沉淀法制备催化剂
负载型催化剂的制备方法

负载型催化剂的制备方法1.沉积-沉淀法:沉积-沉淀法是最常用的负载型催化剂制备方法之一、该方法的步骤如下:(1)选择合适的载体材料,如氧化物、碳材料等。
确保载体具有高度的稳定性和活性表面。
(2)将载体通过悬浮剂悬浮在溶液中。
(3)通过沉积-沉淀过程,将活性催化剂沉积在载体表面上。
这可以通过添加适当的沉淀剂或通过化学反应来实现。
(4)通过干燥和煅烧等步骤,使催化剂固定在载体上。
2.浸渍法:浸渍法是一种简单而有效的负载型催化剂制备方法。
其步骤如下:(1)选择合适的载体材料。
(2)将载体放入催化剂溶液中浸泡。
(3)待催化剂充分浸渍到载体中后,通过干燥和煅烧等步骤,将催化剂固定在载体上。
(4)重复上述步骤,直至达到所需的催化剂浓度。
3.溶胶-凝胶法:溶胶-凝胶法是一种制备均匀负载型催化剂的有效方法。
其步骤如下:(1)将溶胶材料(如溶胶态金属盐或金属有机化合物)和凝胶材料混合在一起。
(2)通过搅拌或加热等方法,使溶胶和凝胶得以混合。
(3)进行溶胶-凝胶反应,形成凝胶。
(4)通过干燥和煅烧等步骤,固定催化剂在凝胶上。
4.物理吸附法:物理吸附法是负载型催化剂制备方法中最简单的一种。
(1)选择合适的载体材料。
(2)将载体放入催化剂溶液中。
催化剂会通过物理吸附作用附着在载体表面。
(3)通过干燥和煅烧等步骤,将催化剂固定在载体上。
物理吸附法的优点是简单易行,但催化剂的固定程度较弱,容易流失。
以上是几种常见的负载型催化剂制备方法。
根据不同的催化剂要求和应用场景,选择合适的制备方法可以得到具有优良性能的负载型催化剂。
共沉淀制备铁单原子催化剂

共沉淀制备铁单原子催化剂
共沉淀法制备铁单原子催化剂的过程可以概括如下:
1.准备原料:通常选用硝酸铁、硝酸亚铁等作为铁源,根据需要添加其他金属元素作为共沉淀剂,如钴、镍等。
此外,还需要加入适量的沉淀剂,如氨水、氢氧化钠等。
2.制备前驱体溶液:将铁源和共沉淀剂溶解在适当的溶剂中,制备成前驱体溶液。
3.共沉淀:将前驱体溶液加热并搅拌,逐滴加入沉淀剂,使铁和其他金属元素以氢氧化物或碳酸盐的形式沉淀出来。
在这个过程中,可以通过控制沉淀剂的滴加速度和浓度,以及溶液的pH值等参数,来控制沉淀物的组成和结构。
4.洗涤和干燥:将得到的沉淀物洗涤干净,去除其中的杂质和未反应的原料,然后进行干燥处理。
5.还原:在氢气或一氧化碳等还原性气氛中,将干燥后的沉淀物进行还原处理,使铁和其他金属元素由氧化态转化为还原态。
这个过程中,铁原子被还原为单原子状态,并与其他金属原子一起分散在催化剂载体上。
6.载体选择:选择合适的载体材料,如碳纳米管、碳纤维、氧化铝等,将还原后的催化剂负载在载体上。
7.活化处理:在一定的温度和气氛中进行活化处理,使铁单原子催化剂进一步优化。
以上是共沉淀法制备铁单原子催化剂的基本步骤。
具体的实验操作和参数可以根据需要进行调整。
制备过程中需要注意控制实验条件,如温度、pH值、沉淀剂浓度等,以保证制备出的催化剂具有较高的活性、稳定性和选择性。
催化剂沉淀法

催化剂沉淀法
催化剂沉淀法是一种制备催化剂的常见方法之一,其原理涉及将所需的金属离子与其他化合物沉淀到载体上,形成催化剂的活性部分。
这个方法通常包括以下步骤:
1.前驱物溶液制备:首先,需要准备含有金属离子和催化剂所需成分的溶液。
这些溶液中可以含有金属盐类或有机金属化合物,通常以水或有机溶剂为溶剂。
2.载体处理:选择合适的催化剂载体,通常是高比表面积的材料,如活性炭、氧化铝或硅胶等。
载体必须具有一定的表面活性,便于金属离子或化合物的吸附和沉积。
3.浸渍和沉淀:将所制备的金属离子或有机金属化合物的溶液与载体进行浸渍,让金属物质与载体表面相互作用。
然后,通过化学反应或物理过程使金属离子或化合物沉淀到载体表面,形成催化剂活性部分。
4.干燥和煅烧:完成沉淀后的催化剂通常需要进行干燥和煅烧过程,以去除残余的溶剂、有机物或使金属沉淀物更牢固地结合到载体表面上。
5.催化剂测试和评估:最后,制备好的催化剂需要进行性能测试和评估,以确认其催化活性、选择性和稳定性。
催化剂沉淀法是一种相对简单且常用的制备催化剂的方法。
其优点在于操作相对容易、适用于大规模生产,并且可以控制催化剂的活性物质在载体上的分布。
但它也需要严格控制反应条件,以确保沉淀到载体上的活性成分分布均匀,并且需要对催化剂进行详细的性能测
试和表征。
简述沉淀法制备催化剂的基本原理和流程

简述沉淀法制备催化剂的基本原理和流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!沉淀法制备催化剂的基本原理和流程在化学领域,催化剂是一种能够加速化学反应速率但不参与反应本身的物质。
沉淀法

沉淀法、浸渍法制备催化剂沉淀法(Deposition-precipitation,简称DP法)是将金属氧化物载体加入到HAuCl4的水溶液中形成悬浮液,在充分搅拌的条件下,控制一定的温度和pH值,使之沉积在载体表面上,随后进行过滤、洗涤、干燥、焙烧等处理,得到负载金催化剂。
对于制备高活性的纳米金催化剂,该方法是广泛使用并且比较有效的方法之一。
该方法的关键是控制合适的pH值,从而可以得到活性组分均匀分散、粒度较小、活性较高的纳米金催化剂。
通常认为,控制反应液浓度10mol/L,最佳pH值范围7~8,反应温度323~363K,氯金酸的水溶液就会选择性的以氢氧化金的形式沉积在载体表面,而尽可能少的在液相中沉淀。
通常,采用DP法制备纳米金催化剂最合适的载体是等电点在6~9之间的氧化物,如TiO2 (IEP=6),CeO2 (IEP=6.75),ZrO2 (IEP=6.7),Fe2O3 (IEP=6.5~6.9)和Al2O3 (IEP=8~9)等。
该法的优点在于活性组分全部保留在载体表面,提高了活性组分的利用率;得到的催化剂金颗粒尺寸分布比较均匀。
该法对于制备低负载量金催化剂非常有效,但是要求载体有较高的比表面积(至少50m/g),而且不适用于等电点小于5的金属氧化物和活性炭载体。
步骤制成催化剂。
这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。
具体可以分为共沉淀、均匀沉淀和分步沉淀等方法。
借助于沉淀反应。
用沉淀剂将可溶性的催化剂组分转变为难溶化合物。
经过分离、洗涤、干燥和焙烧成型或还原等。
2.1、共沉淀方法将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。
为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值以及其他条件必须同时满足各个组分一起沉淀的要求。
2.2、均匀沉淀法它不是把沉淀剂直接加到待沉淀的溶液中,也不是加沉淀剂后立即产生沉淀反应,而是首先使沉淀的溶液与沉淀剂母体充分混合,造成一个均匀的体系,然后调节温度、逐渐提高PH值或在体系中逐渐生成沉淀剂等方式,创造形成沉淀的条件,使沉淀作用缓慢地进行。
制备工业催化剂的方法

制备工业催化剂的方法工业催化剂是指用于促进或加速化学反应的物质,广泛应用于许多生产过程中,如炼油、化工、能源等。
制备工业催化剂的方法有很多种,下面将介绍几种常见的制备方法。
一、沉淀法沉淀法是制备工业催化剂的常用方法之一、该方法通过在溶液中加入还原剂使金属离子还原成金属颗粒,然后沉淀得到催化剂。
该方法简单易行,适用于大规模生产。
二、浸渍法浸渍法是指将载体浸入金属溶液中,使金属离子被载体吸附,并通过热处理将金属还原成金属颗粒。
浸渍法可使金属颗粒分散均匀,催化剂活性较高。
三、沉积法沉积法是将金属源溶于溶剂中,然后将溶液喷洒在载体表面,通过烘干和热处理将金属还原成金属颗粒,从而制备催化剂。
该方法适用于制备高活性催化剂。
四、共沉淀法共沉淀法是将金属源和载体溶解在同一溶剂中,通过调节条件使金属沉淀到载体表面,再进行热处理得到催化剂。
共沉淀法制备的催化剂具有高分散性和高活性。
五、焙烧法焙烧法是将金属前驱体或金属盐溶于溶剂中,通过热处理使金属变得稳定且易于使用,然后得到催化剂。
焙烧法制备的催化剂适用于高温条件下的反应。
六、溶胶-凝胶法溶胶-凝胶法是将金属前驱体溶于溶剂中,通过加热使其形成溶胶,然后通过凝胶化得到凝胶,在热处理过程中形成催化剂。
该方法制备的催化剂具有高度分散性和活性。
七、离子交换法离子交换法是将金属离子与载体接触,通过离子交换反应将金属离子固定在载体上,形成催化剂。
离子交换法制备的催化剂具有高度分散性和稳定性。
综上所述,制备工业催化剂的方法有很多种,选择适当的制备方法取决于催化剂的要求和实际应用。
通过不断研究和创新,制备高效、高分散性和高稳定性的工业催化剂对促进化工和工业生产的发展具有重要作用。
纳米催化剂的制备方法与催化活性研究

纳米催化剂的制备方法与催化活性研究催化剂是一种能够加速化学反应速率的物质,而纳米催化剂则是具有纳米尺度级别的颗粒大小的催化剂。
由于其独特的特性和优越的催化性能,纳米催化剂在能源转换、环境保护和化学合成等领域中展示了巨大的潜力。
本文将探讨纳米催化剂的制备方法和催化活性研究的相关内容。
一、纳米催化剂的制备方法1. 沉淀法:沉淀法是制备纳米催化剂的常用方法之一。
这种方法能够通过溶液中的化学反应,产生纳米颗粒并沉积到固体表面。
通过调控反应条件和催化剂的化学成分,可以控制纳米颗粒的大小和形状。
沉淀法具有操作简单、成本低廉等优点,适用于生产中大规模制备纳米催化剂。
2. 气相沉积法:气相沉积法是另一种常见的纳米催化剂制备方法。
这种方法通过在高温下将气体的原子或分子反应沉积到固体基材表面,从而形成纳米颗粒。
气相沉积法能够控制纳米颗粒的形状和大小,并且可以在纳米颗粒表面修饰功能性基团,进一步提高催化活性。
3. 溶胶凝胶法:溶胶凝胶法是一种利用溶液中的凝胶生成纳米颗粒的方法。
通过控制反应条件和凝胶的组成,可以制备出具有特定形状和尺寸的纳米催化剂。
溶胶凝胶法具有高度可控性和较大比表面积的特点,适用于制备高效的纳米催化剂。
二、纳米催化剂的催化活性研究纳米催化剂的催化活性研究是了解其催化性能和机制的重要途径,可以为其应用于实际工业过程提供理论指导和优化改进。
1. 催化剂表征:催化剂表征是催化活性研究的基础。
通过使用各种表征技术,如扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和傅里叶变换红外光谱(FTIR),可以获得催化剂的形貌、晶体结构和表面化学性质等信息。
2. 反应机理研究:反应机理研究是理解纳米催化剂催化活性的关键。
通过红外光谱、在线质谱等技术,可以分析反应中产物和中间体的形成过程,推测反应机理,并验证催化剂的催化活性中心。
3. 催化活性评估:催化活性评估是衡量纳米催化剂催化性能的重要手段。
沉淀法催化剂制备.

1、沉淀过程和沉淀剂的选择
沉淀生成的沉淀物是催化剂或载体的“前驱物”, 对所得催化剂的活性、选择性、寿命和强度有很大影 响。 沉淀过程:① 晶核的生成;② 晶核的长大。
①晶核的生成
溶液达到一定的饱和度后,生成固相的速度大于 固相溶解的速率。瞬间生成大量的晶核。 晶核生成速率:N = k(C-C*)m
③ pH值影响
为了保证颗粒均一性,必须保持pH值相对稳定。
例:
pH < 7 Al2O3 ·mH2O 无定形胶体
α–Al2O3· H2O 针状胶体
Al3+
+
OH-
pH = 9 pH > 10
β– Al2O3 ·nH2O 球状结晶
④ 加料顺序的影响
顺加法:
沉淀剂加到金属盐溶液中。当有几种金属盐溶 液需要沉淀且溶度积不同时,易产生先后沉淀。
2、影响沉淀的因素
① 浓度的影响
晶核生成速率 N = k (C - C*)m 晶核长大速率 晶核长大过程: a) 溶质分子首先扩散通过液-固界面滞流层; b) 表面反应。
分子扩散速率: dm/dt = kdA(C – C’)(湍流)
表面反应: dm/dt = k’A(C’ - C*) (温度)
镁铝水滑石(MgAlHT)的制备
A:NaOH溶液 B:Mg2+Al3+硝酸盐溶液 陈化 60℃ 18 h 洗涤 pH≈7 干燥 镁铝水滑石 100℃
Na2CO3溶液
pH9-10
谢谢
沉淀剂的选择
选择原则
a.沉淀物便于洗涤和过滤
尽量选用能形成晶形的沉淀剂。晶形沉淀夹 带的杂质也较少。
盐类沉淀剂如: (NH4)2CO3、Na2CO3原则上可 形成晶形沉淀;而碱类沉淀剂一般都会生成非 晶形沉淀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢配位(共)沉淀法
先在金属盐溶液中加入配位剂,形成金属配位物溶液,然后 与沉淀剂一起并流到沉淀槽中进行沉淀。由于配位剂的加入, 控制金属离子的浓度,使得沉淀物的粒径分布均匀
• 沉淀的后处理过程
➢ 老化 ➢ 过滤 ➢ 洗涤 ➢ 干燥 ➢ 焙烧 ➢ 成型 ➢ 活化
• 沉淀的后处理过程
➢ 老化(陈化、熟化) 沉淀完成后不立即过滤,而是和母液一起放置一段时间。 在此期间内发生的一切不可逆变化称为沉淀物的老化
不能引入有害杂质 — 沉淀剂要易分解挥发
沉淀剂溶解度要大 — 提高阴离子的浓度,沉
淀完全;被沉淀物吸附量少, 易洗涤除去 沉淀物溶解度要小
— 沉淀完全,适用于Cu、 Ni、Ag、Mo 等较贵金属 沉淀要易过滤和洗涤
— 尽量选用能形成晶形 沉淀的沉淀剂(盐类) 沉淀剂必须无毒,不会造成环 境污染
• 影响沉淀的因素
晶核的长大
• 晶核的生成速率
N k C C m m 3 ~ 4
单位时间内单位体积溶液中生成的晶核数
• 晶核的长大速率
dm kA C C n
dt
n 1~ 2
单位时间内沉积的固体量
C:溶质的过饱和浓度 C*:溶质的饱和浓度,K,K’:为常数,与沉淀的性质,温度等有关。
沉淀剂 S2S2-
CO32CrO42-
母体 硫代乙酰胺
硫脲 三氯乙酸盐 尿素与HCrO4-
➢超均匀共沉淀法
将沉淀操作分两步进行:首先借助缓冲剂将二种反应物 暂时隔开,然后快速混合,在瞬间内将整个体系各处同 时形成一个均匀地过饱和溶液,使沉淀颗粒大小一致, 组分均匀分布。 关键:瞬间混合—快速搅拌
(防止形成结构或组成不均匀的沉淀)
沉淀的形成
(1)晶核的生成
(2)晶核的长大
晶核的生成
• 均相成核:当溶液呈过饱和状态时,构晶离子由于静电作 用,通过缔合而自发形成晶核的作用。例BaSO4晶核的生 成一般认为就是在过饱和溶液中,Ba2+与SO42-首先缔合 为Ba2+SO42-离子对,然后再进一步结合Ba2+及SO42而形成离子群,当离子群大到一定程度时便形成晶核。
例:制取氢氧化铝沉淀
(NH2)2CO +
3H2O
90~100℃ 2NH4+
+
2OH-
+
CO2
(母体)
(沉淀剂)
优点:克服一般沉淀法中沉淀剂与待沉淀溶液混合不均匀、 沉淀颗粒粗细不均、沉淀含杂质较多等缺点
常用的均匀沉淀剂母体
沉淀剂 OHPO43-
C2O42SO42SO42-
母体 尿素 磷酸三甲酯 尿素与草酸二甲酯 或草酸 硫酸二甲酯 黄酰胺
形成混晶 —— 老化 机械包藏 —— 老化 洗涤操作:蒸馏水、去离子水、洗涤液(草酸铵溶液洗涤草酸盐沉淀) 溶解度大的晶形沉淀用冷液洗涤; 溶解度小的非晶形沉淀用温热的易挥发稀电解质 溶液洗涤(硝酸铵溶液洗涤水合氧化铝沉淀,防止形成胶体)
➢干燥与焙烧
干燥目的:去除水分 干燥条件:干燥温度(60-200 oC)、干燥时间 干燥影响:对催化剂物理结构(孔结构)有影响
共沉淀时是否可形成复合碳酸盐的金属
金属
Al
Mg
Ca
Zn
Cu
是
否
否
否
Ni
是
是
否
否
Zn
是
否
否
×
Mg
是
×
是
否
Ca
否
是
×
否
复盐的形成进一步增加了沉淀物组成的均匀性,这对在 焙烧过程形成化合物或固熔体有重要影响
➢均匀沉淀法
沉淀剂不直接加入待沉淀溶液中,而是首先把待沉淀溶液 与沉淀剂母体混合,形成一个十分均匀的体系,然后调节 温度,使沉淀剂母体逐步转化为沉淀剂,从而使沉淀缓慢 进行,得到均匀纯净的沉淀物
过饱和度较大时,结晶速率很快,易 产生错位和晶格缺陷,但也易包藏杂 质、晶粒较小
沉淀剂应在搅拌下均匀缓慢加入,以 免局部过浓
非晶形沉淀应在较浓溶液中进行,沉 淀剂应在搅拌下迅速加入
生成速率或长大速率
溶液过饱和度
生成速率或长大速率
➢ 温度
晶 晶核生成速率 核
长 大 速 率
晶体颗粒大小
温度
结论:
晶核生成速率、长大速率存在 极大值(晶核生成速率最大时 的温度比晶核长大速率最大时 的温度低得多)
低温有利于晶核生成,不利于 晶核长大,一般得到细小颗粒
晶形沉淀应在较热溶液中进行, 并且热溶液中沉淀吸附杂质少、 沉淀时间短(一般70-80 oC)
➢ pH值 同一物质在不同pH值下沉淀可能得到不同的晶形
Al3+ + OH-
pH < 7 pH = 9 pH > 10
Al2O3 ·mH2O α-Al2O3·H2O
因素:老化时间、温度、pH值
作用:颗粒长大,形成颗粒大小均匀的纯净粗晶体 晶形 完善及晶形转变
初生沉淀的不稳定结构逐渐变成稳定结构; 非晶形沉淀可能变为晶形沉淀(分子筛、水合氧化铝); 多晶态沉淀物在不同老化条件下可得到不同晶形物质 (水合氧化铝)
➢过滤与洗涤
洗涤目的: 去除杂质 杂质类型: 表面吸附 —— 洗涤
小结:
晶形沉淀形成条件: ➢沉淀应在稀溶液中进行 ➢沉淀剂应在搅拌下均匀缓慢加入 ➢较热溶液中进行 ➢老化
非晶形沉淀形成条件: ➢沉淀应在较浓溶液中进行 ➢沉淀剂应在搅拌下迅速加入 ➢沉淀后,加入较大量热水稀释(减少杂质),立即过滤
➢(多组分)共沉淀法
将含有两种或两种以上金属盐的混合溶液与一种沉淀剂 作用,形成多组分沉淀物 优点:分散性和均匀性好 注意: 1.各金属盐、沉淀剂浓度、介质pH值、加料方式等条件 件必须满足各个组分同时沉淀的要求 2.金属盐与沉淀碱式碳酸盐反应时,不仅可能形成金属 碳酸盐(如碳酸镍)与氢氧化物(氢氧化铝)共沉淀混 合物,还可能生成含有少量复合金属碳酸盐(如碱式镍 铝碳酸盐)。
pH稳定 多组分同时沉淀 沉淀均匀
➢搅拌强度
1.搅拌强度大,液体分布均匀,但沉淀粒子可能被 搅浆打碎;搅拌强度小,液体不能混合均匀
2. 晶形沉淀:沉淀剂应在搅拌下均匀缓慢加入,以 免局部过浓
3. 非晶形沉淀:沉淀剂应在搅拌下迅速加入
沉淀影响因素复杂。在实际操作中,应根据催化剂性能对结构的不同 要求,选择合适的沉淀条件,控制沉淀的类型和晶粒大小,以便得到 预定的结构和理想的催化性能——沉淀法制备催化剂的研究重点
Ni(NO3)2 + HNO3溶液 = 1.1
NaNO3溶液 = 1.2
Na2SiO3溶液 = 1.3
Ni/SiO2制备 (苯选择加氢催化剂) 形成均匀的水溶胶或胶冻,再经分离、
洗涤、干燥、焙烧、还原即得催化剂
➢导晶沉淀法
借助晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀 的快速有效方法 — 预加少量晶种引导结晶快速完整形成 例:制备高硅钠型分子筛(丝光沸石、X型、Y型分子筛)
➢ 溶液的浓度
晶核生成速率: N k C C m m 3 ~ 4
晶核长大速率:dm kA C C n n 1 ~ 2 dt 晶核生成速率
晶
晶体颗粒大小
核
长
大
速
率
结论:
晶形沉淀应在稀溶液中进行(稀溶液 中更有利于晶核长大) 过饱和度不太大时(S = 1.5-2.0) 可得到完整结晶
沉淀法制备催化剂
浙江工业大学化材学院
催化剂制备——沉淀法
在金属盐溶液中加入沉淀剂, 生成难溶金属盐或金属水合 氧化物,从溶液中沉淀出来, 再经老化、过滤、洗涤、干 燥、焙烧、成型、活化等工 序制得催化剂或催化剂载体
—— 广泛用于制备高含量的 非贵金属、(非)金属氧化 物催化剂或催化剂载体
沉淀法的生产流程
无定形胶体 针状胶体
β-Al2O3 ·nH2O 球状晶体
为了保证沉淀颗粒的均一性、均匀性,pH值必 须保持相对稳定
➢加料方式
顺加法: 沉淀剂加入到金属盐溶液中
逆加法: 金属盐溶液加入到沉淀剂中
并加法: 金属盐溶液和沉淀剂按比例
同时并流加到沉淀槽中
pH 多组分先后沉淀 沉淀不均匀
pH 多组分同时沉淀 沉淀均匀
焙烧目的: 1.通过物料的热分解,除去化学结合水和挥发性杂质(CO2、 NO2、NH3),使其转化成所需的化学成分和化学形态 2.借助固态反应、互溶和再结晶获得一定的晶形、微晶粒度、 孔径和比表面积等 3.使微晶适当烧结,以提供催化剂的机械强度(成型后焙烧 情况) 焙烧条件:焙烧温度(不低于分解温度和催化剂使用温度)、 焙烧时间
晶核的长大
——沉淀的类型
晶核生成速率 >> 晶核长大速率: 离子很快聚集成大量晶核,溶液的过饱和度迅速下降,溶液 中没有更多的离子聚集到晶核上,于是晶核就迅速聚集成细 小的无定形颗粒,得到非晶形沉淀,甚至是胶体
晶核长大速率 >> 晶核生成速率: 溶液中最初形成的晶核不多,有较多的离子以晶核为中心, 按一定的晶格定向排列而成为颗粒较大的晶形沉淀
• 金属盐类和沉淀剂的选择
➢ 金属盐类的选择 硝酸盐 — 非贵金属盐的首选 硫酸盐、有机酸盐、金属复盐
➢ 沉淀剂的选择 常用沉淀剂:
碱类:氨水、 NaOH、KOH 碳酸盐:(NH4)2CO3、Na2CO3、CO2 有机酸:CH3COOH、H2C2O4CH3COONH4
(NH4)2C2O4
选择原则:
• 沉淀法的分类
➢ 单组分沉淀法
溶液中只有一种金属盐与沉淀剂作用,形成单一组分沉淀 物 例:氧化铝的制备
酸法:Al3+ + OH- Al2O3· nH2O 碱法:AlO2- + H3O+ Al2O3· nH2O 注意: 1.对于两性物质,pH过高,沉淀会重新溶解 2.氨水作沉淀剂时,氨浓度过高形成配离子,沉淀溶解 3.(NH4)2CO3、Na2CO3作沉淀剂时,可能生成碳酸盐、氢氧 化物、碱式碳酸盐沉淀