再与0进行大小比较,大于零即为正数、小于零即为负数.2.【答案】C【思路分析】考点解剖:本题考查了幂的运算,解题的关键是正确掌握积的乘方法则.【解题思路】积的乘方等于把每一个因式分别乘方,再把所得的幂相乘.解答过程:【解答】把其中的因式a、b分别乘方,得a3b3,结果为a3b3, 故选C.【规律总结】进行幂的运算时,关键是要正确确定其中的运算法则,防止滥用公式,而导致出现错误.3.【答案】A【思路分析】考点解剖:本题考查了对几何体的三视图的认识,解题的关键是正确根据三视图的特征,确定平面图形.【解题思路】主视图也就是从几何体的正面观察,得到的平面图形.解答过程:【解答】从正面观察这个几何体,得到的平面图形是左、中、右三个矩形,其中左、右两个矩形的大小相同,中间一个是小于两边的矩形.因此,符合题意的主视图是A, 故选A.【规律总结】三个视图中,主视图反映了物体的长度和高度并反映上下、左右的位置关系;俯视图反映了物体的长度和宽度,并反映了物体左右、前后的位置关系;左视图反映了物体的高度和宽度,并反映了物体上下、前后的位置关系.三视图之间的对应关系:主、俯长相等;主、左高平齐;俯、左宽相等.4.【答案】C【思路分析】考点解剖:本题考查了不等式组的解法,解题的关键是正确解答不等式,并能够确定几个不等式组成不等式组的解集.【解题思路】分别求得几个不等式的解集,2x-3>0的解集为x>32、x-4<0的解集为x<4,再确定它们的公共部分为:32<x<4,,进而确定符合条件的特殊解.解答过程:【解答】分别求得几个不等式的解集,2x-3>0的解集为x>32、x-4<0的解集为x<4,再确定它们的公共部分为:32<x<4,则所给的数中是不等式的解的有2,故选C.【规律总结】确定不等式组的解集可采用口诀:(1)小小取小:都是小于号的取小于号后面较小的那个数;(2)大大取大:都是大于号的取大于号后面较大的那个数;(3)大小小大中间找:大于小的小于大的中间的部分即为解集;(4)大大小小无处找:大于大的小于小的不等式组无解.5.【答案】D【思路分析】考点解剖:本题考查了垂径定理、圆周角定理,解题的关键正确掌握垂径定理、圆周角定理.【解题思路】根据圆的垂径定理知道:点E是AB的中点、CD垂直平分AB所对的两条弧AB、ADB,∠AEC=90°、∠D的度数无法确定;根据圆周角性质,可以知道:∠D=∠B、∠A=∠C,因此,可以确定图形中隐含的三角形相似.解答过程:【解答】∵CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,∴AE=BE,AC BC,,故A、B错误;∵∠AEC不是圆心角,∴∠D≠12∠AEC,故C错误;∵∠CEB=∠AED,∠DAE=∠BCE,∴△ADE∽△CBE,故C正确.故选D.【规律总结】垂径定理往往隐含着图形中存在着的相等弧、相等的角.同弧所对的圆周角相等,为图形中构造三角形相似架设了桥梁.6.【答案】B【思路分析】考点解剖:本题考查了概率与频率之间的关系,解题的关键正确理解概率与频率之间的内在联系.【解题思路】掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是12,因此,平均每两次中有1次正面向上或有1次反面向上.解答过程:【解答】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,所以掷一枚质地均匀的硬币10次,可能有5次正面向上;故选B.【规律总结】随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.为了说明这种规律,我们把这个常数称为这个随机事件的概率.它从数量上反映了随机事件发生的可能性的大小,而频率在大量重复试验的前提下可近似地作为这个事件的概率.7.【答案】D【思路分析】考点解剖:本题考查了平行线的判定、尺规作图,解题的关键正确掌握基本的尺规作图方法.【解题思路】先根据条件确定图形中相等的角,再用尺规作一个角等于已知角的方法解决问题.解答过程:【解答】由图形和条件可以知道:∠A O B=∠N CB,根据用尺规作一个角等于已知角的方法,即可知道FG是以点E为圆心,D M为半径的弧, 故选D.【规律总结】解答这类问题的一般步骤,往往是先根据问题条件,再确定隐含在图形中的边角之间的关系,从而解决问题.8.【答案】A【思路分析】考点解剖:本题考查了等式的性质和配方法,解题的关键正确理解等式的性质,并熟练掌握配方法的意义和一般方法.【解题思路】方法一:在方程的两边同时加上3,使方程的一边化为完全平方式;方法二:也可以先将方程中的常数项移至方程的另一边,再在方程的两边同时加上4.解答过程:【解答】方法一:在方程的两边同时加上3,得x 2+4x +4=3,即:(x +2)2=3;方法二:也可以先将方程中的常数项移至方程的另一边,得得x 2+4x =-1,再在方程的两边同时加上4,得得x 2+4x +4=-1+4,即:(x +2)2=3.故选A ﹒【规律总结】配方法的一般步骤:1.方程两边同除以二次项系数,化二次系数为1;2.移项,使方程左边为二次项和一次项,右边为常数项;3.配方,方程两边都加上一次项系数一半的平方,把原方程化为(x +a )2=b 的形式.9.【答案】B【思路分析】考点解剖:本题考查了平行四边形性质和轴对称图形的性质,解题的关键是熟练掌握灵活应用平行四边形性质和轴对称图形的性质将问题进行转化.【解题思路】根据题意知道∠D MN =∠FMN 、∠D =∠MF E ,再根据平行四边形的性质,可以得到∠MF A =∠A =70°.再应用三角形内角和定理可以求得∠A MF 的度数. 解答过程:【解答】根据题意知道四边形MF E N 与四边形M DC N 关于折痕MN 成轴对称,则∠D MN =∠FMN ,即∠D MF =2∠D MN 、∠MF E =∠D .又因为∠A +∠D =180°、∠MF A +∠MF E =180°,所以∠MF A =∠A =70°.因为∠A MF+∠MF A +∠A =180°,所以∠A MF =40°. 故选B .【规律总结】解答这类问题时,往往需要灵活应用轴对称图形隐含的边、角之间的相等关系解决问题.10.【答案】C【思路分析】考点解剖:本题考查了分式的运算,解题的关键熟练掌握因式分解和约分.【解题思路】先将除法运算转化为乘法运算,并把分子分母因式分解,再进行约分计算. 解答过程: 【解答】22111x x ÷--=2(1)(1)(1)x x x ⨯--+=21x +,故选择C. 【规律总结】分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化.11.【答案】A【思路分析】考点解剖:本题考查了同学们整体、转化数学思想的形成,解题的关键是灵活地将陌生的数学问题转化为熟悉的问题.【解题思路】运用整体思想,把求a-b的问题转化为与已知的两个正方形的面积有关的计算.解答过程:【解答】令重叠部分的面积为m,则a-b=(16+m)-(9+m)=16-9=7.【规律总结】解答这类问题时,往往需要灵活地从整体出发,善于将待求的问题进行转化.12.【答案】D【思路分析】考点解剖:本题考查了二次函数的解析式确定、图象信息,解题的关键是正确从图象中获取相关信息,并结合问题条件进行解题.【解题思路】根据抛物线上的点A坐标,可以直接确定y1的解析式,即知道a值,进而确定点A、B、C的坐标以及当x=0时,y1、y2的值,从而解决问题.解答过程:【解答】由图象可以知道y2的图象全部在x轴上方,所以无论x取何值,y2的值总是正数.∵抛物线y1=a(x+2)2-3过点A(1,3),∴a(1+2)2-3=3,∴a=23,即y1=23(x+2)2-3,当x=0时,y1=-13、y2=112,则y2-y1=356;当y=3时,23(x+2)2-3=3,解得x1=-5、x2=1,即A(1,3)、B(-5,3),则AB=6;当y=3时,y2=12(x-3)2+1,解得x1=5、x2=1,即A(1,3)、C(5,3),则AC=4;∴2AB=3AC.因此,其中正确的有①④.故选D.【规律总结】解答这类问题,往往需要综合应用所学的数学知识,从二次函数的图象性质、解析式的求法角度灵活运用,正确获取相关信息进行解答.有时还需要应用淘汰法加以选择.13.【答案】5【思路分析】考点解剖:本题考查了实数的相关概念,解题的关键正确理解实数相反数的意义.【解题思路】直接相反数的意义确定,只有符号不同的两个数叫做互为相反数.解答过程:【解答】-5的相反数是5,故填5﹒【规律总结】正数的相反数是负数、负数的相反数是正数、0的相反数是0.14.【答案】52°【思路分析】考点解剖:本题考查了垂直定义、三角形内角和定理、对顶角性质,解题的关键是灵活应用垂直定义、三角形内角和定理和对顶角性质,使待求问题得以转化.【解题思路】根据垂直定义知道:∠AC O=90°,再根据对顶角性质可以知道∠A O C=∠B O D =38°,最后应用三角形内角和定理确定∠A的度数.解答过程:【解答】∵∠BOD=38°,∴∠AOC=38°,∵AC⊥CD于点C,∴∠A=90°﹣∠AOC=90°﹣38°=52°.故答案为52°.【规律总结】解答这类问题时,往往借助于三角形内角和、外角或平行线的相关性质,使问题得以转化.15.【答案】1【思路分析】考点解剖:本题考查了代数式的值,解题的关键是灵活对条件和问题进行适当变形.【解题思路】将y=x-1变形为x-y=1,再代入其中进行计算求得结果.解答过程:【解答】(x-y)2+(y-x)+1=(x-y)2-(x-y)+1=1-1+1=1,故填1﹒【规律总结】整体思想是指淡化问题的细节,将结构相同的部分看作一个整体的解题思想,它实质上是化归思想的一种具体的体现.恰当地使用整体思想解题,可以将复杂问题简单化,取到事半功倍的效果,但在使用前一定要将问题的细节分析清楚,以免弄巧成拙,产生错误..16.【答案】3 4【思路分析】考点解剖:本题考查了等可能条件下的概率,解题的关键正确理解等可能条件下的概率的意义.【解题思路】先确定这个等可能事件下共有多少种等可能的结果,再确定所要研究的事件可能出现的结果数目,从而应用概率计算公式求解.解答过程:【解答】因为第三个棋子可能落在其余四个位置的格点上,而以这枚棋子所在格点与已知格点为顶点的三角形的格点有3个,因此,以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为34.故答案为:34﹒【规律总结】确定等可能条件下的概率时,一定确定好等可能事件下共有等可能发生的结果数目以及所要研究的事件可能出现的结果数.17.【答案】21【思路分析】考点解剖:本题考查了阅读理解能力和探索规律的能力,解题的关键正确阅读规则,确定其中隐含的内在规律.【解题思路】根据报数游戏规则,可以知道:第n位同学报(1n+1).不妨先求得到的第2个数的积、得到的第3个数的积、得到的第4个数的积,并从中发现隐含在其中的规律.解答过程:【解答】第2个数的积为(11+1)(12+1)=2×(12+1)=3、得到的第3个数的积为3×(13+1)=4、得到的第4个数的积为4×(14+1)=5、得到的第n个数的积为n×(1n+1)=n+1.因此,这样得到的第20个数的积为21.故答案为:21.【规律总结】解决有探索规律的问题,往往先从特殊的问题进行入手,再对其进行一般化,从而获取一般化的结论.18.【答案】6【思路分析】考点解剖:本题考查了正多边形的性质,解题的关键是熟练应用正多边形的边数与内角的数量关系进行解题.【解题思路】先求得正八边形的每个内角的度数,再确定所求的中间一个正多边形的内角度数,从而根据多边形的外角和为360°,进而确定其边数.解答过程:【解答】正六边形的每个内角都是120°,则所求的中间一个正多边形的内角度数360°-120°-120°=120°,则这个多边形的每个外角度数为180°-120°=60°,即n=360°÷60°=6,故答案为:6.【规律总结】解决与正多边形边、角有关的问题时,往往从其外角和以及每个外角的度数进行如手进行思考,较为简捷.19【答案】4【思路分析】考点解剖:本题考查了实数的混合运算,解题的关键是熟练掌握实数的混合运算法则.【解题思路】观察本题中的算式,不妨先对算式中的绝对值、乘方和乘法同时进行运算,再进行加减运算.解答过程:【解答】|-5|--3)0+6×(1132-)+(-1)2=5-1+(2-3)+1=4.【规律总结】实数混合运算的顺序:先算乘方和开方,再算乘除,最后算加减.如果遇到括号,则先进行括号里的运算.当然,计算时,还要根据具体的算式,确定恰当的运算顺序求得正确的计算结果.20.【答案】10【思路分析】考点解剖:本题考查了列代数式和列方程解决实际问题的能力,解题的关键是从实际问题中获取等量关系式.【解题思路】用含有相同参数的代数式分别表示外环公路总长、市区公路长,进而解决问题(1);问题(2)中,隐含着这样一个相等关系式:去时所用时间-返回时所用时间=110h ,进而建立方程解决问题.解答过程:【解答】(1)设AB =10x km ,则AD =5x km ,CD =2x km .∵四边形ABCD 是等腰梯形,DC ∥AB ,∴BC =AD =5x ,∴AD +DC +CB =12x ,∴外环公路总长和市区公路总长的比为12x :10x =6:5;(2)由(1)可知,市区公路的长为10x km ,外环公路的长为12x km .由题意,得10121408010x x =+,解这个方程,得x =1,∴10x =10.答:市区公路的长为10km .【规律总结】应用方程解决实际问题,其关键根据实际问题,寻找等量关系式建立恰当的方程.21.【答案】(1)见解析(2)见解析(3)见解析【思路分析】考点解剖:本题考查了从统计图表中获取信息,应用数据的集中程度、离散程度的知识进行解决实际问题.【解题思路】(1)根据他们的总成绩相同可以求得a值,并应用平均数的意义得到可以解决;(2)直接可以补全统计图;(3)只要求得乙成绩的方差,即可联系平均数确定应该是谁将被选中.解答过程:【解答】(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30﹣7﹣7﹣5﹣7=4,x乙=30÷5=6,故答案为:4,6;(2)如图所示:;(3)①乙,S2乙=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于S2乙<S2甲,所以上述判断正确;②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.【规律总结】确定谁被选中参加某项活动,往往从综合数据的集中程度和离散程度进行思考.一组数据的方差越大,这组数据越稳定.22.【答案】见解析【思路分析】考点解剖:本题考查了平行四边形性质、反比例函数、一次函数的图象性质,解题的关键是灵活应用待定系数法解决相关问题.【解题思路】(1)根据图形性质,可以看成是点D 由点A 平移而得,并应用待定系数法求得反比例函数解析式;(2)直接将点C 坐标代入其中,看是否符合一次函数解析式,从而进行说理;(3)由于一次函数是y 随x 的增大而增大,所以整个图象从左到右是呈上升趋势,即分别求得过点C 分别与x 、y 垂直时直线与双曲线相交时的点的横坐标.解答过程:【解答】(1)由题意,得AD =CB =2,故点D 的坐标为(1,2).∵反比例函数y =m x 的图象经过点D (1,2),∴2=1m .∴m =2,∴反比例函数的解析式为y =2x ;(2)当x =3时,y = k x +3-3k =3,∴一次函数y =k x +3-3k(k≠0)的图象一定过点C ;(3)设点P 的横坐标为a ,23<a <3.【规律总结】确定反比例函数解析式时,往往只需要知道图象上的一个点的坐标即可.确定一次函数系数的取值范围问题,往往通过y 与x 之间的增减性关系来确定.23.【答案】(1)见解析(2)见解析【思路分析】考点解剖:本题考查了三角形全等判定、性质和三角形相似的判定、性质以及条件探索能力,解题的关键是正确应用三角形全等、三角形相似的判定和性质解题.【解题思路】(1)直接知道其中的△EAB ≌△ECD ,从而可以得到AE =DE 、∠AED =90°;(2)①可以得到GF =H C 、∠GFH =∠C =90°、FH =CD ,则有△HGF ≌△D H C ,从而可以得到GH =H D ,GH ⊥H D ;②要使得GH =H D 且GH ⊥H D ,必须具备的条件是△HGF ≌△D H C ,即C H =GF =k 时,恰好有FH =CD .解答过程:【解答】(1)∵点E 是线段BC 的中点,分别BC 以为直角顶点的△EAB 和△EDC 均是等腰三角形,∴BE=EC=DC=AB ,∠B=∠C=90°,∴△ABE ≌△DCE ,∴AE=DE ,∠AEB=∠DEC=45°,∴∠AED=90°,∴AE ⊥ED .故答案为:AE=ED,AE⊥ED;(2)①证明:由题意,∠B=∠C=90°,AB=BE=EC=DC.∵△E GF与△EAB位似且相似比为1:2,∴∠GF E=∠B=90°,GF=12AB,E F=12EB,∴∠GF E=∠C.∵E H=H C=1 2EC,∴GF=H C,FH=F E+E H=12EB+12EC=12BC=EC=CD,∴△HGF≌△D H C,∴GH=H D,∠GHF=∠H DC.又∵∠H DC+∠D H C=90°,∴∠GHF+∠D H C=90°,∴∠GH D=90°,∴GH⊥H D;②根据题意得出:∵当GH=HD,GH⊥HD时,∴∠FHG+∠DHC=90°,∵∠FHG+∠FGH=90°,∴∠FGH=∠DHC,∴DH GHFGH DHCDCH GFH=⎧⎪∠=⎨⎪∠=⎩,∴△GFH≌△HCD,∴CH=FG,∵EF=FG,∴EF=CH,∵△EGF与△EAB的相似比是k:1,BC=2,∴BE=EC=1,∴EF=k,∴CH的长为k.【规律总结】这是一道融三角形全等、三角形相似和条件探索于一体的简单综合题.解答时,需要应用类比的方法、综合应用所学数学知识解决问题.24.【答案】(1)y=2x+10(2)见解析【思路分析】考点解剖:本题考查了应用一次函数、二次函数解决实际问题的能力,解题的关键是对于实际问题能够灵活地构建恰当的数学模型,并应用其相关性质加以解答.【解题思路】(1)由每张薄板的出厂价是薄板的边长一次函数,根据表格中的对应值即可求得其函数关系式;(2)由于利润=出厂价-成本价,即从(1)中的函数关系中减去成本价,可得一张薄板的利润与边长之间的二次函数关系式,进而可确定边长为某值时对应的函数的最大值. 解答过程:【解答】(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为k x 元,则y =k x +n .由表格中的数据,得5020,7030.k n k n =+⎧⎨=+⎩ 解得2,10.k n =⎧⎨=⎩,所以y =2x +10;(2)①设一张薄板的利润为P 元,它的成本价为m x 2元,由题意, 得P =y -m x 2=2x +10-m x 2.将x =40,P =26代入P =2x +10-m x 2中, 得26=2×40+10-m×402,解得m =125,所以P =-125x 2+2x +10;②因为a =-125<0,所以,当x =-22512225ba=-=⎛⎫⨯- ⎪⎝⎭(在5~50之间)时,P 最大值=22141024253514425ac b a⎛⎫⨯-⨯- ⎪-⎝⎭==⎛⎫⨯- ⎪⎝⎭,即出厂一张边长为25cm 的薄板,获得的利润最大,最大利润是35元.【规律总结】对于生活中的实际问题,要能够抓住隐含中其中的数量关系,根据变量之间的变化关系确定适当的数学函数模型进行解答. 25.【答案】(1)(0,3)(2)(3)1或4或5.6【思路分析】考点解剖:本题考查了勾股定理、解直角三角形和直线与圆相切的性质,解题的关键灵活应用三角形中的边角关系构造直角三角形解决问题,并根据点的运动位置确定时直线与圆相切时的性质.【解题思路】(1)直接求得O C 的长度;(2)先求得OP 的长度,再确定运动的路程PQ 长度,进而求得时间t 的值;(3)⊙P 与四边形ABCD 的边(或边所在的直线)相切,其实质隐含了三种情况进行分类讨论. 解答过程:【解答】(1)∵∠BC O =∠CB O =45°,∴O C =O B =3.又∵点C 在y 轴的正半轴上,∴点C 的坐标为(0,3);(2)当点P 在点B 的右侧时,如图2.由∠BC P =15°,得∠P C O =30°,故OP =O C t a n30°。
中考专题复习四边形

基础知识点练习:1.如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.2.已知一个多边形的内角和是它的外角和的3倍,那么这个多边形的边数是_________.3.平行四边形ABCD的周长是18,三角形ABC的周长是14,则对角线AC的长是.4.已知平行四边形ABCD的面积为4,O为两对角线的交点,则△AOB的面积是___________.(一)例题讲解例1 等腰△ABC中AB=AC,D为BC上的一动点,DE∥AC,DF∥AB,则DE+DF是否随D点变化而变化?若不变化请证明.例2. 如图,在ABCD中,E为CD的中点,连结AE并延长交BC的延长线于点F ,求证:S △ABF=S平行四边形ABCD.例3如图,已知在□ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:四边形GEHF是平行四边形.例4.如图,直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P•从A开始沿AD边向D以1cm/s 的速度运动,动点Q从点C开始沿CB以3cm/s的速度向点B运动.P、Q同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为ts,•问t为何值时.四边形PQCD是平行四边形.例5.图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE、CD为邻边作□CDFE,过点C作CG∥AB 交EF与点G.连接BG、DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由.(2)求证:△BCG≌△DCE.练习1如图,在ABCD中,对角线AC、BD相交于点O,E、F•是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A. OE=OFB. DE=BFC. ∠ADE=∠CBFD. ∠ABE=∠CDFAB D CEF2如图,在ABCD 中,已知对角线AC 和BD 相交于点O ,△AOB•的周长为15, AB =6,那么对角线AC +BD =_______. 矩形、菱形、正方形1.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形 2.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( ) A .4 B .3 C .2 D .13.如图在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD 的周长为( )A .16aB .12aC .8aD .4a4.在右图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为5.如图在矩形ABCD 中,对角线AC BD ,交于点O ,已知120 2.5AOD AB ∠==,,则AC 的长为. (一)例题讲解例1已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE △≌△;(2)将DCE △绕点D 顺时针旋转90得到DAE '△,判断四边形E BGD '是什么特殊四边形?并说明理由.例2如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是 BE BC CE ,,的中点.(1)证明四边形EGFH 是平行四边形;(2)在(1)的条件下,若EF BC ⊥,且12EF BC =,证明平行四边形EGFH 是正方形.1.对角线互相垂直平分的四边形是( )A .平行四边形、菱形B .矩形、菱形C .矩形、正方形D .菱形、正方形D B O A A B C D O A B DA B C DA B CD E F E ' GB G A E FH D C2.顺次连接菱形各边中点所得的四边形一定是( )A.等腰梯形B.正方形C.平行四边形D.矩形3.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形 D .当AC=BD 时,它是正方形4.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是( ) A .四边形AEDF 是平行四边形B .如果90BAC ∠=,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是正方形5.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于( ) A .43.33 C .42.86.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( ) A .5cm B .8cm C .9cm D .10cm7.如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1)求证:BOE DOF △≌△;(2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.8.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交 ∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.9.如图,将边长为8cm 的正方形ABCD 的四边沿直线l 向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A 所经过的路线的长是________cm .第3题 D A A F C D B E 第4 题B FC E D A 第5题 A O B E 第6题 F D OCBEAA BCE F M NOFE MD CB A10如图,先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB 、AD 分别落在x 轴、y 轴上(如图①所示),•再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图②所示),若AB =4,BC =3,则图①和图②中,点B 的坐标为________,点C 的坐标为______.11如图,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE ,垂足为F . (1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.12 已知:如图,D是△ABC 的边。
全国中考数学平行四边形的综合中考真题汇总附答案

∠ B,∠ D 都不是直角,则当∠ B 与∠ D 满足等量关系
时,仍有 EF=BE+DF;
(3)联想拓展
如图 3,在△ ABC 中,∠ BAC=90°,AB=AC,点 D、E 均在边 BC 上,且∠ DAE=45°,猜想 BD、DE、EC
满足的等量关系,并写出推理过程。
【答案】(1)详见解析;(2)详见解析;(3)详见解析. 【解析】 试题分析:(1)把△ ABE 绕点 A 逆时针旋转 90°至△ ADG,可使 AB 与 AD 重合,证出 △ AFG≌ △ AFE,根据全等三角形的性质得出 EF=FG,即可得出答案; (2)把△ ABE 绕点 A 逆时针旋转 90°至△ ADG,可使 AB 与 AD 重合,证出△ AFE≌ △ AFG, 根据全等三角形的性质得出 EF=FG,即可得出答案;
BCFD=3× 3
3=9
3
,S△
ACF=
1 2
×3× 3
3 = 9 3 ,S = 平行四边形 ADBC 27 3 .
2
2
【点睛】
本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直
角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考
题型.
2.如图所示,矩形 ABCD 中,点 E 在 CB 的延长线上,使 CE=AC,连接 AE,点 F 是 AE 的 中点,连接 BF、DF,求证:BF⊥DF.
∠ BAD=60°,∴ ∠ BAD=∠ ABC=60°,∵ E 为 AB 的中点,∴ AE=BE,又∵ ∠ AEF=∠ BEC,
∴ △ AEF≌ △ BEC,在△ ABC 中,∠ ACB=90°,E 为 AB 的中点,∴ CE= 1 AB,BE= 1 AB,
2012年北京中考数学试题分析第24题:旋转与轴对称变换、四边形内角和
2012年北京中考数学第24题:旋转与轴对称变换、四边形内角和24.在ABC △中,BA BC BAC =∠=α,,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ 。
(1) 若α=60︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;(2) 在图2中,点P 不与点B M ,重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明;(3) 对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围。
(2)连接PC 、AD ,易证APD CPD ≅V V∴AP=PC ∠ADB=∠CDB ∠P AD=∠PCD 又∵PQ =P A ∴PQ =PC ,∠ADC =2∠CDB ,∠PQC =∠PCD =∠P AD 所以∠P AD +∠PQD =∠PQC +∠PQD =180°所以∠APQ +∠ADC =360°-(∠P AD +∠PQD )=180°2α-∴∠ADC =180°-∠APQ =1802α-∴2∠CDB =1802α-∴∠CDB =90α- (3)∠CDB =90α-且PQ =QD ∴∠P AD =∠PCQ =∠PQC =2∠CDB =1802α-∵点P 不与点B 、M 重合 ∴∠BAD >∠P AD >∠MAD所以21802ααα>︒->∴4560α︒<<︒心得体会:由等腰三角形与底边中线应想到轴对称。
此题可设∠PAC=β,可得∠CPQ=2(900-β)-2α 进而求得∠PCQ=α+β,∠ACD=α=∠BAC,所以AB ∥CD , 所以∠CDB =∠ABD=90α- D 图1B Q AM (P )M A Q B 图2P。
天津市2012年中考数学真题试题(带解析)
2012年中考数学精析系列——天津卷(本试卷满分120分,考试时间100分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)(2012天津市3分)2cos60 的值等于【】(A)1 (B(C(D)2【答案】A。
【考点】特殊角的三角函数值。
【分析】根据cos60°=12进行计算即可得解:2cos60°=2×12=1。
故选A。
(2)(2012天津市3分)下列标志中,可以看作是中心对称图形的是【】【答案】B。
【考点】中心对称图形。
【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解:A、C、D都不符合中心对称的定义。
故选B。
(3)(2012天津市3分)据某域名统计机构公布的数据显示,截至2012年5月21日,我国“.NET”域名注册量约为560 000个,居全球第三位.将560 000用科学记数法表示应为【】(A)560×103(B)56×104(C)5.6×105(D)0.56×106【答案】C。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。
在确定n的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0)。
560 000一共6位,从而560 000=5.6×105。
故选C。
(4)(2012天津市3的值在【】(D)(C)(B)(A)(A)2到3之间(B)3到4之间(C)4到5之间(D)5到6之间【答案】B。
【考点】估算无理数的大小。
【分析】利用”夹逼法“得出的范围:∵4 <6 < 9 23<。
2012年全国中考数学压轴题分类解析汇编_专题4_三角形四边形存在性问题
2012年全国中考数学压轴题分类解析汇编专题4:三角形四边形存在性问题24. (2012黑龙江龙东地区10分)如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,,点C的坐标为(-18,0)。
(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由。
【答案】解:(1)过点B作BF⊥x轴于F,在Rt△BCF中∵∠BCO=45°,BC=12,∴CF=BF=12 。
∵C 的坐标为(-18,0),∴AB=OF=6。
∴点B的坐标为(-6,12)。
(2)过点D作DG⊥y轴于点G,∵OD=2BD,∴OD=23 OB。
∵AB∥DG,∴△ODG∽△OBA 。
∵D G O D O G2AB O B O A3===,AB=6,OA=12,∴DG=4,OG=8。
∴D(-4,8),E(0,4)。
设直线DE解析式为y=kx+b(k≠0)∴4k b8b4-+=⎧⎨=⎩,解得k1b4=-⎧⎨=⎩。
∴直线DE解析式为y=-x+4。
(3)结论:存在。
点Q 的坐标为:( ,-),(- ,),(4,4),(-2,2)。
【考点】一次函数综合题,等腰直角三角形判定和性质,相似三角形判定和性质,待定系数法,直线上点的坐标与方程的关系,菱形的判定和性质。
【分析】(1)构造等腰直角三角形BCF ,求出BF 、CF 的长度,即可求出B 点坐标。
(2)已知E 点坐标,欲求直线DE 的解析式,需要求出D 点的坐标.构造△ODG∽△OBA,由线段比例关系求出D 点坐标,从而可以求出直线DE 的解析式。
(3)如图所示,符合题意的点Q 有4个:设直线y=-x+4分别与x 轴、y 轴交于点E 、点F ,则E (0,4),F (4,0),OE=OF=4,。
2012年中考数学试题及答案
2012年湖南省张家界市中考数学试卷2012年湖南省张家界市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)2.(2009•江苏)下面四个几何体中,左视图是四边形的几何体共有()4.(2012•张家界)如图,直线a、b被直线c所截,下列说法正确的是()5.(2012•张家界)某农户一年的总收入为50000元,如图是这个农户收入的扇形统计图,则该农户的经济作物收入为()6.(2012•张家界)实数a、b在轴上的位置如图所示,且|a|>|b|,则化简的结果为()8.(2012•张家界)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()二、填空题(共8小题,每小题3分,满分24分)9.(2011•随州)分解因式:8a2﹣2=_________.10.(2009•重庆)已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为_________.11.(2012•张家界)一组数据是4、x、5、10、11共有五个数,其平均数为7,则这组数据的众数是_________.12.(2012•张家界)2012年5月底,三峡电站三十二台机组全部投产发电,三峡工程圆满实现2250万千瓦的设计发电能力.据此,三峡电站每天能发电约540000000度,用科学记数法表示应为_________度.13.(2012•张家界)已知m和n是方程2x2﹣5x﹣3=0的两根,则=_________.14.(2012•张家界)已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为_________.15.(2012•张家界)已知,则x+y=_________.16.(2012•张家界)已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为_________.三、解答题(共9小题,满分72分)17.(2012•张家界)计算:.18.(2012•张家界)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.(2012•张家界)先化简:,再用一个你最喜欢的数代替a计算结果.20.(2012•张家界)第七届中博会于2012年5月18日至20日在湖南召开,设立了长沙、株洲、湘潭和张家界4个会展区,聪聪一家用两天时间参观两个会展区:第一天从4个会展区中随机选择一个,第二天从余下3个会展区中再随机选择一个,如果每个会展区被选中的机会均等.(1)请用画树状图或列表的方法表示出所有可能出现的结果;(2)求聪聪一家第一天参观长沙会展区,第二天参观张家界会展区的概率;(3)求张家界会展区被选中的概率.21.(2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A=∠D=90°,AB=BC=15千米,CD=千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据≈1.414,)(2)求∠ACD的余弦值.22.(2012•张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?23.(2012•张家界)阅读材料:对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,=(﹣2)×5﹣4×3=﹣22.(1)按照这个规定,请你计算的值;(2)按照这个规定,请你计算:当x2﹣4x+4=0时,的值.24.(2012•张家界)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧上一动点(不与A、C重合).(1)求∠APC与∠ACD的度数;(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.25.(2012•张家界)如图,抛物线y=﹣x2+x+2与x轴交于C、A两点,与y轴交于点B,OB=4.点O关于直线AB的对称点为D,E为线段AB的中点.(1)分别求出点A、点B的坐标;(2)求直线AB的解析式;(3)若反比例函数y=的图象过点D,求k值;(4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由.2012年湖南省张家界市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)2.(2009•江苏)下面四个几何体中,左视图是四边形的几何体共有()4.(2012•张家界)如图,直线a、b被直线c所截,下列说法正确的是()5.(2012•张家界)某农户一年的总收入为50000元,如图是这个农户收入的扇形统计图,则该农户的经济作物收入为()6.(2012•张家界)实数a、b在轴上的位置如图所示,且|a|>|b|,则化简的结果为()BDBD HG=8.(2012•张家界)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()y=过二、四象限;二、填空题(共8小题,每小题3分,满分24分)9.(2011•随州)分解因式:8a2﹣2=2(2a+1)(2a﹣1).10.(2009•重庆)已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为2:5.(11.(2012•张家界)一组数据是4、x、5、10、11共有五个数,其平均数为7,则这组数据的众数是5.12.(2012•张家界)2012年5月底,三峡电站三十二台机组全部投产发电,三峡工程圆满实现2250万千瓦的设计发电能力.据此,三峡电站每天能发电约540000000度,用科学记数法表示应为 5.4×108度.13.(2012•张家界)已知m和n是方程2x2﹣5x﹣3=0的两根,则=﹣.,n===,=,∴+==故答案为﹣.14.(2012•张家界)已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为50πcm2.=15.(2012•张家界)已知,则x+y=1.解:∵∴,16.(2012•张家界)已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为2.三、解答题(共9小题,满分72分)17.(2012•张家界)计算:.×+18.(2012•张家界)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.(2012•张家界)先化简:,再用一个你最喜欢的数代替a计算结果.×+120.(2012•张家界)第七届中博会于2012年5月18日至20日在湖南召开,设立了长沙、株洲、湘潭和张家界4个会展区,聪聪一家用两天时间参观两个会展区:第一天从4个会展区中随机选择一个,第二天从余下3个会展区中再随机选择一个,如果每个会展区被选中的机会均等.(1)请用画树状图或列表的方法表示出所有可能出现的结果;(2)求聪聪一家第一天参观长沙会展区,第二天参观张家界会展区的概率;(3)求张家界会展区被选中的概率.;=.21.(2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A=∠D=90°,AB=BC=15千米,CD=千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据≈1.414,)(2)求∠ACD的余弦值.AC=15==12=AB+BC+CD+DA=30+3+12≈ACD==…22.(2012•张家界)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?23.(2012•张家界)阅读材料:对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,=(﹣2)×5﹣4×3=﹣22.(1)按照这个规定,请你计算的值;(2)按照这个规定,请你计算:当x2﹣4x+4=0时,的值.)根据符号的意义得到=∴=324.(2012•张家界)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧上一动点(不与A、C重合).(1)求∠APC与∠ACD的度数;(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.的中点,得到两条弧相等,根据OA=OB=OC=AB=2∠25.(2012•张家界)如图,抛物线y=﹣x2+x+2与x轴交于C、A两点,与y轴交于点B,OB=4.点O关于直线AB的对称点为D,E为线段AB的中点.(1)分别求出点A、点B的坐标;(2)求直线AB的解析式;(3)若反比例函数y=的图象过点D,求k值;(4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由.+﹣=2(﹣,222x+22OA=2OD=OA=2点的横坐标为,纵坐标为(y=,∴.AQ=t AQ=2﹣•﹣t﹣);依题意,得t=2时,有最大值为参与本试卷答题和审题的老师有:sjzx;gsls;ZJX;CJX;zcx;gbl210;sks;lf2-9;137-hui;MMCH;王岑;mmll852;Linaliu。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年四边形中考试题集 一.填空题(共2小题) 1.已知a,b,c都是正整数,且abc=2008,则a+b+c的最小值为 _________ .
2.已知三角形的三边a、b、c均为整数,且a+b+c=11,则当乘积取最小值时,三角形的面积为 _________ .
二.解答题(共28小题) 3.已知a、b、c均为实数,且a+b+c=0,abc=2,求|a|+|b|+|c|的最小值.
4.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2. (1)若CE=1,求BC的长; (2)求证:AM=DF+ME.
5.(2012•自贡)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合. (1)证明不论E、F在BC、CD上如何滑动,总有BE=CF; (2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.
6.(2012•永州)如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形. 7.(2012•盐城)如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.
(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB; (2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由; (3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)
8.(2012•雅安)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA. (1)求∠APB的度数; (2)如果AD=5cm,AP=8cm,求△APB的周长.
9.(2012•徐州)如图,C为AB的中点.四边形ACDE为平行四边形,BE与CD相交于点F. 求证:EF=BF. 10.(2012•盐城)如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC. (1)求证:DE=EC;
(2)若AD=BC,试判断四边形ABED的形状,并说明理由.
11.(2012•厦门)已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF. (1)如图,若PE=,EO=1,求∠EPF的度数; (2)若点P是AD的中点,点F是DO的中点,BF=BC+3﹣4,求BC的长.
12.(2012•潍坊)如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE. (1)求证:四边形AECF为平行四边形; (2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.
13.(2012•威海)(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F. 求证:AE=CF. (2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I. 求证:EI=FG. 14.(2012•苏州)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5. (1)试求出y关于x的函数关系式,并求当y=3时相应x的值; (2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1﹣S2是常数; (3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.
15.(2012•日照)如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2). (1)求y关于x的函数关系式,并写出x的取值范围; (2)求△PBQ的面积的最大值.
16.(2012•青海)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题. (1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程: 证明:如图1,取AB的中点M,连接EM. ∵∠AEF=90° ∴∠FEC+∠AEB=90° 又∵∠EAM+∠AEB=90° ∴∠EAM=∠FEC ∵点E,M分别为正方形的边BC和AB的中点 ∴AM=EC 又可知△BME是等腰直角三角形 ∴∠AME=135° 又∵CF是正方形外角的平分线 ∴∠ECF=135° ∴△AEM≌△EFC(ASA) ∴AE=EF (2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论. (3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.
17.(2012•南通)菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上. (1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF; (2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.
18.(2012•南平)如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明, 备选条件:AE=CF,BE=DF,∠AEB=∠CFD, 我选择添加的条件是: _________ . (注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明)
19.(2012•南京)如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点. (1)求证:四边形EFGH是正方形; (2)若AD=2,BC=4,求四边形EFGH的面积.
20.(2012•茂名)如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证: (1)△ABF≌△DEA; (2)DF是∠EDC的平分线.
21.(2012•娄底)如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点. (1)求证:△MBA≌△NDC; (2)四边形MPNQ是什么样的特殊四边形?请说明理由. 22.(2012•六盘水)如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F. (1)求证:△ABE≌△FCE. (2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.
23.(2012•锦州)已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD. (2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系; (3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.
24.(2012•嘉兴)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE. (1)求证:BD=EC; (2)若∠E=50°,求∠BAO的大小.
25.(2012•佳木斯)在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF. (1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);