合成氨课程设计报告

合集下载

合成氨顶岗实习报告——完整版

合成氨顶岗实习报告——完整版

摘要氨是重要的基础化工产品之一,在国民经济中占有重要地位。

随着现代化学工业的迅速发展,低能耗、大型化、清洁生产已成为合成氨工业发展的主流方向,开发性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等是技术改进主要方向。

因此,以天然气为资源的化学工业越来越受到人们的关注。

本设计以天然气为原料和燃料,在转化触媒Ni作用下,通过水蒸汽转化法制备氨合成原料气----半水煤气,工艺路线采用一段蒸汽转化和二段联合转化流程,为年产七万吨合成氨提供原料气。

设计中阐述了国内外合成氨工业的现状、发展趋势以及原料的选择,并根据所给原料气天然气及工艺空气的组成,进行转化工段的物料衡算、热量衡算、原料消耗定额计算,并对二段炉的废热锅炉进行设备设计和选型。

本设计的优点在于选择较为良好的原料路线,确定良好的工艺条件和能源综合利用,尽量减少设备投资费用,尽可能达到节能目的。

关键词:合成氨,转化工段,物料衡算,热量衡算目录第一章实习报告 (1)1.1 实习单位简介 (1)1.2 实习岗位简介 (1)1.3 实习起止时间 (2)1.4 实习具体内容及工作进程 (2)1.4.1安全与消防知识教育 (2)1.4.2造气车间工艺 (2)1.4.3脱硫车间工艺 (3)1.4.4精制工段工艺 (5)1.4.5合成车间工艺 (6)1.5结论 (10)第二章实习总结 (11)2.1 实习收获 (11)2.2 实习心得体会 (11)2.3今后努力方向 (12)2.4意见与建议 (12)参考文献 (12)附录........................................................................................................................................................ (12)第一章实习报告1.1 实习单位简介鄂尔多斯化工集团是鄂尔多斯控股集团全力打造的又一大重化工产业基地,公司座落于鄂尔多斯市鄂托克旗棋盘井工业园区,投资近百亿元,下属公司有:氯碱化工公司、多晶硅业公司、联合化工公司、同源化工公司、长蒙天然气公司、惠正包装公司、榆林华龙盐化科技公司等七家公司,职工3500余人。

合成氨工艺设计范文

合成氨工艺设计范文

合成氨工艺设计范文引言:合成氨是一种重要的化工原料,在化肥、塑料、石化等行业中有广泛的应用。

合成氨工艺设计是合成氨生产过程中至关重要的一环,它直接关系到合成氨生产的效益和安全性。

本文将针对合成氨工艺设计进行详细的讨论和分析。

一、合成氨的反应原理合成氨的主要反应是氮气与氢气在一定条件下发生气相催化反应,生成氨气。

该反应主要通过催化剂的作用来实现。

合成氨反应的理论产氨量受到压力、温度和催化剂的选择等因素的影响,因此需要合理设计和控制反应条件来提高产氨量。

二、合成氨的工艺流程典型的合成氨工艺流程包括三个主要步骤:进料处理、反应和分离。

进料处理主要是对氮气和氢气进行净化、脱水等处理,以满足反应的要求;反应过程是氮气和氢气在催化剂的作用下发生反应,生成氨气;分离过程是将反应生成的氨气与非反应物进行分离,以得到高纯度的氨气。

三、合成氨的工艺参数选择合成氨工艺参数的选择对于合成氨的生产效率和能源消耗有重要影响。

常见的工艺参数包括反应温度、反应压力、气体比例、催化剂种类和催化剂用量等。

合成氨的最佳工艺参数需要通过实验和模拟计算来确定,以获得最佳的产氨效果。

四、合成氨的工艺优化为了提高合成氨的生产效率和能源利用率,工艺优化是必要的。

优化的方法包括改进催化剂的性能、调整反应条件、提高气体回收率和减少废物排放等。

同时,应注意考虑工艺的经济性和可持续发展性,以确保合成氨工艺的可行性和长期稳定性。

五、合成氨的安全性考虑合成氨是一种有毒的气体,具有较高的爆炸性。

在工艺设计中,需要考虑到安全性的因素,包括设计合理的防护装置、设备排布的合理性和紧急情况下的应急措施等。

同时,应加强操作人员的安全培训,提高他们的安全意识和应急处理能力。

结论:合成氨工艺设计是合成氨生产中至关重要的一环,它直接关系到合成氨的生产效率、能源利用和安全性。

通过合理选择工艺参数、优化工艺条件以及加强安全性考虑,可以提高合成氨工艺的效益和可行性。

然而,合成氨工艺设计也存在一些挑战和难点,需要不断的实验和研究来解决。

【毕业设计】年产30万吨合成氨工艺设计

【毕业设计】年产30万吨合成氨工艺设计

毕业设计题目名称:年产30万吨合成氨转变工序设计系别:化学工程系专业:应用化学班级: 06101学生:学号:指导教师(职称):(教授)摘要氨是重要的基础化工产品之一,在国民经济中占有重要地位。

合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。

本设计是以天然气为原料年产三十万吨合成氨转变工序的设计。

近年来合成氨工业发展很快,大型化、低能耗、清洁生产均是合成氨设备发展的主流,技术改进主要方向是开发性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等方面上。

设计采用的工艺流程简介:天然气经过脱硫压缩进入一段转化炉,把CH4和烃类转化成H2,再经过二段炉进一步转化后换热进入高变炉,在催化剂作用下大部分CO和水蒸气反应获H2和CO2,再经过低变炉使CO降到合格水平,去甲烷化工序。

本设计综述部分主要阐述了国内外合成氨工业的现状及发展趋势以及工艺流程、参数的确定和选择,论述了建厂的选址;介绍了氨变换工序的各种流程并确定本设计高-低变串联的流程。

工艺计算部分主要包括转化段和变换段的物料衡算、热量衡算、平衡温距及空速计算。

设备计算部分主要是高变炉催化剂用量的具体计算,并根据设计任务做了转化和变换工序带控制点的工艺流程图。

本设计的优点在于选择较为良好的厂址和原料路线,确定良好的工艺条件、合理的催化剂和能源综合利用。

另外,就是尽量减少设备投资费用。

关键字:合成氨;天然气;转化;变换;AbstractAmmonia is the most important one of basic chemical products, plays an important role in the national economy. Ammonia production after years of development, now has developed into a mature chemical production processes. The design is based on annual output of 300,000 tons of natural gas as raw material, the design of synthetic ammonia transformation process. In recent years, the large-scale industrial development soon ammonia, low energy consumption, the clean production of synthetic ammonia equipment development are the main direction of technical improvement, is to develop better performance of catalyst, reducing ammonia synthesis pressure, the development of new materials gas purification methods, reduce fuel consumption, low heat recovery and reasonable utilization, etc.The design process used in brief are: compressed natural gas afterdesulfurization and conversion into a furnace, the methane and hydrocarbons into hydrogen, through the Secondary reformer further transformed into the highly variable furnace heat exchanger, the great catalyst part of the reaction of carbon monoxide and hydrogen and carbon dioxide vapor, then through the low-temperature shift to reduce to an acceptable level of carbon monoxide to methanation process. The design review described some of the major domestic and international situation and the development of synthetic ammonia industry trends and technological process, parameter identification and selection, discusses the plant's location; introduced the transformation process of the various processes and determine the design of high temperature shift and low temperature Transformation series of the process. Calculation of some of the major transformation process, including segment and transform section material balance, heat balance, equilibrium temperature and airspeed calculation. Calculation of some of the major equipment is a high temperature shift catalyst of specific terms, and according to the design task to do the conversion and transformation process flow chart with control points.Advantage of this design is to choose a better site and raw materials line to determine the good conditions, reasonable catalyst and energy utilization. In addition, investment in equipment designed to minimize costs.Keywords: ammonia; natural gas; transformation; transformation;目录摘要 (I)Abstract (II)目录 (IV)1 综述.................................................................. - 1 -1.1 氨的性质、用途及重要性.......................................... - 1 -1.1.1 氨的性质................................................... - 1 -1.1.2 氨的用途及在国民生产中的作用............................... - 1 -1.2 合成氨生产技术的发展............................................ - 2 -1.2.1世界合成氨技术的发展....................................... - 2 -1.2.2中国合成氨工业的发展概况................................... - 5 -1.3合成氨转变工序的工艺原理......................................... - 6 -1.3.1 合成氨的典型工艺流程介绍................................... - 6 -1.3.2 合成氨转化工序的工艺原理................................... - 8 -1.3.3合成氨变换工序的工艺原理................................... - 8 -1.4 设计方案的确定.................................................. - 9 -1.4.1 原料的选择................................................. - 9 -1.4.2 工艺流程的选择............................................ - 10 -1.4.3 工艺参数的确定............................................ - 10 -1.4.4 工厂的选址................................................ - 11 -2 设计工艺计算......................................................... - 13 -2.1 转化段物料衡算................................................. - 13 -2.1.1 一段转化炉的物料衡算...................................... - 14 -2.1.2 二段转化炉的物料衡算...................................... - 17 -2.2 转化段热量衡算................................................. - 20 -2.2.1 一段炉辐射段热量衡算...................................... - 20 -2.2.2 二段炉的热量衡算.......................................... - 27 -2.2.3 换热器101-C、102-C的热量衡算............................. - 28 -2.3 变换段的衡算................................................... - 30 -2.3.1 高温变换炉的衡算.......................................... - 30 -2.3.2 低温变换炉的衡算.......................................... - 32 -2.4 换热器103-C及换热器104-C的热负荷计算......................... - 35 -2.4.1 换热器103-C热负荷........................................ - 35 -2.4.2 换热器104-C热负荷........................................ - 35 -2.5 设备工艺计算................................................... - 36 -参考文献............................................................... - 40 -致谢................................................................... - 41 -附录................................................................... - 41 -1 综述1.1 氨的性质、用途及重要性1.1.1 氨的性质氨分子式为NH,在标准状态下是无色气体,比空气轻,具有特殊的刺激性臭味。

合成氨仿真实习报告

合成氨仿真实习报告

合成氨仿真实习报告篇一:合成氨仿真实习报告南京工业大学城建学院仿真实习报告书刘皓28安全工程系化学化工实验教学中心XX年10月合成仿真实习报告30万吨合成氨装置模型照片一、实习的目的合成仿真实习是理论联系实际,应用和所学专业知识的一项重要环节,是培养我们动手能力和学习能力的一个重要手段。

仿真实习是以仿真的实习模式,在既保证学生安全又能完美提供实习机会的情况下,学校给予我们的一次专业实践的机会。

是我们在学习专业知识后进行实际运用的重要环节,它对培养我们的动手能力有很大的意义,同时也能使我们了解化工工艺的重点要素,仿真实习是我们走向工作岗位的必要前提。

二、实习要求1.实习装置为合成氨生产仿真装置。

要求了解并熟悉生产过程及控制,包括:1)生产方法和原理,原料、催化剂及产品特性;2)生产工艺流程(流程中设备、主副管线,过程操作和控制);3)各工序工艺条件及控制:主要设备操作温度、压力和组成;4)主要设备型式、结构;5)主要设备及管线上的控制仪表及调节方法。

2.搜集信息途径1)听讲座(拟安排工艺及设备、仿真装置及操作等讲座);2)现场实习:熟悉工艺流程、设备、及仿真软件操作,熟悉仿真模型;3)阅读实习指导书、流程图、设备图及其它文献资料。

三、实习内容仿真实习的主要内容是:以河南化肥厂为原型的大型合成氨全流程仿真模型和以宁夏化工厂为原型的合成氨大工段DCS控制系统仿真软件。

两者均以天然气为原料的合成氨工艺,通过仿真实习了解合成氨工艺原理与流程,掌握合成氨生产中的主要参数和DCS控制系统的操作。

以下为东方仿真软件的合成氨工艺流程。

(1) 合成氨装置转化工段1 概述转化工段包括下列主要部分:原料气脱硫、原料气的一段蒸汽转化、转化气的二段转化、高变、低变、给水、炉水和蒸汽系统。

2 原料气脱硫天然气中含有少量硫化物,这些硫化物可以使多种催化剂中毒而不同程度地使其失去活性,硫化氢能腐蚀设备管道。

因此,必须尽可能地除去原料气中的各种硫化物。

合成氨讲授设计

合成氨讲授设计

问题引出
投影仪、电脑、大屏幕
教师活动预设
【引入】直接引入:这节课我们 将讨论怎样应用学过的化学反应 速率和化学平衡的知识来研究有 关合成氨工业的问题。 师:假如你是新上任的某合成氨 产率较低的合成氨工厂的经理, 上任伊始,你将着手哪些工作? 选择。 【板书】化学反应条件的优化— —工业合成氨 【过渡】现在工厂合成氨气,应 怎样选择生产条件呢? 【设问】利用化学反应速率和化
二、教学设计思路
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

氨合成塔的课程设计

氨合成塔的课程设计

氨合成塔的课程设计一、课程目标知识目标:1. 学生能理解氨合成的基本原理,掌握哈柏-博世工艺流程及氨合成塔的工作原理。

2. 学生能够描述影响氨合成效率的因素,如温度、压力、催化剂等。

3. 学生能够运用化学平衡的知识分析氨合成过程中的物料与能量平衡。

技能目标:1. 学生通过小组合作,设计并构建一个简易的氨合成塔模型,提升实验操作与工程实践能力。

2. 学生能够运用数学计算和图表分析氨合成过程中的数据,培养数据分析与处理技能。

情感态度价值观目标:1. 学生通过本课程的学习,培养对化学工业的兴趣和认识,增强对化学在国民经济中作用的了解。

2. 学生在学习过程中体验团队合作的重要性,提升责任感和合作精神。

3. 学生能够理解化学工业对环境的影响,培养绿色化学和可持续发展的意识。

课程性质分析:本课程为高中化学选修课程,旨在通过氨合成塔的设计,使学生将理论知识与实际工业应用相结合,增强学生的实践操作能力和工程观念。

学生特点分析:高中阶段的学生已具备一定的化学基础知识,具有较强的逻辑思维能力和动手操作兴趣,适合开展此类理论与实践相结合的课程。

教学要求分析:课程要求教师以学生为中心,采用项目式学习法,引导学生主动探索,注重培养学生的创新能力和实践能力。

通过课程的学习,使学生能够综合运用所学知识解决实际问题。

二、教学内容1. 氨合成原理及其在工业中的应用- 哈柏-博世工艺流程介绍- 氨合成反应的化学方程式及平衡- 影响氨合成效率的因素分析2. 氨合成塔的结构与工作原理- 氨合成塔的构造及功能- 催化剂的选择与作用- 氨合成塔内温度、压力分布3. 实践操作:氨合成塔模型设计与制作- 设计简易氨合成塔模型- 实验材料与仪器的选择- 模型制作过程中的安全与环保要求4. 数据分析与处理- 实验数据收集与记录- 数据分析方法与技巧- 图表绘制与应用5. 教学内容的安排与进度- 第一周:氨合成原理及其在工业中的应用- 第二周:氨合成塔的结构与工作原理- 第三周:实践操作:氨合成塔模型设计与制作- 第四周:数据分析与处理教学内容关联教材:本教学内容与教材《化学》选修3《化学工业》章节相关,涉及氨的合成、工业生产过程、化学平衡等知识点。

化工设计课程设计---合成氨工艺


《化工设计》课程设计
材料项目 件数 1 1 1 1
1
备注
A1 A1 A1 A1
1
年产 20 万吨合成氨合成工段工艺设计
摘要: 本次课程设计任务为年产 20 万吨合成氨工厂合成工段的工艺设计,氨合
成工艺流程一般包括分离和再循环、氨的合成、惰性气体排放等基本步骤,上述 基本步骤组合成为氨合成循环反应的工艺流程。 其中氨合成工段是合成氨工艺的 中心环节。新鲜原料气的摩尔分数组成如下:H2 74.5%、N224%、CH4 1.2%、 Ar 0.3% 合 成 操 作 压 力 为 32MPa , 合 成 塔 入 口 气 的 组 成 为 NH3(3.5%),CH4+Ar(21%),要求合成塔出口气中氨的摩尔分数达到 15%。通过查 阅相关文献和资料,设计了年产五万吨合成氨厂合成工段的工艺流程,并借助 CAD 技术绘制了该工艺的管道及仪表流程图。最后对该工艺流程进行了物料衡 算、能量衡算,并根据设计任务及操作温度压力按相关标准对工艺管道的尺寸 和材质进行了选择。
关键词:物料衡算,氨合成,能量衡算
The Design of 200kt/a Synthetic Ammonia Process
Abstract: There are many types of Ammonia synthesis technology and process,
Generally,they includes ammonia synthesis, separation and recycling, inert gases Emissions and other basic steps, Combining the above basic steps turnning into the ammonia synthesis reaction and recycling process , in which ammonia synthesis section is the central part of a synthetic ammonia process. The task of curriculum design is the ammonia synthesis section of an annual fifty thousand tons synthetic ammonia plant . The composition of fresh feed gas is: H2(74.5%)、N2(24%)、CH4(1.2%)、 Ar(0.3%), the temperature is 34℃, the operating pressure is 32MPa, the inlet gas composition of the Reactor is : NH3(3.5%),CH4+Ar(21%),it Requires the mole fraction of ammonia reacheds to 15% of outlet gas of synthesis reactor. By consulting the relevant literature and

【参考文档】合成氨实习报告-word范文 (15页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==合成氨实习报告篇一:合成氨生产实习报告第一章中海石油天野化工公司概况天野化工股份有限公司隶属中海石油化学股份有限公司,厂区占地60公顷,总资产26.3亿元,固定员工1514人。

位于呼和浩特市南郊9公里,东邻中油呼和浩特石化分公司,南邻物西水泥厂、金桥热电厂。

公司有年产30万吨合成氨、52万吨尿素和20万吨甲醇装置。

年产6万吨聚醛项目已启动,并在201X年9月投产。

原设计合成氨装置空分采用林德精馏工艺,气化采用Shell渣油部分氧化法,原料气净化采用LVRGI两步法低温甲醇洗和液氮洗工艺,合成采用凯洛格卧式合成塔,全部工艺设计由日本东洋公司承担完成,1996年11月投产投产。

201X年3月天野化工对合成氨装置实施了原料路线由渣油向天然气的改造,至今运行平稳,改造比较成功。

公司经机构改革后目前设有9个职能部门,11个生产车间和6个辅助单位,现有员工总数1500多人,一线生产人员915人,化工人员实行四班三倒工作制。

第二章合成氨的工艺流程 2.1合成氨概述合成氨工业诞生于本世纪初,目前大型氨厂的产量占世界合成氨总产量的80%以上。

氨是重要的无机化工产品之一,在国民经济中占有重要地位。

世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。

目前工业氨合成普遍采用的直接合成法。

反应过程中为提高氢气和氮气合成转化率,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。

合成氨反应式:N2+3H2≈2NH3。

2.2原料气的制备2.2.1制氢气以天然气为原料与氧气、蒸汽通过共环式烧嘴雾化后在气化炉内约1350℃、6.0MPa高温、高压下进行部分氧化反应,制取以CO+H2=95.5%为主要成分的原料气,并同时进行热量回收,副产10MPa、315℃饱和蒸汽和进行原料气降温和洗涤,以脱除原料气中所含碳黑和部分有害气体。

合成氨毕业设计论文

合成氨毕业设计论文【篇一:毕业论文合成氨】目录前言 (2)第一章总论 (3)1.1生产方法论述 (4)1.2氨合成催化剂的使用 (5)第二章氨合成工艺 (5)2.1氨合成工艺流程叙述 (5)2.2主要设备特点 (6)2.2.1氨合成塔(r1801) (7)第三章冷冻工艺流程说明 (8)3.1冷冻工艺流程叙述及简图 (9)第四章自动控制 (10)4.1控制原则 (10)4.2 仪表选型 (10)第五章安全技术与节能 (11)5.1 生产性质及消防措施 (11)5.1.1生产性质 (11)5.1.2消防措施 (11)5.2节能措施 (12)参考文献 (13)致谢 (14)前言在常温常压下,氨是有强烈刺激臭味的无色气体,氨有毒,且易燃易爆,空气中含氨0.5%,在很短时间内即能使人窒息而死,含氨0.2%,在几秒钟内灼烧皮肤起泡,含氨0.07%,即会损伤眼睛。

氨的燃点150℃,在空气中的爆炸范围为16%~25%(体积)。

在标准状态下氨的密度0.771克/升,沸点-33.35℃,熔点(三相点)-77.75℃,气态氨加热到132.4℃以上时,在任何压力下都不会变成液态,此温度称为氨的临界温度。

氨极易溶于水,在常温常压下1升水约可溶解700升氨,氨溶于水时放出大量的热氨易与许多物质发生反应,例如:在催化剂的作用下能与氧反应生成no与co2反应生成氨基甲酸铵,然后脱水生成尿素。

4nh3?5o2?4no?6h2o2nh3?co2?nh4coonh2 (氨基甲酸铵)nh4coonh2?co(nh2)2?h2o氨还可与一些无机酸(如硫酸、硝酸、磷酸)反应,生成硫酸铵、硝酸铵、磷酸铵等。

除了化肥工业以外,氨在工业上主要用来制造炸药和化学纤维及塑料。

氨还可以用作制冷剂,在冶金工业中用来提炼矿石中的铜、镍等金属,在医药工业中用做生产磺胺类药物、维生素、蛋氨酸和其他氨基酸等。

氨是在1754年由普利斯特里(priestly)加热氯化铵与石灰而制得。

合成氨专科毕业设计

合成氨专科毕业设计合成氨专科毕业设计合成氨是一种重要的化工原料,广泛应用于农业、化肥、医药和塑料等领域。

合成氨专科毕业设计是化工专业学生在毕业阶段的一项重要任务,旨在通过实践与理论相结合的方式,培养学生的综合能力和解决实际问题的能力。

一、背景介绍合成氨是指通过合成反应将氮气和氢气转化为氨气的过程。

氨气是一种重要的氮源,广泛用于制造化肥和其他氮化合物。

合成氨的工艺流程复杂,需要考虑反应条件、催化剂选择、反应器设计等多个因素。

二、目标与意义合成氨专科毕业设计的目标是通过实践操作,掌握合成氨的工艺流程,熟悉相关设备的操作和维护,了解反应机理和催化剂的选择。

这对于学生将来从事化工工作具有重要的指导意义,也是培养学生实践能力和解决实际问题能力的有效途径。

三、实验设计合成氨专科毕业设计的实验设计通常包括以下几个方面:1. 实验前准备:了解合成氨的反应机理和工艺流程,研究相关文献资料,选择适当的催化剂和反应条件。

2. 设计反应器:根据实验要求,设计合成氨的反应器,考虑反应器的尺寸、材料和操作方式等因素。

3. 实验操作:按照设计的反应器,进行实验操作,控制反应条件,记录实验数据。

4. 数据分析:对实验数据进行分析,计算反应的转化率、选择性和收率等指标,评估合成氨的工艺流程。

5. 结果讨论:根据实验结果,讨论合成氨的工艺流程的优化方向和改进措施。

四、实验结果与讨论根据实验数据分析,我们可以评估合成氨的工艺流程的效果和可行性。

通过对不同催化剂的比较,可以选择出最佳的催化剂,提高合成氨的产率和选择性。

同时,通过对反应条件的调整,可以优化反应的速率和效果。

在实验结果的讨论中,我们还可以探讨合成氨的工艺流程中可能存在的问题和挑战。

例如,催化剂的寿命、反应器的设计和操作方式等都可能对合成氨的产率和质量产生影响。

通过分析这些问题,我们可以提出改进措施和优化方向,为合成氨工艺的进一步研究提供参考。

五、总结与展望合成氨专科毕业设计是化工专业学生在毕业阶段的一项重要任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合成氨课程设计报告应用化学1101班张超11150201311.概述氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位; 同时也是能源消耗的大户,世界上大约有10 %的能源用于生产合成氨。

合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。

氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70 %的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料,这部分约占30 %的比例,称之为“工业氨”。

世界合成氨技术的发展经历了传统型蒸汽转化制氨工艺、低能耗制氨工艺、装置单系列产量最大化三个阶段。

根据合成氨技术发展的情况分析, 未来合成氨的基本生产原理将不会出现原则性的改变, 其技术发展将会继续紧密围绕“降低生产成本、提高运行周期, 改善经济性”的基本目标, 进一步集中在“大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发。

本课程设计是对年产三十万吨合成氨合成段工序的设计。

主要阐述了合成氨合成工段工艺路线图、物料和能量衡算、设备选型及计算,确定了良好的工艺条件、合理的催化剂和能源综合利用。

1.1设计任务的依据设计任务书是项目设计的目的和依据:产量:300 kt/a 液氨放空气(惰性气Ar +CH4):17%原料:新鲜补充气N2 24%,H2 74.5 %,Ar 0.3%,CH4 1.2% 合成塔进出口氨浓度:2.5%,13.2%放空气:(惰性气Ar +CH4 )~17%合成塔操作压力32 MPa(绝压)精练气温度40℃水冷器出口气体温度35 ℃循环机进出口压差1.47MPa年工作日330 d计算基准生产1t氨1.2设计内容及设计阶段1. 进行方案设计,确定生产方法和生产工艺流程。

2.绘制工艺流程图。

3. 进行化工计算,包括物料衡算、能量衡算以及设备选型和计算。

1.3合成氨的几种方法氨的合成是合成氨生产的最后一道工序,其任务是将经过精制的氢氮混合气在催化剂的作用下多快好省地合成为氨。

对于合成系统来说,液体氨即是它的产品。

工业上合成氨的各种工艺流程一般以压力的高低来分类。

(1)高压法操作压力70~100MPa,温度为550~650℃。

这种方法的主要优点是氨合成效率高,混合气中的氨易被分离。

故流程、设备都比较紧凑。

但因为合成效率高,放出的热量多,催化剂温度高,易过热而失去活性,所以催化剂的使用寿命较短。

又因为是高温高压操作,对设备制造、材质要求都较高,投资费用大。

目前工业上很少采用此法生产。

(2)中压法操作压力为20~60MPa,温度450~550℃,其优缺点介于高压法与低压法之间,目前此法技术比较成熟,经济性比较好。

因为合成压力的确定,不外乎从设备投资和压缩功耗这两方面来考虑。

从动力消耗看,合成系统的功耗占全厂总功耗的比重最大。

但功耗决不但取决于压力一项,还要看其它工艺指标和流程的布置情况。

总的来看,在15~30Pa的范围内,功耗的差别是不大的,因此世界上采用此法的很多。

因此,本次设计选用32MPa 压力的合成氨流程。

(3)低压法操作压力10MPa左右,温度400~450℃。

由于操作压力和温度都比较低,故对设备要求低,容易管理,且催化剂的活性较高,这是此法的优点。

但此法所用催化剂对毒物很敏感,易中毒,使用寿命短,因此对原料气的精制纯度要求严格。

又因操作压力低,氨的合成效率低,分离较困难,流程复杂。

实际工业生产上此法已不采用了。

1.4合成氨原料生产合成氨,首先必须制备氢、氮原料气。

氮气来源于空气,可以在低温下将空气液化、分离而得,或者在制氢过程中直接加入空气来解决。

氢气来源于水或含有烃类的各种燃料,它取决于用什么方法制取。

最简便的方法是将水电解,但此法由于电能消耗大、成本高而受到限制。

现在工业上普遍采用以焦炭、煤、天然气、重油等原料与水蒸汽作用的气化方法。

1.5进料口气体组成合成塔进口气体组成包括氢氮比、惰性气体含量与初始氨含量。

当氢氢比为3时,对于氨合成反应,可得最大平衡氨含量,但从动力学角度分析,最适宜氢氨比随氨含量的不同而变化。

如果略去氢及氨在液氨中溶解损失的少量差异,氨合成反应氢与氮总是按3:1消耗,新鲜气氢氮比应控制为3,否则循环系统中多余的氢或氮就会积累起来,造成循环气中氢氮比的失调。

2 生产流程及生产方法的确定2.1 氨合成过程的基本工艺步骤实现氨合成的循环,必须包括如下几个步骤:氮氢原料气的压缩并补入循环系统;循环气的预热与氨的合成;氨的分离;热能的回收利用;对未反应气体补充压力并循环使用,排放部分循环气以维持循环气中惰性气体的平衡等。

由于采用压缩机的型式、氨分冷凝级数、热能回收形式以及各部分相对位置的差异,而形成不同的工业生产流程,但实现氨合成过程的基本工艺步骤是相同的。

(1)气体的压缩和除油为了将新鲜原料气和循环气压缩到氨合成所要求的操作压力,就需要在流程中设置压缩机。

当使用往复式压缩机时,在压缩过程中气体夹带的润滑油和水蒸汽混合在一起,呈细雾状悬浮在气流中。

气体中所含的油不仅会使氨合成催化剂中毒、而且附着在热交换器壁上,降低传热效率,因此必须清除干净。

除油的方法是压缩机每段出口处设置油分离器,并在氨合成系统设置滤油器。

若采用离心式压缩机或采用无油润滑的往复式压缩机,气体中不含油水,可以取消滤油设备,简化了流程。

(2)气体的预热和合成压缩后的氢氮混合气需加热到催化剂的起始活性温度,才能送入催化剂层进行氨合成反应。

在正常操作的情况下,加热气体的热源主要是利用氨合成时放出的反应热,即在换热器中反应前的氢氮混合气被反应后的高温气体预热到反应温度。

在开工或反应不能自热时,可利用塔内电加热炉或塔外加热炉供给热量。

(3)氨的分离进入氨合成塔催化层的氢氮混合气,只有少部分起反应生成氨,合成塔出口气体氨含量一般为10~20%,因此需要将氨分离出来。

氨分离的方法有两种,一是水吸收法;二是冷凝法,将合成后气体降温,使其中的气氮冷凝成液氨,然后在氨分离器中,从不凝气体中分离出来。

目前工业上主要采用冷凝法分离循环气中的氨。

以水和氨冷却气体的过程是在水冷器和氨冷器中进行的。

在水冷器和氨冷器之后设置氨分离器,把冷凝下来的液氨从气相中分离出来,经减压后送至液氮贮槽。

在氨冷凝过程,部分氢氮气及惰性气体溶解在液氨中。

当液氨在贮槽内减压后,溶解的气体大部分释放出来,通常称为“贮罐气”。

(4)气体的循环氢氮混合气经过氨合成塔以后,只有一小部分合成为氨。

分离氨后剩余的氢氮气,除为降低情性气体含量而少量放空以外,与新鲜原料气混合后,重新返回合成塔,再进行氨的合成,从而构成了循环法生产流程。

由于气体在设备、管道中流动时,产生了压力损失。

为补偿这一损失,流程中必须设置循环压缩机。

循环机进出口压差约为20~30大气压,它表示了整个合成循环系统阻力降的大小。

(5)惰性气体的排除氨合成循环系统的情性气体通过以下三个途径带出:(1)一小部分从系统中漏损;(2)一小部分溶解在液氨中被带走;(3)大部分采用放空的办法,即间断或连续地从系统中排放。

在氨合成循环系统中,流程中各部位的惰性气体含量是不同的,放空位置应该选择在惰性气体含量最大而氨含量最小的地方,这样放空的损失最小。

由此可见,放空的位置应该在氨已大部分分离之后,而又在新鲜气加入之前。

放空气中的氨可用水吸收法或冷凝法加以回收,其余的气体一股可用作燃料。

也可采用冷凝法将放空气中的甲烷分离出来,得到氢、氮气,然后将甲烷转化为氢,回收利用,从而降低原料气的消耗。

有些工厂设置二循环合成系统,合成系统放空气进入二循环系统的合成塔,继续进行合成反应,分离氨后部分情性气体放空,其余部分在二循环系统继续循环。

这样,提高了放空气中惰性气体含量,从而减少了氢氮气损失。

(6)反应热的回收利用氨的合成反应是放热反应,必须回收利用这部分反应热。

目前回收利用反应热的方法主要有以下几种:(1) 预热反应前的氢氮混合气。

在塔内设置换热器,用反应后的高温气体预热反应前的氢氮混合气,使其达到催化剂的活性温度。

这种方法简单,但热量回收不完全。

目前小型氨厂及部分中型氨厂采用此法回收利用反应热。

(2) 预热反应前的氢氮混合气和副产蒸汽。

既在塔内设置换热器预热反应前的氢氮混合气,又利用余热副产蒸汽。

按副产蒸汽锅炉安装位置的不同,可分为塔内副产蒸汽合成塔(内置式)和塔外副产蒸汽合成塔(外置式)两类。

目前一般采用外置式,该法热量回收比较完全,同时得到了副产蒸汽,目前中型氮厂应用较多。

(3)预热反应前的氢氮混合气和预热高压锅炉给水。

反应后的高温气体首先通过塔内则换热器预热反应前的氢氮混合气,然后再通过塔外的换热器预热高压锅炉给水。

此法的优点是减少了塔内换器的面积,从而减小了塔的体积,同时热能回收完全。

目前大型合成氨厂一般采用这种方法回收热量。

用副产蒸汽及预热高压锅炉给水方式回收反应热时,生产一吨氨一般可回收0.5~0.9吨蒸汽。

2.2氨合产工艺的选择考虑氨合成工段的工艺和设备问题时,必须遵循三个原则:一是有利于氨的合成和分离;二是有利于保护催化剂,尽量延长使用寿命;三是有利于余热回收降低能耗。

氨合成工艺选择主要考虑合成压力、合成塔结构型式及热回收方法。

氨合成压力高对合成反应有利, 但能耗高。

中压法技术比较成熟,经济性比较好,在15~30Pa的范围内,功耗的差别是不大的,因此世界上采用此法的很多。

一般中小氮肥厂多为32MPa , 大型厂压力较低,为10~20MPa。

由于近来低温氨催化剂的出现, 可使合成压力降低。

合成反应热回收是必需的, 是节能的主要方式之一。

除尽可能提高热回收率,多产蒸汽外, 应考虑提高回收热的位能, 即提高回收蒸汽的压力及过热度。

高压过热蒸汽的价值较高, 当然投资要多, 根据整体流程统一考虑。

本次设计选用中压法(压力为32MPa)合成氨流程,采用预热反应前的氢氮混合气和副产蒸汽的方法回收反应热,塔型选择见设备选型部分。

3 生产流程简述气体从冷交换器出口分二路、一路作为近路、一路进入合成塔一次入口,气体沿内件与外筒环隙向下冷却塔壁后从一次出口出塔,出塔后与合成塔近路的冷气体混合,进入气气换热器冷气入口,通过管间并与壳内热气体换热。

升温后从冷气出口出来分五路进入合成塔、其中三路作为冷激线分别调节合成塔。

二、三、四层(触媒)温度,一路作为塔底副线调节一层温度,另一路为二入主线气体,通过下部换热器管间与反应后的热气体换热、预热后沿中心管进入触媒层顶端,经过四层触媒的反应后进入下部换热器管内,从二次出口出塔、出塔后进入废热锅炉进口,在废热锅炉中副产25MPa 蒸气送去管网,从废热锅炉出来后分成二股,一股进入气气换热器管内与管间的冷气体换热,另一股气体进入锅炉给水预热器在管内与管间的脱盐,脱氧水换热,换热后与气气换热器出口气体会合,一起进入水冷器。

相关文档
最新文档