坐标正算和坐标反算公式

合集下载

坐标计算公式

坐标计算公式

计算坐标与坐标方位角的基本公式控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。

下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。

一、坐标正算和坐标反算公式 1.坐标正算根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。

如图5—5所示,已知A 点的坐标为A x 、A y,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为ABA B AB A B y y y x x x ∆+=∆+= } (5—1)式中 AB x ∆ 、AB y ∆——坐标增量。

由图5—5可知ABAB AB AB AB AB S y S x ααsin cos =∆=∆ } (5—2)式中 AB S ——水平边长;AB α——坐标方位角。

将式(5-2)代入式(5-1),则有ABAB A B AB AB A B S y y S x x ααsin cos +=+= } (5—3)当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。

式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。

从图5—5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,AB y ∆是边长AB S 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。

而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。

从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。

图5—5 坐标计算 图5—6 坐标增量符号 表5—3 坐标增量符号表坐标方位角 (°) 所在象限坐标增量的正负号 ⊿x ⊿y 0~90 90~180 180~270 270~360Ⅰ Ⅱ Ⅲ Ⅳ + - - ++ + - -例1 已知A 点坐标A x =100.00m ,A y =300.10m ;边长AB s =100m ,方位角AB α=330°。

全面坐标正反算教材

全面坐标正反算教材

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。

=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。

键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[],键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。

坐标正算反算公式讲解

坐标正算反算公式讲解

一 方位角:在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。

1、第一象限的方位角YX第一象限第二象限第三象限第四象限oAa图12、第二象限的方位角Y X第一象限第二象限第三象限第四象限oAa图23、第三象限的方位角YX第一象限第二象限第三象限第四象限o Aa图34、第四象限的方位角YX第一象限第二象限第三象限第四象限oAa图4方位角计算公式:x=a -1tanA Y O Y -AX OX-方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O )直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。

直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、当直线OA 的方位角≤180°时,其反方位角等于a+180°。

2、 当直线OA 的方位角>180°时,其反方位角等于a-180°。

二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算或:注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。

例题:方位角的推算已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α45、α51。

13图5解: α23= α12-β2+180°=30°-130°+180°=80°α34= α23-β3+180°=80°-65°+180°=195°α45=α34-β4+180°=195°-128°+180°=247°α51=α45-β5+180°=247°-122°+180°=305°α12=α51-β1+180°=305°-95°+180°=30°(检查)三坐标正算一、直线段的坐标计算oB DACEaap图6设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标1、设直线段OA长度为L,则A点坐标为X A=X O+L×Cos(F op)Y A=Y O+L×Sin(F op)2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为X B=X O+L OB×Cos(F op)Y B=Y O+L OB×Sin(F op)直线BC的方位角F BC=F op+aIF F B C>360°:Then F BC-360°→F BC:IfEndX C=X B+L BC×Cos(F BC)Y C=Y B+L BC×Sin(F BC)3、设直线段OD长度为L,直线段DE长度为L DE,则E点坐标为ODX D=X O+L OD×Cos(F op)Y D=Y O+L OD×Sin(F op)直线DE的方位角F DE=F op-aIF F DE<0°:Then F DE+360°→F DE:IfEndX E=X D+L DE×Cos(F DE)Y E=Y D+L DE×Sin(F DE)二、缓和曲线段的坐标计算x Y 00=L- +=L 40R L 52s 2L3456R L 94s 4L6R L 3sL 336R L 7s 33-90 L πRL sO2切线角=设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一点的曲线长度为L,当线路右转时直线CP 的方位角Fcp=F+90°IF F cp >360°:Then F cp-360°→F cp :IfEnd当线路左转时直线CP 的方位角Fcp=F-90°IF F cp<0°:Then F cp+360°→F cp:IfEndX P=X O+Abs(x O)×Cos(F)+Abs(y O)×COS(F CP)Y P=Y O+Abs(x O)×Sin(F)+Abs(y O)×Sin(F CP)三、圆曲线段的坐标计算圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。

坐标反算正算计算公式

坐标反算正算计算公式

坐标反算正算计算公式一、坐标正算根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角O AB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为:X B = X A + AX ABY B = X A + AY AB(1-18 )二式中,AX AB与AY AB分别称为A〜B的纵、横坐标增量,其计算公式为:AXAB = X B—X A = D AB COS O ABAYAB = Y B—Y A = D AB sin O AB(1-19)注意,AX AB和AY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。

二、坐标反算根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角OCAB ,为坐标反算。

其计算公式为:(1-20 )注意,由(1-20 )式计算OCAB时往往得到的是象限角的数值,必须先根据AX AB、AY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。

三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sin 0 =y/ R; cos 0 =x/R; tan 0 =y/x; cot 0 =x/y。

深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导si n( A+B) = si nAcosB+cosAs inB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。

角AOD为a,BOD为B,旋转AOB使0B与0D重合,形成新A'OD。

A(cos a ,sin a ),B(cos 3 ,sin 3 ),A'(cos( - BM,sin( 诩)) OA'=OA=OB=OD=1,D(1,0) [cos( a- 3 >1]A2+[sin( a- 3 )]A2=(cos a cos 3 )A2+(sin a-sin3 )A2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2 )[1](1-21 )两角和公式sin( A+B) = sin AcosB+cosAs inB sin (A-B) = sin AcosB- COSAsinB cos(A+B) = cosAcosB-s inAsinB cos(A-B) = cosAcosB+si nAsi nB tan (A+B) = (ta nA+ta nB)/(1-ta nAta nB)ta n( A-B) = (ta nA-ta nB)/(1+ta nAta nB)cot(A+B) = (cotAcotB- 1 )/(COtB + COtA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)[]倍角公式Si n2A=2Si nA?CosACos2A=CosA A2-Si nA^2=1-2Si nAA2=2CosAA2-1tan 2A=2ta nA/ (1-tanAA2 )是sinA的平方sin2 (A))(注:Si nAA2[]三倍角公式sin3 a =4sin a-sin( n /3+ a )sin( n/)cos3 a =4cos a-cos( n /3+ a )cos( n /3a )tan3a = tan a • tan( n /3+a) • tan( n /3-a)[]三倍角公式推导sin 3a=sin( 2a+a)=sin 2acosa+cos2as ina=2s in a(1-s in& sup2;a)+(1-2s in& sup2;a)s ina=3s in a-4s in³acos3a=cos(2a+a)=cos2acosa-s in 2as ina=(2cos²a-1)cosa-2(1-s in& sup2;a)cosa=4cos³a-3cosasin 3a=3s in a-4s in& sup3;a=4si na(3/4-si n& sup2;a)=4sina[( V3/2)² -sin²a]=4sina(sin²60 °-sin²a)=4sina(sin60 °+sina)(sin60 °-sina)°)/2]}=4sina*2sin[(60+a)/2]cos[(60 °-a)/2]*2sin[(60 °-a)/2]cos[(60 °-a)/2]=4sinasin(60 °+a)sin(60 °-a) cos3a=4cos³a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(V 3/2) ²]=4cosa(cos²a-cos²30 °)=4cosa(cosa+cos30° )(cosa-cos30 °) =4cosa*2cos[(a+30 ° )/2]cos[(a-30 °)/2]*{-2sin[(a+30°)/2]sin[(a-30=-4cosasin(a+30 ° )sin(a-30 °) =-4cosasin[90 °-(60 °-a)]sin[-90 °+(60°+a)]=-4cosacos(60 ° -a)[-cos(60 °+a)] =4cosacos(60° -a)cos(60 °+a) 上述两式相比可得tan3a=tanatan(60 ° -a)tan(60 °+a) []半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. []和差化积sin 0 +sin $ = 2sin[( 0 + )/2]cos[( - © )/2]sin 0-sin © = 2cos[( 0 + © )/2]sin[( - © )/2] cos 0+cos © = 2cos[( 0+©)/2]cos[( -0©)/2] cos 0-cos © = -2sin[( 0+©)/2]sin[( -©0)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) []积化和差sin a sin 3 = -1/2*[cos( a + 3-)cos( a - 3 )] cos a cos 3 = 1/2*[cos( a +3)+cos( a -3)] sin a cos 3 = 1/2*[sin( a +3)+sin( -a3)] cos a sin 3 = 1/2*[sin(a +3-s )in( a -3)][]诱导公式sin(- a ) = -sin acos(- a ) =cos aSin( n /2- a ) = -COS a cos( n /2 - a ) = sin a Sin( n /2+ a )= COS a cos( n /2+ a ) = -sin asin( n- a ) = sin a COs( n - a ) = -COs a sin( n + a ) = -sin a cos( n + a ) = -cos a tanA=sinA/COsA tan ( n /2 + a) =—cot a tan ( n /2 — a) = cot a tan ( n — a) =—tan a tan ( n+ a) = tan a[][](sin a )A2+(cos a )A2=11+(tan a )A2=(sec a )人21+(cot a)A2=(csc a)A2证明下面两式,只需将一式,左右同除(sin a )A2第二个除(COS a )A2即可对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=^ -Ctan(A+B)=tan( n -C)(tanA+tanB)/(1- tanAtanB)=(tan n -tanC)/(1+tan n tanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n n (n € Z)时,该关系式也成立[]其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a) []双曲函数sin h(a) = [e A a-e A(-a)]/2COSh(a) = [eAa+eA(-a)]/2tg h(a) = Sin h(a)/COS h(a)公式一:设a为任意角,终边相同的角的同一二角函数的值相等:sin ( 2k n + a)=sin aCOS ( 2k n+ a) = COS atan ( k n + a)=tan acot ( k n+ a)=COt a公式二:设a为任意角,n + a的三角函数值与a的三角函数值之间的关系sin ( n+ a)= :-sin aCOS ( n+ a):=-COS atan ( n+ a)= tan aCOt ( n+ a)= COt a公式二:任意角a与- a的三角函数值之间的关系:sin (- a) = -sin aCOS ( -a) = COS atan (- a) = -tan aCOt (-a)= -COt a公式四:利用公式—和公式二可以得到n- a与a的三角函数值之间的关系sin ( n- a)= Sin aCOS ( n- a)= -COS atan ( n- a)= -tan aCOt ( n- a)= -COt a公式五:利用公式-和公式二可以得到 2 n - a与a的三角函数值之间的关系:Sin ( 2 n- a)= -Sin aCOS ( 2 n- a)= COS atan ( 2 n- a)= -tan aCOt ( 2 n- a)= -COt a公式六:n /2 土及3 n /2 ±a与a的二角函数值之间的关系:Sin ( n /2+ a) = COS aCOS ( n /2+ a) = -sin atan (n /2+ a = -COt a cot (n /2+ a = -ta n a sin((n /2- a)= COs a cos (n /2- a)= sin a tan (n /2- a)= COt a cot (n /2- a)= tan a sin((3 n /2+ a )=-COs a cos (3 n /2+ a)=sin a tan (3 n /2+ a )=-COt a cot (3 n /2+ a )=-tan a sin((3 n /2- a):=-COS a cos (3n /2- a)= -sin a tan (3n /2- a)= COt a cot (3n /2- a):= tan a (以上k € Z)这个物理常用公式我费了半天的劲才输进来A • sin( 31+ 0 )+B - sin( w t+ $ = v{(A A2+B A2 +2ABc os( 0- $ )} ? sin { +B A2; +2ABcos( 0 - $ )} }~表示根号,包括{ .... }中的内容,希望对大家有用w t + arcsin[ (A?sin 0 +B?sin $ ) / V{人人2。

高斯投影坐标计算

高斯投影坐标计算

B
d B dq
2

dX dq dq

c
(
cos B dV V dB
2
dB dq

sin B dB V dq
2
)
2
d B dq
2
cos B c ( tan B V
2 2
3
V
sin B cos B
)
N sin B cos B
同理得
d X dq
3

N cos B ( 1
3
3


2

0
l

L

L
0

高斯投影坐标正算的函数式:
x y
l 是以弧度为单位的经度差。
F B , l F B , l
1 2

一 高斯投影坐标正算公式计算

如图,椭球面上一点投影 到平面后为d点,椭球面上 该点的平行圈(B或q为一 常数)与中央子午线的交 点为e点,若将上式中的展 开点z0设为e处,则很据高 斯投影条件,中央子午线 的长度比m=1,且纵坐标x 等于从赤道起到该平行圈 间的子午线弧长X。此时 可以写出下列方程:
4 2
二、高斯投影坐标反算公式

最后得到坐标反算的公式为:
B B
f
2M
f
t
f
y N
f
2

t 24 M
2 f
f
f
f
N
4 f
3 f
5 3 t
6
2 f

2 f
9 f t
2
2 f
y
4

t

坐标正反算

坐标正反算

第五节、坐标正、返算及应用实例1、基本概念所谓坐标正算,即已知一点的坐标和至另一已知点的起始方位,以及起始点至待定点的转角和边长,推求待定点坐标的计算称之为坐标正算。

所谓坐标返算,即已知两点的坐标,进行两点间的边长及边长方位角的计算,称之为坐标返算。

所谓点的坐标是指该点在某一坐标系统中相对纵、横坐标轴线的垂距。

在测量坐标系统中,纵、横轴分别以x、y表示。

坐标增量是指一点的坐标相对另一点坐标的增值。

在测量坐标系统中分别用△x、△y表示纵、横坐标增量。

所谓边的方位角是指该边与坐标纵轴的夹角。

方位角有正、反方位之分,正方位角即为以坐标纵轴正方向为零,顺时方向转至边起止方向的夹角。

相反方向的则为反向方位角,正、反方位角相差180°。

在坐标系统中,四个象限的划分是以东北方向开始按顺时方向规定为Ⅰ、Ⅱ、Ⅲ、Ⅳ象限,如图9所示。

轴线方向规定纵轴往北为正,反之为负,横轴往东为正,反之为负。

xⅣⅠyⅢⅡ图9由此可见:在Ⅰ象限中,X、Y均正值,在Ⅱ象限中,X为负Y为正,在Ⅲ象限中,X、Y均为负,在Ⅳ象限中,X为正Y为负。

弄清以上概念以后,便可进行坐标的正、返算运算。

如图10所示:正算公式:已知A、B两点坐标和转角β,及BP的边长S,推算P点坐标。

P =XB+ScosαBPx . P= X B+Scos(αBA+β)YP =YB+SsinαBPA βS= YB +Ssin(αBA+β) B注意:在进行坐标推算 Y 时,推算方位角所用的转折 (0,0) 图10 角为左角时则应加转角,所用的转折角为右角时,则应减转角。

返算公式:已知A、B两点坐标,计算AB的边长和方位角。

SAB =((XB-XA)2+(YB-YA)2)1/2=(ΔX2BA +ΔY2BA) 1/2αBA =tg-1((YA-YB)/ (XA-XB))2、坐标正、返算实例。

如图11所示:已知中山路上m、n两测量控制点的坐标为:Xm =76.11Ym=179.51Xn =137.00 Yn=182.84设计给定拟建建筑物角点A、D两点(设计图纸中的)坐标为:X A =117.82YA=134.20X D =148.50 YD=120.04根据以上已知资料,对拟建建筑物进行定位。

坐标反算名词解释

坐标反算名词解释“坐标反算”是指根据直线的起点和终点的坐标,计算直线的水平距离和坐标方位角的过程。

拓展资料:“坐标正算”是指根据直线的起点坐标、直线的水平距离以及坐标方位角来计算终点的坐标的过程叫坐标正算。

计算原理:如图中所示,已知一条直线的起点和终点坐标分别为A点坐标(XA, YA),B点坐标(XB, YB),A点到B点距离L,A点到B点方位角aAB,通过坐标反算来计算直线AB的水平距离S ab和坐标方位角αab。

坐标正算公式:XB=XA+LcosaABYB=YA+LsinaAB坐标反算公式:L^2= (XB-XA)^2+(YB-YA)^2由于反三角函式计算的结果有多值性所以在计算坐标方位角αab之前,要先计算象限角R ab。

计算步骤①tan R ab=|△y ab|╱|△x ab|=|y b-y a|╱|x b-x a|;②R ab=arctan|y b-y a|╱|x b-x a|;③L=|△y ab|╱sinαab=|△x ab|╱cosαab。

Sab=△y ab。

L是A、B两点间距离,Sab是水平距离。

④根据“②”中所求的R ab,求坐标方位角αab,⑴若坐标方位角为第一象限角,则:R ab=αab;⑵若坐标方位角为第二象限角,则:αab=180°-R ab;⑶若坐标方位角为第三象限角,则:αab=180°+R ab;⑷若坐标方位角为第四象限角,则:αab=360°-R ab。

附注坐标方位角:直线的方向是用方位角来表示的,其中以坐标北方向为基準方向,顺时针旋转到直线的水平角度,称为该直线的坐标方位角。

象限角划分:第一象限角:0°~90°第二象限角:90°~180°第三象限角:180°~270°第四象限角:270°~360°另注意:此象限角的划分与数学中的象限角不同,应注意!现场确定坐标系如果找到两个基准点A(N3000,E4500,Z100), B(N2900,E5500,Z120),则可以根据基準点坐标值反推坐标系,找到N,E方向。

坐标正算反算公式讲解

一 方位角:在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。

1、第一象限的方位角YX第一象限第二象限第三象限第四象限oAa图12、第二象限的方位角Y X第一象限第二象限第三象限第四象限oAa图23、第三象限的方位角YX第一象限第二象限第三象限第四象限o Aa图34、第四象限的方位角YX第一象限第二象限第三象限第四象限oAa图4方位角计算公式:x=a -1tanA Y O Y -AX OX-方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O )直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。

直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、当直线OA 的方位角≤180°时,其反方位角等于a+180°。

2、 当直线OA 的方位角>180°时,其反方位角等于a-180°。

二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算或:注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。

例题:方位角的推算已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α45、α51。

13图5解: α23= α12-β2+180°=30°-130°+180°=80°α34= α23-β3+180°=80°-65°+180°=195°α45=α34-β4+180°=195°-128°+180°=247°α51=α45-β5+180°=247°-122°+180°=305°α12=α51-β1+180°=305°-95°+180°=30°(检查)三坐标正算一、直线段的坐标计算oB DACEaap图6设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标1、设直线段OA长度为L,则A点坐标为X A=X O+L×Cos(F op)Y A=Y O+L×Sin(F op)2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为X B=X O+L OB×Cos(F op)Y B=Y O+L OB×Sin(F op)直线BC的方位角F BC=F op+aIF F B C>360°:Then F BC-360°→F BC:IfEndX C=X B+L BC×Cos(F BC)Y C=Y B+L BC×Sin(F BC)3、设直线段OD长度为L,直线段DE长度为L DE,则E点坐标为ODX D=X O+L OD×Cos(F op)Y D=Y O+L OD×Sin(F op)直线DE的方位角F DE=F op-aIF F DE<0°:Then F DE+360°→F DE:IfEndX E=X D+L DE×Cos(F DE)Y E=Y D+L DE×Sin(F DE)二、缓和曲线段的坐标计算x Y 00=L- +=L 40R L 52s 2L3456R L 94s 4L 6R L 3s L 336R L 7s 33-90 L πRL sO2切线角=设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一点的曲线长度为L,当线路右转时直线CP 的方位角Fcp=F+90°IF F cp >360°:Then F cp-360°→F cp :IfEnd当线路左转时直线CP 的方位角Fcp=F-90°IF F cp<0°:Then F cp+360°→F cp:IfEndX P=X O+Abs(x O)×Cos(F)+Abs(y O)×COS(F CP)Y P=Y O+Abs(x O)×Sin(F)+Abs(y O)×Sin(F CP)三、圆曲线段的坐标计算圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。

坐标正算反算公式

坐标正算反算公式好的,以下是为您生成的文章:在咱们学习测量和地理相关知识的时候,坐标正算反算公式那可是相当重要的家伙!这俩公式就像是一对默契的好兄弟,能帮咱们解决好多实际问题。

先来说说坐标正算公式。

想象一下,咱们站在大地上,手里拿着测量仪器,知道了一个点的坐标,还有它到另一个点的距离和方位角。

这时候,坐标正算公式就派上用场啦!它能根据这些已知条件,算出另一个点的坐标。

就好像是我们拿着神奇的魔法棒,轻轻一挥,未知的坐标就乖乖现身了。

记得有一次,我们学校组织了一次实地测量活动。

那是一个阳光明媚的日子,我们来到了学校后面的小山坡。

老师给我们布置了任务,要测量出山坡上几个特定点的坐标。

我和小伙伴们兴奋极了,拿着仪器就开始忙活。

我负责记录数据,小伙伴小明则认真操作着仪器,测量距离和方位角。

当我们得到了一组数据后,就开始用坐标正算公式来计算另一个点的坐标。

一开始,我还有点紧张,生怕算错了。

但当我按照公式一步一步来,把数字代入,仔细计算,最后得出结果的时候,那种成就感简直爆棚!再说坐标反算公式。

它和正算公式刚好相反,是通过两个点的坐标来算出它们之间的距离和方位角。

这在规划路线、设计建筑的时候可太有用了。

就像上次我们测量完山坡上的点之后,老师又让我们根据测量得到的坐标,计算出不同点之间的距离和方位角。

这时候坐标反算公式就闪亮登场了。

我们对照着公式,认真地计算,互相检查,确保结果的准确性。

通过这次活动,我深深地体会到了坐标正算反算公式的神奇和重要性。

它们不仅仅是书本上的公式,更是能在实际生活中发挥大作用的工具。

总之,坐标正算反算公式虽然看起来有点复杂,但只要我们多练习、多实践,就能熟练掌握它们,让它们为我们的学习和生活服务。

不管是在测量大地,还是在规划未来的道路,这两个公式都会是我们可靠的好帮手!。

工程测量坐标正反算带公式

工程测量坐标正反算带公式一、几何平差法几何平差法是一种基于观测数据的平差方法,通过求解误差方程组,确定测量点的坐标。

它的基本公式如下:1.坐标变形方程:在直角坐标系中,测量点的坐标可以表示为:x=X+Δxy=Y+Δy其中,x和y为测量点的坐标,X和Y为控制点的坐标,Δx和Δy 为测量点的改正数。

2.改正数计算公式:改正数可以通过解算误差方程组得到。

误差方程组的基本形式如下:AX+BY+C=0其中,A、B和C为系数,可以通过测量数据和控制点坐标的差异来确定。

3.改正数递推关系:通过改正数递推关系可以计算出最终的改正数。

其基本形式如下:Δx=ΣAX/ΣA²Δy=ΣBY/ΣB²其中,ΣAX和ΣA²是所有测量点坐标与控制点坐标的差别的总和。

二、最小二乘法最小二乘法是一种通过最小化观测数据和控制点坐标之间的差异来确定测量点坐标的方法。

它通过最小化误差平方和,得到测量点坐标的估计值。

最小二乘法的基本公式如下:1.误差方程:误差方程的一般形式如下:δX=AX+BY+C其中,δX为观测数据和估计值之间的差异,A、B和C为系数。

通过最小化误差平方和,可以求解系数的估计值。

2.系数估计方法:通过最小化误差平方和,可以得到系数的估计值。

其基本形式如下:A = (∑ x²y - ∑ xy∑ x) / (n∑ x² - (∑ x)²)B = (n∑ xy - ∑ x∑ y) / (n∑ x² - (∑ x)²)C = (∑ x²∑ y - ∑ xy∑ x²) / (n∑ x² - (∑ x)²)其中,x和y为控制点的坐标,n为测量点的数量。

3.坐标计算:通过求解系数估计值,可以得到测量点的坐标。

其基本形式如下:x=(y-∑By+ΔB)/A其中,y为测量点的坐标,∑By为所有观测数据和估计值之间差异的总和,ΔB为改正数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

坐标正算和坐标反算公式
给定原始坐标系下的坐标(x,y),以及原始坐标系的参考点的坐标(x0,y0),以及原始坐标系与目标坐标系之间的偏移量(dx,dy),则目标坐标系下的坐标(x',y')可以通过以下公式计算得出:
x' = x0 + (x - x0) * dx + (y - y0) * dy
y' = y0 - (x - x0) * dy + (y - y0) * dx
坐标反算公式
给定目标坐标系下的坐标(x',y'),以及原始坐标系的参考点的坐标(x0,y0),以及原始坐标系与目标坐标系之间的偏移量(dx,dy),则原始坐标系下的坐标(x,y)可以通过以下公式计算得出:
x = x0 + (x' - x0) * dx - (y' - y0) * dy
y = y0 + (x' - x0) * dy + (y' - y0) * dx
这些公式可以用于地理定位、地图投影、坐标转换等相关应用中。

请根据实际需要调整参数的取值和精度以及公式的单位。

相关文档
最新文档