2019年高考试题分类汇编(统计与概率)
2019高考数学(文)试题分类汇编:10统计与概率

2019高考数学(文)试题分类汇编:10统计与概率1.【山东省济南外国语学校2018届高三上学期期中考试文科】某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,在高一年级的学生中抽取了6名,那么在高二年级的学生中应抽取的人数为〔〕 A.6B.7C.8D.9 【答案】C【解析】设从高二应抽取x 人,那么有30:406:x =,解得8x =,选C.2.【山东省济南外国语学校2018届高三上学期期中考试文科】〔本小题总分值12分〕某河流上的一座水力发电站,每年六月份的发电量Y 〔单位:万千瓦时〕与该河上游在六月份的降雨量X 〔单位:毫米〕有关、据统计,当X=70时,Y=460;X 每增加10,Y 增加5;近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160、 〔I 〕完成如下的频率分布表: 近20年六月份降雨量频率分布表〔II 〕概率,求今年六月份该水力发电站的发电量低于490〔万千瓦时〕或超过530〔万千瓦时〕的概率、【答案】解:〔I 〕在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为…………………………………………………………………………………….…..….5分 .〔II 〕("132320202010P ++=发电量低于490万千瓦时或超过530万千瓦时")=P(Y<490或Y>530)=P(X<130或X>210)=故今年六月份该水力发电站的发电量低于490〔万千瓦时〕或超过530〔万千瓦时〕的概率为310、…………………………………………………………………………………12分3.【云南师大附中2018届高三高考适应性月考卷〔三〕文】记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为12,ΩΩ假设在区域1Ω内任取一点(,)M x y ,那么点M 落在区域2Ω的概率为A 、12πB 、1πC 、14D 、24ππ-【答案】A【解析】区域1Ω为圆心在原点,半径为4的圆,区域2Ω为等腰直角三角形,两腰长为4,所以218116π2πS P S ΩΩ===,应选A 、4.【云南省昆明一中2018届高三新课程第一次摸底测试文】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,以下各选项中,一定符合上述指标的是 ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤;④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于4。
2019年高考专题:概率与统计试题及答案

2019年高考专题:概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .0.5 B .0.6 C .0.7 D .0.8 【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C . 2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A .23B .35 C .25D .15【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B , 则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种,所以恰有2只做过测试的概率为63105=,故选B .4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 6.【安徽省江淮十校2019届高三年级5月考前最后一卷】《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为 A .18B .14 C .38D .12【解析】抛掷三枚古钱币出现的基本事件有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C . 7.【山东省济宁市2019届高三第一次模拟考试】某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为( )A .32 B .33 C .41 D .42 【解析】因为相邻的两个组的编号分别为14,23,所以样本间隔为23149-=, 所以第一组的编号为1495-=,所以第四组的编号为53932+⨯=,故选A . 8.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) A .100,10B .100,20C .200,10D .200,20【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=,抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .9.【西藏拉萨中学2019届高三第六次月考】某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为( ) A .0.5B .0.75C .1D .1.25【解析】四个小队积分分别为11.5,13.5,13.5,11.5,平均数为11.513.513.511.512.54+++=,故四个小队积分的方差为221[(11.512.5)2(13.512.5)2]14⨯-⨯+-⨯=,故选C . 10.【陕西省2019届高三第三次联考】口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是( ) A .0.42B .0.28C .0.3D .0.7【解析】在口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事件是互斥的,因为摸出红球的概率是0.38,摸出白球的概率是0.32,且摸出黑球是摸出红球或摸出白球的对立事件,所以摸出黑球的概率是10.380.320.3--=.故选C .11.【河南省郑州市2019届高三第三次质量检测】某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12 B .14 C .16 D .18【解析】因为中位数为12,所以4x y +=,数据的平均数为1(223420191910x y ⨯+++++++++2021)11.4+=,要使该总体的标准差最小,即方差最小,所以22(1011.4)(1011.4)x y +-++-=2222.8( 1.4)( 1.4)2()0.722x y x y +--+-≥=,当且仅当 1.4 1.4x y -=-,即2x y ==时取等号,此时总体标准差最小,4212x y +=,故选A . 12.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( ) A .35,33,30B .36,32,30C .36,33,29D .35,32,31【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 13.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D . 14.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s ><【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<,所以275s <.故选A .15.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=, 因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为300.650=, 因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.16.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈.【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.17.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.18.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii)11 15.【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M .19.【北京市清华大学附属中学2019届高三第三次模拟考试】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性、300名男性)进行调查,对手机进行评分,评分的频数分布表如下:(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,能否有90%的把握认为“是否是评分良好用户”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)女性用户和男性用户的频率分布直方图分别如下图所示:女性用户男性用户由图可得女性用户的波动小,男性用户的波动大.(2)由题可得22⨯列联表如下:则22500(14012018060)1255.208 2.70620030032018024K⨯⨯-⨯=≈>⨯⨯⨯=,所以有90%的把握认为“是否是评分良好用户”与性别有关.20.【2019年甘肃省兰州市高考数学一诊】“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)根据上表的数据,填写下列22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)以200人中“热烈参与者”的频率作为概率,可得该市“热烈参与者”的人数约为40 200004000200⨯=.(2)由题可得22⨯列联表如下:则22200(35551055)1757.292 6.635401601406024K⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关.21.【四川省成都七中2019届高三5月高考模拟测试】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.(1)求图中m的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在[450,500),[500,550]这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.【解析】(1)依题意,根据频率分布直方图的性质,可得:50(0.00400.00500.00660.00160.0008)1m⨯+++++=,解得0.0020m=.(2)设该校担任班主任的教师月平均通话时长的中位数为t.因为前2组的频率之和为(0.00200.0040)500.30.5+⨯=<,前3组的频率之和为(0.00200.00400.0050)500.550.5++⨯=>,所以350400t <<,由0.30.0050(350)0.5t +⨯-=,得390t =.所以该校担任班主任的教师月平均通话时长的中位数为390分钟.(3)由题意,可得在[450,500)内抽取0.0016640.00160.0008⨯=+人,分别记为a b c d ,,,, 在[500,550]内抽取2人,记为,e f ,则6人中抽取2人的取法有:{,}a b ,{,}a c ,{,}a d ,{,}a e ,{,}a f ,{,}b c ,{,}b d ,{,}b e ,{,}b f ,{,}c d ,{,}c e ,{,}c f ,{,}d e ,{,}d f ,{,}e f ,共15种等可能的取法.其中抽取的2人恰在同一组的有{,}a b ,{,}a c ,{,}a d ,{,}b c ,{,}b d ,{,}c d ,{,}e f ,共7种取法,所以从这6人中随机抽取的2人恰在同一组的概率715P =. 22.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考(六)】某种产品的质量按照其质量指标值M 进行等级划分,具体如下表: 质量指标值M80M < 80110M ≤< 110M ≥ 等级 三等品 二等品 一等品现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M 进行统计分析,得到如图所示的频率分布直方图.(1)记A 表示事件“一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).【解析】(1)记B 表示事件“一件这种产品为二等品”,C 表示事件“一件这种产品为一等品”, 则事件B ,C 互斥,且由频率分布直方图估计()0.20.30.150.65P B =++=,()0.10.090.19P C =+=,又()()()()0.84P A P B C P B P C =+=+=,所以事件A 的概率估计为0.84.(2)由(1)知,任取一件产品是一等品、二等品的概率估计值分别为0.19,0.65,故任取一件产品是三等品的概率估计值为0.16,从而10000件产品估计有一等品、二等品、三等品分别为1900,6500,1600件,故利润估计为190010650061600261200⨯+⨯+⨯=元.(3)因为在产品质量指标值M的频率分布直方图中,质量指标值90M<的频率为0.060.10.20.360.5++=<,质量指标值100M<的频率为0.060.1020.30.660.5+++=>,故质量指标值M的中位数估计值为0.50.369094.670.03-+≈.。
《高考真题》专题13 概率与统计-2019年高考理数母题题源系列(全国Ⅱ专版)(解析版)

专题13 概率与统计【母题来源一】【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.【母题来源二】【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .118【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为7231119131730+=+=+=,所以随机选取两个不同的数,其和等于30的有3种方法, 故所求概率为31=4515,故选C . 【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化;(4)排列组合法:适用于限制条件较多且元素数目较多的题目.【命题意图】本类问题主要涉及古典概型、对立事件概率的计算及概率与统计的综合,要求掌握利用古典概型求概率的方法,掌握利用互斥事件概率的加法公式及对立事件的概率公式求概率的方法.【命题规律】古典概型是高考命题的重点,题目难度中等,要求考生通过阅读提取信息,并掌握必要的计数方法:枚举法,树状图或者排列组合知识等.【答题模板】解答本类题目,以2018年高考这题试题为例,一般考虑如下三步:第一步:分析已知条件选择古典概型模型;第二步:找基本事件总数以及事件包含的基本事件数;第三步:带入古典概型的计算公式求解.【方法总结】1.古典概型是概率论中最简单而又直观的模型,在概率论的发展初期曾是主要研究对象,许多概率的运算法则都是在古典概型中得到证明的(遂谓之“古典”).要判断一个试验是否为古典概型,只需要判断这个试验是否具有古典概型的两个特征——有限性和等可能性.2.求古典概型的概率(1)对于事件A的概率的计算,关键是要分清基本事件总数n与事件A包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式()mP An求出事件A的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.(3)如果基本事件个数比较多,列举有一定困难时,可以用树状图法,树状图法适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x,y)可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2),(2,1)相同.(4)较为简单的问题可以直接使用古典概型概率公式计算,较为复杂的概率问题的处理方法有:①转化为几个互斥事件的和,利用互斥事件的加法公式求解;学科.网②采用间接法,先求事件A的对立事件A的概率,再由P(A)=1-P(A)求事件A的概率.1.【宁夏石嘴山市第三中学2019届高三下学期三模考试数学试题】袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为A.19B.318C.29D.518【答案】C【解析】因为随机模拟产生18组随机数,由随机产生的随机数可知,恰好第三次就停止的有:021,001,031,130共4个基本事件,根据古典概型概率公式可得,恰好第三次就停止的概率为42189=,故选C.【名师点睛】本题主要考查随机数的应用以及古典概型概率公式,属于中档题. 在解答古典概型概率题时,首先求出样本空间中基本事件的总数n,其次求出概率事件中含有多少个基本事件m,然后根据公式mPn=求得概率.2.【辽宁省沈阳市2019届高三上学期一模数学试题】某英语初学者在拼写单词“steak”时,对后三个字母的记忆有些模糊,他只记得由“a”、“e”、“k”三个字母组成并且字母“k”只可能在最后两个位置中的某一个位置上.如果该同学根据已有信息填入上述三个字母,那么他拼写正确的概率为A .16 B .14 C .13D .12【答案】B【解析】因为某英语初学者在拼写单词“steak ”时, 对后三个字母的记忆有些模糊,他只记得由“a ”、“e ”、“k ”三个字母组成,并且字母“k ”只可能在最后两个位置中的某一个位置上. 该同学根据已有信息填入上述三个字母,满足题意的字母组合有四种,分别是eka,ake,eak,aek , 拼写正确的组合只有一种eak , 所以他拼写正确的概率为14P =.故选B . 【名师点睛】本题主要考查概率的求法,考查古典概型、列举法等基础知识,是基础题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式m P n=求得概率. 3.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学试题】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是A .101B .103C .35D .25【答案】C【解析】设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,共有5525⨯=种情况, 当x y ≤时,可能的情况如下表:()255P x y ≤==,故选C.【名师点睛】本题考查用列举法求概率,本问题可以看成有放回取球问题.4.【吉林省实验中学2019届高三下学期第八次月考数学试题】从1,2,3,4,5中任取5个数字,组成没有重复数字的五位数,则组成的五位数是偶数的概率是A .23 B .35C .12D .25【答案】D【解析】从1,2,3,4,5这5个数字中任取5个数字组成没有重复数字的五位数, 基本事件总数n =55A =120,这个五位数是偶数包含的基本事件个数m =1424C A =48, ∴这个五位数是偶数的概率P =4821205m n ==. 故选D .【名师点睛】本题考查古典概型概率的求法,是基础题.5.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考数学试题】已知函数()322113fx x a x b x =+++,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为A .79 B .13 C .59D .23【答案】D【解析】将a 记为横坐标,将b 记为纵坐标,可知总共有()()()()()()()()()1,0,1,1,1,2,2,0,2,1,2,2,3,0,3,1,3,2共9个的结果,而函数有两个极值点的条件为其导函数有两个不相等的实根,22()2f 'x x ax b =++,满足题中条件为22440a b ∆=->,即a b >,所以满足条件的基本事件有()()()()()()1,0,2,0,2,1,3,0,3,1,3,2共6个基本事件,所以所求的概率为6293P ==,故选D .6.【山东省青岛市2019届高三9月期初调研检测数学试题】已知某运动员每次投篮命中的概率是40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683.该运动员三次投篮恰有两次命中的概率为A .15 B .35C .310D .910【答案】C【解析】由题意知模拟三次投篮的结果,经随机模拟产生了10组随机数,在10组随机数中表示三次投篮恰有两次命中的有:191、932、271,共3组随机数, 故所求概率为310. 故答案为C.【名师点睛】本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.7.【宁夏银川市2019届高三下学期质量检测数学试题】根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为A .16B .14C .13D .12【答案】A【解析】派四位专家对三个县区进行调研,每个县区至少派一位专家,基本事件总数:2343C A 36n ==,甲,乙两位专家派遣至同一县区包含的基本事件个数:212232C C A 6m ==,∴甲,乙两位专家派遣至同一县区的概率为:61366m p n ===, 故选A.【名师点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题. 8.【2019年甘肃省兰州市高考数学一诊试卷】某区要从参加扶贫攻坚任务的5名干部A ,B ,C ,D ,E 中随机选取2人,赴区属的某贫困村进行驻村扶贫工作,则A 或B 被选中的概率是A .15 B .25C .35D .710【答案】D【解析】某区要从参加扶贫攻坚任务的5名干部A ,B ,C ,D ,E 中随机选取2人, 赴区属的某贫困村进行驻村扶贫工作,基本事件总数n =25C =10, A 或B 被选中的对立事件是A 和B 都没有被选中,则A 或B 被选中的概率是P =1-2325C 7C 10=.故选D .【名师点睛】本题主要考查古典概型的求解,侧重考查数学建模和数学运算的核心素养.9.【甘肃省天水市第一中学2019届高三一轮复习第六次质量检测数学试题】为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是 A .0.3 B .0.4 C .0.6D .0.7【答案】D【解析】由题意得,从五个节日中随机选取两个节日的所有情况有25C 10=种,设“春节和端午节至少有一个被选中”为事件A ,则事件A 包含的基本事件的个数为12322C C 7+=. 由古典概型概率公式可得()1232252C C 70.7C 10P A +===. 故选D .【名师点睛】解答本题的关键有两个:一是判断出所求概率的类型,本题中结合题意可得属于古典概型;二是正确求出所有的基本事件数和所求概率的事件包含的基本事件数.求事件的个数时可根据排列组合的知识求解,本题考查分析判断能力和计算能力,属于基础题.10.【新疆2019届高三第三次诊断性测试数学试题】将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取一个,恰好是两面涂色的概率是A.29B.827C.49D.1627【答案】C【解析】由题可得:大正方体的最上层有4个恰好是两面涂色的小正方体,大正方体的中间一层及最底层都有4个恰好是两面涂色的小正方体,所以恰好是两面涂色的小正方体个数为4312⨯=个,所以从这些小正方体中任取一个,恰好是两面涂色的概率是124279p==,故选C.【名师点睛】本题主要考查了古典概型概率计算,考查空间思维能力,属于基础题.11.【内蒙古2019年呼和浩特市高三年级第二次质量普查调研考试数学试题】一个盒子里装有标号为1~6的6个大小和形状都相同的小球,其中1到4号球是红球,其余两个是黄球,若从中任取两个球,则取的两个球颜色不同,且恰有1个球的号码是偶数的概率是A.115B.215C.315D.415【答案】D【解析】盒子里装有标号为1~6的6个大小和形状都相同的小球,其中1到4号球是红球,5,6号是黄球,从中任取两个球,有12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15种情况,恰有1个球的号码是偶数有16,25,36,45共有4种情况,故所求概率P=4 15.故选D.【名师点睛】本题考查古典概型的概率公式的应用,属于基础题.12.【内蒙古赤峰市2019届高三4月模拟考试数学试题】《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是A .23B .35C .59D .34【答案】A【解析】因为双方各有3匹马,所以“从双方的马匹中随机选一匹马进行一场比赛”的事件数为9种, 满足“齐王获胜”的这一条件的情况为: 齐王派出上等马,则获胜的事件数为3; 齐王派出中等马,则获胜的事件数为2; 齐王派出下等马,则获胜的事件数为1; 故满足“齐王获胜”这一条件的事件数为6种, 根据古典概型公式可得,齐王获胜的概率6293P ==,故选A. 【名师点睛】本题考查了古典概型问题,解题的关键是求出满足条件的事件数,再根据古典概型的计算公式求解问题,属于基础题.13.【陕西省咸阳市2019届高三高考模拟检测(二)数学试题】一个三位数的百位,十位,个位上的数字依次是a ,b ,c ,当且仅当a b <且b c >时称为“凸数”.现从1,2,3,4中任取三个组成一个三位数,则它为“凸数”的概率是______. 【答案】13【解析】从1,2,3,4中任取三个组成一个三位数,有34A 24=种排法,满足凸数的个数为:当b =4时,有23A 6=种排法;当b =3时,有2种排法,共8种.概率为81.243= 故答案为13. 【名师点睛】解排列组合问题要遵循两个原则: ①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).14.【陕西省榆林市2019届高三第二次模拟试题数学试题】不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,则摸到同色球的概率为________. 【答案】25【解析】不透明的袋中有5个大小相同的球,其中3个白球,2个黑球,从中任意摸取2个球,基本事件总数n 25C ==10,摸到同色球包含的基本事件个数m 2232C C =+=4,∴摸到同色球的概率42105m P n ===. 故答案为25. 【名师点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.15.【广西南宁市2019届高三毕业班第一次适应性测试数学】用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为__________.【答案】516【解析】5个格子用0与1两个数字随机填入共有5232=种不同方法,从左到右数,不管数到哪个格子,总是1的个数不少于0的个数包含的基本事件有:①全是1,有1种方法;②第一个格子是1,另外4个格子有一个0,有4种方法;③第一个格子是1,另外4个格子有2个0,有5种方法,所以共有14510++=种基本方法,那么概率1053216P ==. 故答案为516. 【名师点睛】本题主要考查了古典概型的求解,解题的关键是采用分类的方式计算满足条件的基本事件数,属于中档题.16.【辽宁省辽阳市2019届高三上学期期末考试数学试题】现有两对情侣都打算从巴黎、厦门、马尔代夫、三亚、泰国这五个地方选取一个地方拍婚纱照,且这两对情侣选择的地方不同,则这两对情侣都选在国外拍婚纱照的概率为_______. 【答案】310【解析】两对情侣所有选择方案为(巴黎,厦门),(巴黎,马尔代夫)(巴黎,三亚),(巴黎,泰国),11 (厦门,马尔代夫),(厦门,三亚),(厦门,泰国),(马尔代夫,三亚),(马尔代夫,泰国),(三亚,泰国),共有10种,其中有3种满足题意,故所求概率为310, 故答案为310. 【名师点睛】本题考查了古典概型,考查了利用列举法解决排列组合的问题,属于基础题.17.【河北省省级示范性高中联合体2019届高三3月联考数学试题】小张要从5种水果中任选2种赠送给好友,其中芒果、榴莲、椰子是热带水果,苹果、葡萄是温带水果,则小张送的水果既有热带水果又有温带水果的概率为________. 【答案】3(0.6)5或【解析】由题从5种水果中任选2种的事件总数为25C 10,= 小张送的水果既有热带水果又有温带水果的基本事件总数为1123C C 6,=∴小张送的水果既有热带水果又有温带水果的概率为63105=. 故答案为35.。
2019年高考必备必考-统计与概率大题汇总_(理科解答含答案)

一对一个性化辅导教学设计任课老师:关sir统计与概率解答题好比数学题中阅读理解,文字多,需要有一定的文字理解能力和结合实际进行数据分析的能力。
文档题目分三档,A 组是必须要掌握题目,因为这道题目在高考大题中是处于基础性的地位,所以要多做,争取拿满分。
A组1、(本小题满分12分)(F37,2017全国2卷理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(3)根据箱产量的频率分布直方图,对求新养殖法产量的中位数的估计值(精确到0.01). 附:(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.352、(本小题满分12分)(B06理)传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征. 教育部考试中心确定了2017年普通高考部分更注重传统文化考核. 某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为E D C B A ,,,,五个等级进行数据统计如下:根据以上抽样调查数据,视频率为概率.(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B 的人数; (2)若等级E D C B A ,,,,分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?(3)为更深入了解教学情况,将成绩等级为B A ,的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A 的人数X 的分布列与数学期望.(1)150(2)59,未达标(3)9/7随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;4、(本小题满分12分)(F32,2015全国2卷理科)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,根据用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可)(1)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立。
2019年高考真题+高考模拟题 专项版解析汇编 理数——专题10 概率与统计(解析版)

专题10 概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<L .则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<L ,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<L ,后来平均数23481()7x x x x x '=<<<L ,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-L ,22222381[()()()]7s x x x x x x '=-'+-'++-'L ,由②易知,C 不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D . 方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题. 【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.7.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a=0.35,b=0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. (1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分. 【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333k k kP X k k -===. 所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====U . 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====U(3,1)(2,0)===+==P X Y P X Y===+==(3)(1)(2)(0)P X P Y P X P Y824120=⨯+⨯=.27992724310.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E(X)=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A的学生有18+9+3=30人,仅使用B的学生有10+14+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率估计为40=.0.4100(2)X的所有可能值为0,1,2.记事件C为“从样本仅使用A的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD ==U ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-.又因为1010p p p -=≠,所以1{}(0,1,2,,7)i i p p i +-=L 为公比为4,首项为1p 的等比数列. (ii )由(i )可得88776100p p p p p p p p =-+-++-+L877610()()()p p p p p p =-+-++-L81413p -=.由于8=1p ,故18341p =-, 所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=. 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时, 认为甲药更有效的概率为410.0039257p =≈, 此时得出错误结论的概率非常小,说明这种试验方案合理.12.【广西桂林市、崇左市2019届高三下学期二模联考】在某项测试中,测量结果ξ服从正态分布2(1,)(0)N σσ>,若(01)0.4P ξ<<=,则(02)P ξ<<=A .0.4B .0.8C .0.6D .0.2【答案】B【解析】由正态分布的图象和性质得(02)2(01)20.40.8P P ξξ<<=<<=⨯=.故选B .【名师点睛】本题主要考查正态分布的图象和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .100,10B .100,20C .200,10D .200,20【答案】D【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=, 抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D . 14.【陕西省2019届高三年级第三次联考】同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的次数为X ,则X 的数学期望是 A .1B .2C .32D .52【答案】A【分析】先计算依次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率,进而利用二项分布求数学期望即可.【解析】∵一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为111224⨯=, ∴1~(4,)4X B ,∴1()414E X =⨯=.故选A .【名师点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布~(,)B n p ,也可以直接利用公式()E np ξ=求数学期望. 15.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为 A .35,33,30 B .36,32,30 C .36,33,29D .35,32,31【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数.【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 16.【浙江省三校2019年5月第二次联考】已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲、乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为ξ,则()E ξ=A .145 B .135 C .73D .83【答案】A【分析】先求出ξ的可能取值及取各个可能取值时的概率,再利用1122()i i E p p p ξξξξ=++++L L 可求得数学期望.【解析】ξ的可能取值为2,3,4,2ξ=表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故339(2)5525P ξ==⨯=;3ξ=表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故322312(3)555525P ξ==⨯+⨯=;4ξ=表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故224(4)5525P ξ==⨯=,所以912414()2342525255E ξ=⨯+⨯+⨯=.故选A .17.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s ><【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案. 【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x L , 则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-L 22212481[(70)(70)(70)500]50x x x =-+-++-+L , 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-L22212481[(70)(70)(70)100]7550x x x =-+-++-+<L , 所以275s <.故选A .【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.18.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分 【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D . 19.【天津市南开中学2019届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髫小儿,人数按照年龄分组统计如下表:(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数;(2)在(1)中抽出的6人中,任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率.【答案】(1)1,3,2;(2)415. 【分析】(1)先求出样本容量与总体个数的比,由此利用分层抽样的方法能求出从这三个不同年龄组中分别抽取的挑战者的人数;(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数26C 15n ==,这2人来自同一年龄组包含的基本事件个数为2232C C 4m =+=,由此能求出这2人来自同一年龄组的概率. 【解析】(1)∵样本容量与总体个数的比是6110818=, ∴样本中包含3个年龄段落的个体数分别是:年龄在[7,20)的人数为6108⨯18=1, 年龄在[20,40)的人数为6108⨯54=3,年龄在[40,80)的人数为6108⨯36=2, ∴从这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数为26C 15n ==, 这2人来自同一年龄组包含的基本事件个数为2232C C 4m =+=,∴这2人来自同一年龄组的概率415m P n ==. 20.【2019北京市通州区三模】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值. (1)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率; (2)从该公司本月卖出的销售单价为20万元的机器中随机选取2台,求这两台机器的利润率不同的概率;(3)假设每类机器利润率不变,销售一台第一类机器获利1x 万元,销售一台第二类机器获利2x 万元,…,销售一台第五类机器获利5x ,依据上表统计数据,随机销售一台机器获利的期望为()E x ,设123455x x x x x x ++++=,试判断()E x 与x 的大小.(结论不要求证明) 【答案】(1)13;(2)1021;(3)()E x x <. 【分析】(1)先由题意确定,本月卖出机器的总数,再确定利润率高于0.2的机器总数,即可得出结果;(2)先由题意确定,销售单价为20万元的机器分别:是第一类有5台,第三类有10台,共有15台,记两台机器的利润率不同为事件B ,由11510215C C()C P B =即可结果;(3)先由题意确定,x 可能取的值,求出对应概率,进而可得出()E x ,再由123455x x x x x x ++++=求出均值,比较大小,即可得出结果.【解析】(1)由题意知,本月共卖出30台机器, 利润率高于0.2的是第一类和第四类,共有10台. 设“这台机器利润率高于0.2”为事件A ,则101()303P A ==. (2)用销售总额除以销售量得到机器的销售单价,可知第一类与第三类的机器销售单价为20万,第一类有5台,第三类有10台,共有15台,随机选取2台有215C 种不同方法, 两台机器的利润率不同则每类各取一台有11510C C 种不同方法,设两台机器的利润率不同为事件B ,则11510215C C 10()C 21P B ==. (3)由题意可得,x 可能取的值为8,5,3,1051(8)306P x ===,21(5)3015P x ===, 1083(3)305P x +===,51(10)306P x ===,因此113177853*******(55)E x =⨯+⨯+⨯+⨯=;又8531032955x ++++==,所以()E x x <.21.【江西省新八校2019届高三第二次联考】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考, 方案1:不分类卖出,单价为20元/kg . 方案2:分类卖出,分类后的水果售价如下:从采购单的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望()E X . 【答案】(1)96625;(2)第一种方案;(3)分布列见解析,6()5E X =. 【分析】(1)计算出从100个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公式求得所求概率;(2)计算出方案2单价的数学期望,与方案1的单价进行比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10个水果中,精品果4个,非精品果6个;则X 服从超几何分布,利用超几何分布的概率计算公式可得到每个X 取值对应的概率,从而可得分布列;再利用数学期望的计算公式求得结果. 【解析】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为A ,则201()1005P A ==, 现有放回地随机抽取4个,设抽到礼品果的个数为X ,则1~(4,)5X B , 所以恰好抽到2个礼品果的概率为22244196(2)C ()()55625P X ===, (2)设方案2的单价为ξ,则单价的期望值为134216548848()1618222420.61010101010E ξ+++=⨯+⨯+⨯+⨯==, 因为()20E ξ>,所以从采购商的角度考虑,应该采用第一种方案.(3)用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个, 现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为0,1,2,3,则36310C 1(0)C 6P X ===;2164310C C 1(1)C 2P X ===; 1264310C C 3(2)C 10P X ===;34310C 1(3)C 30P X ===,所以X 的分布列如下:所以()01236210305E X =⨯+⨯+⨯+⨯= 【名师点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求解出概率.。
三年高考(2017_2019)高考数学真题分项汇编专题14概率与统计(选择题、填空题)文(含解析)

专题14 概率与统计(选择题、填空题)1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若{}n a 10d =610n a n =+()n *∈N ,解得,不合题意;若,解得,不合题意;若,8610n =+15n =200610n =+19.4n =616610n =+则,符合题意;若,则,不合题意.故选C .61n =815610n =+80.9n =3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .B .2335C .D .2515【答案】B【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式即可求解.【解析】设其中做过测试的3只兔子为,剩余的2只为,,,a b c ,A B 则从这5只中任取3只的所有取法有,{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,共10种.{,,},{,,},{,,}b c B b A B c A B 其中恰有2只做过测试的取法有,共6种,{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B 所以恰有2只做过测试的概率为,故选B .63105【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.4.【2018年高考全国Ⅰ卷文数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入为0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D 正确;故选A .30%+28%=58%>50%5.【2018年高考全国Ⅱ卷文数】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .B .0.60.5C .D .0.40.3【答案】D【解析】设2名男同学为,3名女同学为,A 1,A 2B 1,B 2,B 3从以上5名同学中任选2人总共有,共10种可能,选A 1A 2,A 1B 1,A 1B 2,A 1B 3,A 2B 1,A 2B 2,A 2B 3,B 1B 2,B 1B 3,B 2B 3中的2人都是女同学的情况共有,共3种可能,B 1B 2,B 1B 3,B 2B 3则选中的2人都是女同学的概率为,故选D .P =310=0.3【名师点睛】应用古典概型求概率的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;A 第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式n A m P(A)=mn求出事件的概率.A 6.【2017年高考全国Ⅰ卷文数】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .B .14π8C .D .12π4【答案】B【解析】不妨设正方形边长为,由图形的对称性可知,太极图中黑、白部分面积相等,即各占圆面积a 的一半.由几何概型概率的计算公式得,所求概率为,选B .221π()π228a a ⨯⨯=。
2019年高考概率统计试题汇编及分析 Word版含解析

2019高考全国一卷为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.解析:(1)首先根据题意,随机试验一轮试验共4个结果,我们用符号+-分别表示治愈和未治愈。
则甲+乙+,甲+乙-,甲-乙+,甲-乙-。
p甲乙=(1-)p(X=0)= 甲乙+甲乙=p甲乙=(1-)所以的分布列为:(2)当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效。
假设四轮试验都是甲+乙—,则甲药比乙药多四只,认为甲药更有效。
此时甲药得分为4分,乙药得分为-4分,所以甲药、乙药在试验开始时都赋予4分。
(0,1,,8)ip i=表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则00p=表示四轮试验都是甲-乙+,乙药有效,81p=表示四轮试验都是甲+乙-,甲药有效。
2019高考数学最新分类解析专题11概率与统计(理)(可编辑修改word版)

1 1 1 12019 高考数学最新分类解析专题 11 概率与统计(理)一.基础题1. 【2013 年山东省临沂市高三教学质量检测考试】某中学高三从甲、乙两个班中各选出 7名学生参加数学竞赛,他们取得旳成绩(满分 l00 分)旳茎叶图如图,其中甲班学生成绩旳众数是 85,乙班学生成绩旳中位数是 83,则 x+y 旳值为(A)7 (B)8 (C)9 (D)10【答案】B【解析】由茎叶图可知,甲班学生成绩旳众数是85,所以 x = 5 ·乙班学生成绩旳中位数是83,所以 y = 3 ,所以 x + y = 5 + 3 = 8 ·选 B.2. 【2013 年山东省日照市高三模拟考试】某商场在庆元宵促销活动中,对元宵节 9 时至 14 时旳销售额进行统计,其频率分布直方图如图所示,已知9 时至10 时旳销售额为2.5 万元,则11 时至 12 时旳销售额为 万元. 【答案】10 【解析】 2.5⋅ 0.4=1(0 0.1万元)3. 【湖北省黄冈中学、孝感高中 2013 届高三三月联合考试】在棱长为 a 旳正方体ABCD - A B C D 中随机地取一点 P , 则点 P 与正方体各表面旳距离都大于 a 旳概率为 3( )A. 127 3.AB. 116C. 19D. 134. 【成都外国语学校高 2013 级高三 12 月月考】将一颗骰子抛掷两次,所得向上点数分别为m , n ,则函数 y = 2 mx 3- nx + 1在[1 , + ∞)上为增函数旳概率是( )3A. 12B. 56 C. 34 D. 235. 【“华安、连城、永安、漳平一中,龙海二中,泉港一中”六校联考 2012-2013 学年上学期第三次月考】函数f ( x ) = x 2 - x - 2, x ∈[-5,5] ,定义域内任取一点 x ,使 f (x ) ≤ 0 旳概率是()A. 1 10【答案】CB. 2 3C. 3 100 0D. 4 5【解析】∵ x 2 - x - 2 ≤ 0 ∴ -1 ≤ x ≤ 2 ∴p =2 - (-1) =35 - (-5) 106. 【上海市浦东 2013 届高三一模】已知甲射手射中目标旳频率为 0.9,乙射手射中目标旳频率为 0.8,如果甲乙两射手旳射击相互独立,那么甲乙两射手同时瞄准一个目标射击,目标被射中旳频率为 . 【答案】0.98【解析】目标被射中旳频率为 1-(1-0.9)(1-0.8)=1-0.2=0.98.7. 【“华安、连城、永安、漳平一中,龙海二中,泉港一中”六校联考 2012-2013 学年上学期第三次月考】口袋内装有100 个大小相同旳红球、白球和黑球,其中有 45 个红球,从中nnnnn n n n摸出1个球,若摸出白球旳概率为 0.23 ,则摸出黑球旳概率为 .【答案】0.32【解析】设白球旳个数为 x ,p = x100 = 0.23 ∴ x = 23 ∴黑球共有 32 个,∴ p = 32 100= 0.32 8.【上海市松江 2013 届高三一模】(理)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为 a ,再由乙猜想甲刚才想旳数字,把乙猜旳数字记为 b ,且 a ,b ∈{0,1,2,3, 9},若 a - b ≤ 1 ,则称甲乙“心有灵犀”.现找两个人玩这个游戏,得出他们“心有灵犀”旳概率为. 【答案】7/25【解析】a =b 旳取法有 10 种;a 、b 相差 1 旳取法有 9⨯2=18 种(01,12,…,89 再互换),n A =10+18=28, n =10⨯10=100,∴概率 p= n A = 28 = 7 .Ω100 25a C k -1 = (2k -1 + 1)C k -1 = C k -1 + C k -1 2k -1 ,令 k =1,2,3,…,n ,n +1,得 k n n n nS =( C 0 + C 1 + C 2 +…+ C n )+( C 0 ⋅ 20 + C 1 ⋅ 21 + C 2 ⋅ 22 + + C n ⋅ 2n )=2n +(1+2)n =2n +3n .4.9. 【湖北省黄冈中学、孝感高中2013 届高三三月联合考试】为了了解某校高三男生旳身体状况,抽查了部分男生旳体重,将所得数据整理后,画出了频率分布直方图(如右图).已知图中从左到右旳前3 个小组旳频率之比为 1﹕2﹕3,第 2 小组旳频数为 12,则被抽查旳男生旳人数是 . 【答案】48【解析】设被抽查旳男生旳人数为 n .∵后两组旳频率之和为(0.0125 + 0.0375) ⨯ 5 = 0.25 ,∴前三组旳频率之和为0.75 .又∵前三组旳频数分别为6,12,18 ,∴ 6 +12 +18= 0.75,得 n = 48 .n10. 【邯郸市 2013 届高三教学质量检测】在由 y =0,y = 1, x = 0, x =四条直线围成旳区域内任取一点,这点没有落在 y = sin x 和x 轴所围成区域内旳概率是( )A .1-2B. 2C. 1 2D. 311. 【武汉市部分学校 2013 届高三 12 月联考】投掷两颗骰子,其向上旳点数分别为 m 和 n ,则复数(m + ni )2 为纯虚数旳概率为( ) A.13 【答案】CB. 14 C. 16 D. 112【解析】∵复数(m + ni )2 为纯虚数 ∴ m = n∴p =6 = 16 ⨯ 6 612. 【2013 年西工大附中第三次适应性训练】设函数 f (x ) = x 2 - x - 2, x ∈[-5, 5] .若从区间[-5, 5] 内随机选取一个实数 x 0 ,则所选取旳实数 x 0 满足 f (x) ≤ 0 旳概率为()(A ) 0.5 (B ) 0.4(C ) 0.3 (D ) 0.213. 【2013 河北省名校名师俱乐部高三 3 月模拟考试】如图是某校 10 名教师用多媒体教学旳次数旳茎叶图,则其中位数是【答案】12【解析】其中位数为11+13= 12214. 【四川省2012 年成都市高 2013 级】某艺校在一天旳 6 节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1 节,则在课表上旳相邻两节文化课之间最多间隔 1 节艺术课旳概率为 (用数字作答) 【答案】 35【解析】在课表上旳相邻两节文化课之间最多间隔 1 节艺术课旳情况有: 3C 3 A 3 A356 3 3A =6 节课排课有: 6 ,所以在课表上旳相邻两节文化课之间最多间隔 1 节艺术课旳概率为:63 C 3 A 3 A 3 . p = 5 6 3 33 6 615. 【石室中学高 2013 级一诊模拟试题】已知关于 x 旳方程 -2x 2 + bx + c = 0 , 若b 、c ∈{0、1、2、3、4},记“该方程有实数根x 、x 且满足 -1 ≤ x ≤ x ≤ 2 ” 为事件 A ,则事1212件 A 发生旳概率为( ) (A ) 516【答案】D(B ) 1225 (C ) 1425 (D ) 162516. 【四川省德阳市高中 2013 届高三“一诊”考试 】已知 Rt△ABC 中,AB =3,AC =4,∠BAC= 90°,AD⊥BC 于 D ,E 在△ABC 内任意移动,则 E 于△ACD 内旳概率为()A. 35B. 34 C. 1625 D. 4517. 【四川省德阳市高中 2013 届高三“一诊”考试 】同时抛掷一颗红骰子和一颗蓝骰子,观察向上旳点数,记“红骰子向上旳点数是 3 旳倍数”为事件 A ,“两颗骰子旳点数和大于 8”为事件 B ,则 P (B|A )=A 518. 【内江市 2013 届高中三年级第一次模拟考试试题】右面茎叶图表示旳是甲、乙两人在 5次综合测评中旳成绩,其中一个数字被污损·则甲旳平均成绩超过乙旳平均成绩旳概率为_ __ 【答案】45【解析】x 甲 =88 + 89 + 90 + 91+ 92= 90 ;当甲旳平均成绩等于乙旳平均成绩时,被污数5 字 a=8,即 98 分,所以只有被污旳分数是 99 分时,乙旳平均成绩才大于甲旳平均成绩,∴ 当甲旳平均成绩超过乙旳平均成绩时概率为8 4 P = =10 519. 【2013 年天津市滨海新区五所重点学校高三毕业班联考】某工厂生产 A , B , C 三种不同型号旳产品,三种产品数量之比依次为 2 : 3 : 4 ,现采用分层抽样旳方法从中抽出一个容量为n 旳样本,样本中 A 型号旳产品有16 件,那么此样本容量 n = .【答案】 72【解析】由题意可知n ⨯(2 ) = 2n = 16,解得 n = 72 ·2 +3 +4 920. 【北京市顺义区 2013 届高三第一次统练】下图是根据 50 个城市某年 6 月份旳平均气温(单位:℃)数据得到旳样本频率分布直方图,其中平均气温旳范围是[20.5,26.5],样本数据旳分组为 [20.5,21.5), [21.5,22.5) , [22.5,23.5) , [23.5,24.5) , [24.5,25.5) , [25.5,26.5].由图中数据可知 a =;样本中平均气温不低于 23.5℃旳城市个数为 .∑【答案】0.18,33【解析】因为 (0.10 + 0.12 ⨯ 2 + a + 0.22 + 0.26) ⨯1 = 1 ,所以 a = 0.18 ·不低于 23.5℃旳频率为 (0.18 + 0.22 + 0.26) ⨯1 = 0.66 ,所以样本中平均气温不低于 23.5℃旳城市个数为0.66 ⨯ 50 = 33 ·21. 【广东省揭阳市 2013 届高三 3 月第一次高考模拟】一般来说,一个人脚掌越长,他旳身高就越高,现对 10 名成年人旳脚掌长 x 与身高 y 进行测量,脚长 20 21 22 23 24 25 26 27 28 29 身高 141 146 154 160 169 176 181 188 197 203得到数据(单位均为cm )如上表,作出散点图后,发现散点在一条直线附近,经计算得到 一些数据:10(x - x )( y- y ) = 577.5 , 10∑(x- x )2= 82.5;某刑侦人员在某案发现场发i ii =1ii =1现一对裸脚印,量得每个脚印长为 26.5cm ,则估计案发嫌疑人旳身高为cm .22. 【四川省德阳市高中 2013 届高三“一诊”考试】为了解某校高三学生到学校运动场参加体育 锻炼旳情况.现采用简单随机抽样旳方法,从高三旳1500 名同学中抽取 50 名同学,调查他们在一学期内到学校运动场参加体育锻炼旳次数,结果用茎叶图表示 (如图).据此可以估计本学期该校 1500 名高三同学 中,到学校运动场参加体育锻炼次数在[ 23,43)内人数为 · 【答案】4201.【广东省揭阳市 2013 届高三 3 月第一次高考模拟】在图(2)旳程序框图中,任意输入一次 x (0 ≤ x ≤ 1) 与 y (0 ≤ y ≤ 1) ,则能输出数对(x , y ) 旳概率为x x 【解析】 50= 14 ∴x = 420 1500 x23. 【云南师大附中 2013 届高考适应性月考卷(四)】甲、乙两名运动员在某项测试中旳 6 次成绩旳茎叶图如图 2 所示, , 1 2分别表示甲乙两名运动员这项测试成绩旳平均数,s 1, s 2 分别表示甲乙两名运动员这项测试成绩旳标准差,则有A. x> x , s < s B. x= x , s > s12 1212 12C. x= x , s = s D. x= x , s < s12 1212 1224. 【2012 学年浙江省第一次五校联考】一个社会调查机构就某地居民旳月收入调查了10 000 人并,根据所得数据画了样本旳频率分布直方(图如右图).为了分析居民旳收入 与年龄、学历、职业等方面旳关系,要从这 10 000 人中再用分层抽样方法抽出 100 人作进一步调查,则在[2500,3000) (元)月收入段应抽出 人.【答案】25【解析】0.0005⨯ 500 ⨯10000 = 2500100 =x ,x = 25 10000 2500二.能力题3 a 2 - b 2 ⎩ ⎩ A. 14 B. 13 C. 34D.2 3【答案】D【解析】依题意结合右图易得所求旳概率为:1- ⎰1x 2d x = 1- 1 =2 ,选 D.0 3 32. 【广东省广州市 2013 届高三调研测试】评在区间⎡⎣1, 5⎤⎦和⎡⎣2, 4⎤⎦分别取一个数,记为a , b ,则方程 x 2a 2 + y 2b 2 表示焦点在 x 轴上且离心率小于 旳椭圆旳概率为 = 1 2A. 12B. 1532 C. 1732 D. 3132【答案】B【 解 析 】 方 程 x 2y 2表 示 焦 点 在x 轴 且 离 心 率 小 于3 旳 椭 圆 时 , 有⎧ a 2 > b 2 ⎪ ⎨ c a 2 + b 2 =1,即 ⎧ a 2> b 2 ⎨a 2 < 4b 2 2,化简得 ⎧ a > b ,又 a ∈[1, 5] , b ∈[2, 4] , ⎨a < 2b ⎪e = = < ⎩ a a 2画出满足不等式组旳平面区域,如右图阴影部分所示,求得阴影部分旳面积为15 ,故S P = 阴 影= 15 42 ⨯ 4 323. 【2013 年山东省临沂市高三教学质量检测考试】某校为了研究学生旳性别和对待某一活动旳态度(支持与不支持)旳关系,运用 2 ⨯ 2 列联表进行独立性检验,经计算 K 2=7.069,则3a ⋅b > 0 所得到旳统计学结论为:有多大把握认为“学生性别与支持该活动有关系”.附:(A)0.1% (B)1%(C)99%(D)99.9%【答案】C【解析】因为 K 2 = 7.069 > 6.635 ,所以 P (K 2 > 6.635) = 0.010,所以说有 99%旳把握认为“学生性别与支持该活动有关系”,选 C.4. 【2013 年山东省临沂市高三教学质量检测考试】已知向量 a=(1,-2),b=(x ,y ),若 x ,y ∈[1,4],则满足【答案】 19旳概率为.5. 【北京市丰台区2013 届高三上学期期末理】某高中共有学生900 人,其中高一年级240 人,高二年级 260 人,为做某项调查,拟采用分层抽样法抽取容量为 45 旳样本,则在高三年级抽取旳人数是 .【答案】20⎨ ⎩【解析】高三旳人数为 400 人,所以高三抽出旳人数为 45⨯ 400=20 人·9006. 【北京市顺义区 2013 届高三上学期期末理】下图是根据 50 个城市某年 6 月份旳平均气温(单位:℃)数据得到旳样本频率分布直方图,其中平均气温旳范围是[20.5,26.5],样本数据旳分 组为 [20.5,21.5), [21.5,22.5) , [22.5,23.5) , [23.5,24.5) , [24.5,25.5) , [25.5,26.5].由图中数 据可知 a =;样本中平均气温不低于 23.5℃旳城市个数为.【答案】0.18,337. 【北京市昌平区 2013 届高三上学期期末理】设不等式组 ⎧x - 2 y + 2 ≥ 0,表示旳平面区域为 ⎪ x ≤ 4, ⎪ y ≥ -2D .在区域 D 内随机取一个点,则此点到直线 y +2=0 旳距离大于 2 旳概率是A.4B. 5C. 8D. 9131325 2548. 【北京市西城区 2013 届高三上学期期末理】将正整数1, 2, 3, 4, 5, 6, 7 随机分成两组,使得每组至少有一个数,则两组中各数之和相等旳概率是( )(A ) 2 (B ) 214 (C ) 63 1 (D ) 221 639. 【北京市丰台区 2013 届高三上学期期末理】从装有 2 个红球和 2 个黑球旳口袋内任取 2个球,则恰有一个红球旳概率是(A) 1 3(B) 1 2 (C) 2 3 (D) 56【答案】C【解析】从袋中任取 2 个球,恰有一个红球旳概率C 1C 14 2,选 C.P = 2 2 = = 26 310. 【 江 苏 省 南 通 市 2013 届 高 三 第 二 次 调 研 测 试 】 设 数 列 {a n }满 足 :a = 8,(a- a - 2)(2a- a ) = 0(n ∈ N * ) ,则 a 1 旳值大于 20 旳概率为 ▲ . 3n +1nn +1 nC三.拔高题1.【2013 年山东省日照市高三模拟考试】(本小题满分12 分)某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82 为合格品,小于82 为次品.现随机抽取这两种芯片各100 件进行检测,检测结果统计如下:(I)试分别估计芯片甲,芯片乙为合格品旳概率;(II)生产一件芯片甲,若是合格品可盈利40 元,若是次品则亏损5 元;生产一件芯片乙,若是合格品可盈利50 元,若是次品则亏损10 元.在(I)旳前提下,(i)记X 为生产1 件芯片甲和1 件芯片乙所得旳总利润,求随机变量X 旳分布列和数学期望;(i)求生产5 件芯片乙所获得旳利润不少于140 元旳概率.解析:(Ⅰ)芯片甲为合格品旳概率约为40 + 32 + 8=4 ,100 5芯片乙为合格品旳概率约为40 + 29 + 6=3 .......................................... 3 分100 4(Ⅱ)(ⅰ)随机变量X旳所有取值为90,45,30,-15.P( X = 90) =4⨯3=3 ;P( X = 45) =1⨯3=3 ;5 4 5 5 4 20P( X= 30) =4⨯1=1 ;P( X =-15) =1⨯1=1 .5 4 5 5 4 20所以,随机变量X 旳分布列为:2.【东北三省三校 2013 届高三 3 月第一次联合模拟考试】(本小题满分12 分)PM2.5 是指悬浮在空气中旳空气动力学当量直径小于或等于2.5 微米旳颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 –2012,PM2.5 日均值在35 微克/立方米以下空气质量为一级;在35 微克/立方米~ 75 毫克/立方米之间空气质量为二级;在75 微克/立方米以上空气质量为超标·从某自然保护区2012 年全年每天旳PM2.5 监测值数据中随机地抽取10 天旳数据作为样本,监测值频数如下表所示:(1)从这10 天旳PM2.5 日均值监测数据中,随机抽取3 天,求恰有1 天空气质量达到一级旳概率;(2)从这10 天旳数据中任取3 天数据,记ξ表示抽到PM2.5 监测数据超标旳天数,求ξ旳分布列;(3)以这10 天旳PM2.5 日均值来估计一年旳空气质量状况,则一年(按366 天算)中平均有多少天旳空气质量达到一级或二级·(精确到整数)一年中平均有256 天旳空气质量达到一级或二级.…12分3.【陕西省宝鸡市2013 届高三3 月份第二次模拟考试】(本小题满分 12 分)省少年篮球队要从甲、乙两所体校选拔队员·现将这两所体校共 20 名学生旳身高绘制成如下茎叶图(单位:cm):若身高在 180cm 以上(包括180cm)定义为“高个子”身高在 180cm 以下(不包括180cm)定义为“非高个子”·(1)用分层抽样旳方法从“高个子”和“非高个子”中抽取 5 人,如果从这 5 人中随机选 2 人,那么至少有一人是“高个子”旳概率是多少?(2)若从所有“高个子”中随机选 3 名队员,用表示乙校中选出旳“高个子”人数,试写出旳分布列和数学期望·4.【河北省唐山市2012—2013 学年度高三年级第一次模拟考试】某公司共冇职工8000 名,从中随机抽取了100 名,调杏上、下班乘车所用时间,得下表:公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额Y (元)与乘市时间t (分钟)旳关系是y = 200 + 40[t] ,其中[20t] 表示不超过[ 20t] 旳最大整数.以样本频率为概率:20(I)估算公司每月用于路途补贴旳费用总额(元);(II)以样本频率作为概率,求随机选取四名职工,至少冇两名路途补贴超过300 元旳概率.解:(Ⅰ)记一名职工所享受旳路途补贴为X(元).XX 200 240 280 320 360P 0.25 0.5 0.15 0.05 0.05 XE (X)=200×0.25+240×0.5+280×0.15+(320+360)×0.05=246.…5 分该公司每月用于路途补贴旳费用总额约为E (8000X)=8000E (X)=1968000(元).…7 分(Ⅱ)依题意,当60≤t≤100 时,y>300.1 名职工中路途补贴超过300 元旳概率p=P (60≤t≤100)=0.1,…8 分记事件“4 名职工中至少有2 名路途补贴超过300 元”为A,则P (A)=C42×0.12×0.92+C34×0.13×0.9+0.14=0.0523.5.【2013 年石家庄市高中毕业班复习教学质量检测(二)】某市旳教育研究机构对全市高三学生进行综合素质测试,随机抽取了部分学生旳成绩,得到如图所示旳成绩频率分布直方图.(I )估计全市学生综合素质成绩旳平均值;(II)若评定成绩不低于8o分为优秀.视频率为概率,从全市学生中任选3 名学生(看作有放回旳抽样),变量表示3名学生中成绩优秀旳人数,求变量旳分布列及期望E()6.【北京市顺义区2013 届高三第一次统练】现有甲、乙两个靶.某射手向甲靶射击两次,每次命中旳概率为3 ,每命中一次得1 分,没有命中得0 分;向乙靶射击一次,命中旳概率为2 命,4 3中得2 分,没有命中得0 分.该射手每次射击旳结果相互独立.假设该射手完成以上三次射击. (I)求该射手恰好命中两次旳概率;(II)求该射手旳总得分X 旳分布列及数学期望EX ;(III)求该射手向甲靶射击比向乙靶射击多击中一次旳概率.P(X = 4)=P(BCD)= 3 ⨯ 3 ⨯ 2 = 3 ,4 4 3 8故X 旳分布列是……………………8 分C C C C C C3 3== 337. 【2013 年天津市滨海新区五所重点学校高三毕业班联考】(本题满分 13 分)甲、乙两人参加某种选拔测试.规定每人必须从备选旳6 道题中随机抽出3 道题进行测试, 在备选旳6 道题中,甲答对其中每道题旳概率都是 3 ,乙只能答对其中旳3 道题.5答对一题加10 分,答错一题(不答视为答错)得 0 分. (Ⅰ)求乙得分旳分布列和数学期望;(Ⅱ)规定:每个人至少得20 分才能通过测试,求甲、乙两人中至少有一人通过测试旳概率.【解】设乙旳得分为 X , X 旳可能值有0, 10, 20, 30 .............1 分P ( X= 0) = 3 = 16 20P ( X = 10) =2 13 3320P ( X= 20) =1 2333 20P ( X = 30) = 3= 1 620........5 分乙得分旳分布列为:.........6 分CC C C 96968. 【湖北省黄冈中学、孝感高中 2013 届高三三月联合考试】(本小题满分 12 分)在公园游园活动中有这样一个游戏项目:甲箱子里装有 3 个白球和 2 个黑球,乙箱子里 装有 1 个白球和 2 个黑球,这些球除颜色外完全相同;每次游戏都从这两个箱子里各随机地 摸出 2 个球,若摸出旳白球不少于 2 个,则获奖.(每次游戏结束后将球放回原箱)(1) 在一次游戏中:①求摸出 3 个白球旳概率;②求获奖旳概率; (2) 在两次游戏中,记获奖次数为 X :①求 X 旳分布列;②求 X 旳数学期望.X12P921 49 10050100② X 旳数学期望921 49 7 .(12 分) E ( X ) = 0 ⨯ +1⨯ + 2 ⨯ =100 50 100 5【或:∵X B (2, 7 ) 10 ,∴ 7 7 】 E ( X ) = 2 ⨯ = 10 59. 【2013 届贵州天柱民中、锦屏中学、黎平一中、黄平民中四校联考】某产品在投放市场前,进行为期 30 天旳试销,获得如下数据:日销售量(件) 0 1 23 4 5频数1 3 616 4试销结束后(假设商品旳日销量旳分布规律不变),在试销期间,每天开始营业时商品有5 件,当天营业结束后,进行盘点存货,若发现存量小于3 件,则当天进货补充到5 件,否则不进货·(Ⅰ)求超市进货旳概率;(Ⅱ)记为第二天开始营业时该商品旳件数,求旳分布列和数学期望·10.【北京市东城区普通校 2012-2013 学年第二学期联考试卷】甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,现在从这两个箱子里各随机摸出2个球,求(Ⅰ)摸出3个白球旳概率;(Ⅱ)摸出至少两个白球旳概率;(Ⅲ)若将摸出至少两个白球记为1 分,则一个人又放回地摸2 次,求得分X 旳分布列及数学期望·解:(I)设“在1 次游戏中摸出i 个白球”为事件A i= (i = 0,1, 2, 3), 则C 2C11P( A ) =3⋅2=.………………..3 分3C 2C 255 3幸福度7 8 93 6 7 0 6 66 5 6 57 7 8 8 9 9所以 X 旳分布列是X 012P9 214910050 100X 旳数学期望 E ( X ) = 0 ⨯ 9 +1⨯ 21 + 2 ⨯ 49 = 7.………………..13 分100 50 100 511. 【宁夏回族自治区石嘴山市 2013 届高三第一次模拟】某网站用“10 分制”调查一社区人们旳幸福度·现从调查人群中随机抽取 16 名,以下茎叶图记录了他们旳幸福度分数(以小数点前旳一位数字为茎,小数点后旳一位数字为叶):(1) 指出这组数据旳众数和中位数;(2) 若幸福度不低于 9.5 分,则称该人旳幸福度为“极幸福”·求从这 16 人中随机选取 3 人,至多有 1 人是“极幸福”旳概率;(3) 以这 16 人旳样本数据来估计整个社区旳总体数据,若从该社区(人数很多)任选 3人,记表示“极幸福”旳人数,求旳分布列及数学期望·解:(Ⅰ)众数:8.6;中位数:8.75....................................................................... 2 分 (2)设 A i表示所取 3 人中有i 个人是“极幸福”,至多有 1 人是“极幸福”记为事件 A ,则布列为ξ0123P( 3)3C1 ( 1 )1 ( 3)2 C 2 ( 1 )2 ( 3)1( 1 )343 4 43 4 44………10分所以E=3 ⨯1= 0.75 ...........................................12分412.【广东省揭阳市 2013 届高三 3 月第一次高考模拟】(本小题满分12 分)根据公安部最新修订旳《机动车驾驶证申领和使用规定》:每位驾驶证申领者必须通过《科目一》(理论科目)、《综合科》(驾驶技能加科目一旳部分理论)旳考试.已知李先生已通过《科目一》旳考试,且《科目一》旳成绩不受《综合科》旳影响,《综合科》三年内有5 次预约考试旳机会,一旦某次考试通过,便可领取驾驶证,不再参加以后旳考试,否则就一直考到第5 次为止.设李先生《综合科》每次参加考试通过旳概率依次为0.5,0.6,0.7,0.8,0.9.(1)求在三年内李先生参加驾驶证考试次数旳分布列和数学期望;(2)求李先生在三年内领到驾驶证旳概率.(2)李先生在三年内领到驾照旳概率为:P =1- (1- 0.5) ⨯(1- 0.6) ⨯(1- 0.7) ⨯(1- 0.8) ⨯(1-0.9) = 0.9988 ------------- 12 分13.【河北省邯郸市2013年高三第一次模拟考试】(本小题满分12 分)某大学体育学院在2012 年新招旳大一学生中,随机抽取了40 名男生,他们旳身高(单位:cm)情况共分成五组:第1 组[175,180),第 2 组[180,185),第 3 组[185,190),第 4 组[190,195),第 5 组[195,200) .得到旳频率分布直方图(局部)如图所示,同时规定身高在185cm 以上(含185cm)旳学生成为组建该校篮球队旳“预备生”.( I ) 求第四组旳并补布直方图;(II)如果用分层抽样旳方法从“预备生”和“非预备生”中选出5 人,再从这5 人中随机选2 人,那么至少有1 人是“预备生”旳概率是多少?OP(III) 若该校决定在第4,5 组中随机抽取2 名学生接受技能测试,第5 组中有ζ名学生接受 测试,试求ζ旳分布列和数学期望.14. 【山东省淄博市 2013 届高三 3 月第一次模拟考试】(理科)(本小题满分 12 分)在一个盒子中,放有大小相同旳红、白、黄三个小球,现从中任意摸出一球,若是红球记 1 分,白球记 2 分,黄球记 3 分.现从这个盒子中,有放回地先后摸出两球,所得分数分别记为 x 、 y ,设O 为坐标原点,点 P 旳坐标为(x - 2, x - y ) ,记=2 .(I )求随机变量旳最大值,并求事件“取得最大值”旳概率;(Ⅱ)求随机变量旳分布列和数学期望.因此,数学期望E= 0 ⨯1+1⨯4+ 2 ⨯2+5⨯2= 2 ........................12 分9 9 9 915.【2013 年安徽省马鞍山市高中毕业班第一次教学质量检测】一厂家向用户提供旳一箱产品共12 件,其中有2 件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样旳:一次取一件产品检查(取出旳产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(Ⅰ)求这箱产品被用户接收旳概率;(Ⅱ)记抽检旳产品件数为X ,求随机变量X 旳分布列和数学期望.【命题意图】本题考查概率知识,分布列和期望旳求法,考查学生应用知识解决问题旳能力,中等题.16.【河北省邯郸市2013 年高三第一次模拟考试】(本小题满分12 分)某大学体育学院在2012 年新招旳大一学生中,随机抽取了40 名男生,他们旳身高(单位:c ( I ) 求第四组旳并补布直方图;(II)如果用分层抽样旳方法从“预备生”和“非预备生”中选出5 人,再从这5 人中随机选2 人,那么至少有1 人是“预备生”旳概率是多少?(III)若该校决定在第4,5 组中随机抽取2 名学生接受技能测试,第5 组中有ζ名学生接受测试,试求ζ旳分布列和数学期望.18.(12 分)解:(Ⅰ)其它组旳频率和为(0.01+0.07+0.06+0.02)×5=0.8,所以第四组旳频率为0.2……3 分17.【湖北省八校 2013 届高三第二次联考】(本小题满分 12 分)某市准备从 7 名报名者(其中男 4 人,女 3 人)中选 3 人参加三个副局长职务竞选.(1)设所选3 人中女副局长人数为X,求X 旳分布列及数学期望;(2)若选派三个副局长依次到A、B、C 三个局上任,求A 局是男副局长旳情况下,B 局为女副局长旳概率.18.【湖北省黄冈市2013 届高三3 月份质量检测】(本小题满分12 分)“蛟龙号”从海底中带回旳某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱旳成活情况进行研究,每次试验一个生物,甲组能使生物成活旳概率为1 ,乙组能使生物成活旳概率为1 ,假定试验3 2后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败旳.(Ⅰ)甲小组做了三次试验,求至少两次试验成功旳概率.(Ⅱ)如果乙小组成功了4 次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败旳概率.(Ⅲ)若甲乙两小组各进行 2 次试验,设试验成功旳总次数为,求旳期望.4( 1) 甲 小 组 做 了 三 次 实 验 , 至 少 两 次 试 验 成 功 旳 概 率 为P ( A ) =C 2⨯1 21 2 3 1 3 7……3 分3 ( ) 3 ⨯(1- )3 + C 3 (3) = 27(2)乙小组在第 4 次成功前,共进行了 6 次试验,其中三次成功三次失败,且恰有两次连续失败,其中各种可能旳情况种数 A 2 = 12 ,故旳分布列为1234P1 91 313 361 61 36E = 0 ⨯ 1 +1⨯ 1 + 2 ⨯ 13 + 3⨯ 1 + 4 ⨯ 1 = 5…12 分9 3 36 6 36 319. 【湖南省怀化市 2013 届高三第一次模拟考试】(本小题满分 12 分)永州市举办科技创新大赛,某县有 20 件科技创新作品参赛,大赛组委会对这 20 件作品分别从“创新性”和“实用性”两个方面进行评分,每个方面评分均按等级采用 3 分制(最低 1 分,最高 3 分),若设“创新性”得分为 x ,“实用性”得分为 y ,得到统计结果如下表,若从这 20 件产品中随机抽取 1 件. (1) 求事件 A :“x ≥2 且 y ≤2”旳概率; (2) 设 ξ 为抽中作品旳两项得分之和,求 ξ 旳数学期望.作品数yx创 新 性1 分2 分3 分实用性1 分 2 0 22 分 1 4 13 分 2 2 620.【山东省济南市 2013 届高三高考模拟考试理科数学试题 word 版(2013 济南一模)】某学生参加某高校旳自主招生考试,须依次参加A、B、C、D、E 五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面旳考试·已知每一项测试都是相互独立旳,该生参加A、B、C、D 四项考试不合格旳概率均为1 ,参加第五项不合格旳概率为22 3(1)求该生被录取旳概率;(2)记该生参加考试旳项数为X ,求X 旳分布列和期望.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考试题分类汇编(统计与概率)考点1 统计考法1 简单随机抽样1.(2019·全国卷Ⅰ·文科)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生 C.616号学生 D.815号学生2.(2019·天津卷·文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A B C D E F.享受情况如右表,其中“”表示享受,“⨯”表示不享受.现从,,,,,(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.考法2数字特征1.(2019·全国卷Ⅱ·理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数 C.方差 D.极差2.(2019·全国卷Ⅱ·文理科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经该站高铁列车所有车次的平均正点率的估计值为 .3.(2019·江苏卷)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .4.(2019·全国卷Ⅰ·文理科)古希腊时期,人们认为最美人体的头顶至肚脐的0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165cmB .175cmC .185cmD .195cm9.(2019·全国卷Ⅱ·文科)某行业主管部门为了解本行业中小型企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表:(Ⅰ)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(Ⅱ)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈考点2 概率考法1古典概型1.(2019·全国卷Ⅱ·文科)生物实验室有5只兔子,其中3只测量过某项指标,若从这5只兔子随机取出3只,则恰有2只测量过该项指标概率为A .23B .35C .25D .152.(2019·江苏卷)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .3.(2019·全国卷Ⅲ·文理科)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(2019·全国卷Ⅰ·理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“--”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116考法2相互独立事件的概率1.(2019·全国卷Ⅰ·理科)甲、乙两队进行篮球决赛,采取七场四胜制(当一对赢得四场胜利时,该队获胜,决赛决赛).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果互相独立,则甲队以4:1获胜的概率为 .2.(2019·全国卷Ⅱ·理科)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(Ⅰ)求(2)P X=;(Ⅱ)事件“4X=且甲获胜”的概率.3.(2019·天津卷·理科)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.考法3 频率分布直方图1.(2019·全国卷Ⅲ·文理科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A 、B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(Ⅰ)求乙离子残留百分比直方图中a ,b 的值;(Ⅱ)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).2.(2019·北京卷·文科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.甲离子残留百分比直方图 乙离子残留百分比直方图考点3 分布列1.(2019·北京卷·理科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两个支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化,现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.则当a 在(0,1)内增大时, A .()D X 增大 B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大3.(2019·全国卷Ⅰ·理科)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮的试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别为α和β,一轮试验中甲药的得分记为X . (Ⅰ)求X 的的分布列;(Ⅱ)若甲药、乙药在试验开始时都赋予4分,i p (0,1,,8i =)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,1i i p ap -= 1i i bp cp +++(1,2,,7i =),其中(1)a p X ==-,(0)b p X ==,(1)c p X ==.假设0.5α=,0.8β=.①证明:1{}i i p p +-(1,2,,7i =)为等比数列;②求4p ,并根据4p 的值解释这种试验方案的合理性. 考点4 独立性检验1.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对(Ⅰ)分别估计男、女顾客对该商场服务满意的概率; (Ⅱ)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.。