系统动力学与仿真1-3

合集下载

系统动力学

系统动力学

系统动力学(System Dynamics)是研究信息反馈系统动态行为的计算机仿真方法,它巧妙地把信息反馈的控制原理与因果关系的逻辑分析结合起来,面对复杂的实际问题,从研究系统的微观结构人手,建立系统的仿真模型,并对模型实施各种不同的“政策试验”,通过计算机仿真展示系统的宏观行为,寻求解决问题的正确途径,即系统动力学模型能够处理高阶次、非线性、多重反馈的复杂时变系统的有关问题。

在生态学经济系统优化管理中得到广泛应用。

系统动力学模型由系统结构流程图和构造方程组成,二者相辅相成,融为一体。

流程图反映系统中各变量间因果关系和反馈控制网络,正反馈环有强化系统功能,表现为偏离目标的发散行为;负反馈环则有抑制功能,能跟踪目标产生收敛机制。

二者组合使系统在增长与衰减交替过程中保持动态平衡,达到预期目标。

所以,流程图用以体现实际系统的结构特征,构造方程是变量间定量关系的数学表达式,可由流程图直接确定或由相关函数给出,可以是线性或非线性函数关系,其一般表达式为:(,,,)i i i i dX f X V R P dt= (1) 其差分形式可形成:()()(,,,)t i i i i X t t X f X V R P t +∆=+∙∆ (2)式中,X 为状态变量,V 为辅助变量,R 为流率变量,P 为参数,t 为仿真时间,t ∆为仿真步长。

系统动力学模型的建立,首先是确定系统分析目的;其次是确定系统边界,即系统分析涉及的对象和范围;之后是建立因果关系(反馈回路)图和模型流程图;然后写出系统动力学方程;最后进行仿真试验和计算。

模型建立与模拟运行应用Stella 软件系统。

Stella 系统是动力学模型系统之一,它具有友好的图形界面,包含3个联结层:最上一层是映射层,在映射层可以建立模型的基本结构。

中间一层是图标层,有分别代表积累变量、流速变量和参数变量的图标,是建立模型的主要“组件”,给每一“组件”赋予初始值或函数关系,再通过信息流将这些“组件”连接起来,就是系统的模型流程图;同时,还可以在这一层形成用来采集数据的图表。

多体系统的动力学分析与碰撞仿真

多体系统的动力学分析与碰撞仿真

多体系统的动力学分析与碰撞仿真动力学分析与碰撞仿真是研究物体在运动过程中受力和变形的重要方法。

本文将探讨多体系统的动力学分析与碰撞仿真的相关内容,介绍其基本原理和应用。

一、动力学分析的基本原理动力学分析是研究物体在运动中所受到的力和运动规律的科学。

基于牛顿运动定律和质点系的运动学原理,可以得到多体系统的动力学方程,进而求解物体的运动状态和运动规律。

动力学分析中的主要问题包括运动学描述、运动学关系、动力学模型和动力学方程等。

在动力学分析中,通过建立物体之间的相互作用模型,确定物体之间的力和热转移等因素,从而推导出物体的动力学方程。

二、碰撞仿真的原理和方法碰撞仿真是指利用计算机技术对物体之间的碰撞过程进行模拟和仿真。

碰撞仿真可以帮助人们理解和预测物体在碰撞中的行为,为工程设计和科学研究提供有效的方法。

碰撞仿真的基本原理是基于质点系统的动力学分析,通过建立物体之间的碰撞模型和碰撞规律,确定物体之间的碰撞力和碰撞能量转化等因素。

通过求解物体的碰撞动力学方程,可以模拟和预测物体在碰撞过程中的运动状态和变形情况。

碰撞仿真的方法主要包括有限元法、蒙特卡洛方法和分子动力学法等。

在碰撞仿真中,可以根据具体问题的要求选择合适的方法,进行数值计算和仿真模拟。

三、多体系统的动力学分析与碰撞仿真应用多体系统的动力学分析与碰撞仿真在许多工程领域和科学研究中有广泛的应用。

以下为其中的一些应用案例。

1. 交通工程中的车辆碰撞分析:对于交通事故的调查和分析,可以利用动力学分析与碰撞仿真的方法研究车辆之间的碰撞过程,分析事故原因和责任。

通过模拟和比较不同碰撞方案,可以提出相应的交通安全措施。

2. 工程结构的研究与设计:在建筑和桥梁等工程结构的设计中,动力学分析与碰撞仿真可以帮助工程师评估和预测结构在自然灾害或外部冲击下的响应和破坏情况。

通过模拟和仿真,可以优化结构设计,提高抗震和安全性能。

3. 航天器的着陆和返回模拟:在航天工程中,多体系统的动力学分析和碰撞仿真可以帮助研究员模拟和预测航天器在着陆和返回过程中的运动状态和变形情况。

系统动力学模拟软件Vensim使用指南.

系统动力学模拟软件Vensim使用指南.

系统动力学模拟软件Vensim使用指南严广乐张志刚(上海理工大学管理学院)在目前系统动力学专用的计算机模拟语言软件中,V ensim是界面非常友好的一种模拟工具,它的功能非常强大,可以运行方程数目达数千的大型模型,因此被人们广泛使用,如美国的国家模型等。

一、Vensim软件简介Vensim是美国Ventana Systems公司推出的在Windows操作平台下运行的系统动力学专用软件包,其版本在不断升级,目前最新的版本为V5.0c。

Vensim PLE是Ventana Systems公司提供的个人学习版,可到公司的网站上免费下载试用。

1.1 Vensim软件的主要特点Vensim是一款可视化的模型工具,使用该软件可以对动力学系统模型进行概念化、模拟、分析和优化。

Vensim PLE和PLE Plus是为简化系统动力学的学习而设计的Vensim的标准版本。

Vensim PLE提供了一个非常简单易用的基于因果关系链、状态变量和流图的建模方式。

Vensim用箭头来连接变量,系统变量之间的关系作为因果连接而得到确立,方程编辑器可以帮助方便地建立完整的模拟模型。

通过建立过程、检查因果关系、使用变量以及包含变量的反馈回路,可以分析模型。

当建立起一个可模拟的模型,Vensim可以从全局来研究模型的行为。

Vensim PLE适合于建立规模较小的系统动力学模型,而Vensim PLE Plus功能则更加强大,支持多视图,适合于大型的模型模拟。

Vensim提供了对所建模型的多种分析方法。

Vensim可以对模型进行结构分析和数据集分析,结构分析包括原因数分析、结果树分析和反馈回列表分析,数据集分析包括变量随时间变化的数据值及曲线图分析。

此外,Vensim还可以实现对模型的真实性检验,以判断模型的合理性,从而相应调整模型的参数或结构。

1.2 Vensim PLE的用户界面Vensim PLE的用户界面是标准的Windows应用程序界面。

(完整版)系统动力学模型SD3

(完整版)系统动力学模型SD3
构思模型与建立方程时,一个重要的任务便是寻找适当的方程 式去描述速率(或变化率)。
典型的变化率方程(构造复杂速率的基本单元):
LEVEL.K*CONST
LEVEL.K/LIFE
(GOAL.K-LEVEL.K)/ADJTM
LEVEL.K*AUX.K与LEVEL.K/AUX.K EFFECT.K+NORM.K(某些因素的影响作用+额定速率)
状态变量与Level方程 速率(变化率)方程 辅助方程 SD模型举例
5.1.1 状态变量与Level方程
状态变量是随时间而变化的积累量,是物质、能量与信息的储存环节。 如:人口、企业雇员人数、库存、生产能力、银行存款等。
状态变量的输入、输出变化率使积累量增加或减少。 L LEVEL.K=LEVEL.J+DT * (INFLOW.JK- OUTFLOW.JK)
期望雇员的阶跃增长时的外部特性
状态变量:去耦作用 它使连接的各辅助变量更加具有 独立性。 辅助变量:瞬变
结论:
若因果链中的变量值可随其输入量的变化而瞬变,则它们可定义 为辅助变量;若一变量经因果链的传递将改变其波形,则宜以状 态变量表示。
状态变量方程小结
状态变量环节能改变随时间变化的输入量的形状,能削弱输 入量与输出量之间的联系,使它们多多少少能独立变化,从 而使模型可能具备不平衡的动力学性质。
HFR=0,
WF=WFS
雇员的累积作用流图
Байду номын сангаас
• 突增WFS的特性经由状态变量WF 自身的积累变换,WF表现平滑指数增 长自寻的特性。
R HFR.KL=(WFS.K-WF.K)/WFAT
状态变量在回路中的作用
具有积累作用的状态变量环节有 改变其各种形式输入量特性(曲 线形状)的能力。

基于控制系统的龙门式起重机动力学建模与仿真分析

基于控制系统的龙门式起重机动力学建模与仿真分析

基于控制系统的龙门式起重机动力学建模与仿真分析龙门式起重机是一种常见的重型起重设备,广泛应用于港口、建筑工地、仓库等场所。

为了提高龙门式起重机的控制效果和运行稳定性,需要进行动力学建模与仿真分析。

本文将基于控制系统,详细介绍龙门式起重机的动力学建模方法,并进行仿真分析。

一、动力学建模方法1. 系统分析首先,需要对龙门式起重机的结构进行分析。

通常,龙门式起重机由大梁、小车、起重机和配重等组成。

其中,大梁支撑整个起重机,小车在大梁上移动,起重机则在小车上升降,实现货物的吊运。

在进行动力学建模时,需要考虑以上各个部分的质量、惯性、阻尼等因素。

2. 状态变量选择根据龙门式起重机的特点,选择适当的状态变量进行建模。

常用的状态变量包括主摆角、小车位置、起升高度等。

这些状态变量能够准确地描述起重机的运动轨迹和状态变化,有助于控制系统的设计与优化。

3. 运动方程建立根据运动学和动力学原理,推导龙门式起重机的运动方程。

对于多关节、多自由度的系统,可以利用拉格朗日方程、牛顿第二定律等基本原理进行建模。

根据实际情况,加入摩擦、阻尼等因素,使模型更加准确。

4. 参数辨识在建立动力学模型之前,需要进行参数辨识。

参数辨识的目的是确定龙门式起重机各个部分的质量、惯性、摩擦等物理参数。

可以通过实验或者仿真数据拟合的方法,对参数进行辨识。

辨识后的参数能够有效提高模型的准确性和仿真结果的可靠性。

二、仿真分析1. 控制策略设计在进行仿真之前,需要设计合适的控制策略。

控制策略是指通过调节龙门式起重机的控制动作,以达到预期的目标。

常用的控制策略包括PID控制、模糊控制、神经网络控制等。

根据不同的应用场景和需求,选择合适的控制策略进行仿真分析。

2. 仿真环境搭建基于控制系统的龙门式起重机动力学仿真通常采用计算机仿真软件进行。

如MATLAB/Simulink、ADAMS等。

通过搭建适当的仿真环境,可以模拟龙门式起重机在不同工况下的运动轨迹和力学特性,为后续的分析提供准确的仿真数据。

《系统建模与仿真》 第三章

《系统建模与仿真》 第三章

图3-7 子网模型
3.2 供给链系统建模方法
3.1.1 供给链管理决策与供给链模型
在供给连管理决策中,供给链模型主要描述供给链的决策内容。 供给链中的决策通常包括:采购决策、制造决策、运输决策、存储决 策和销售决策等
一般认为供给链模型至少应该能够为决策人员提供四方面的效劳: (1)确定在应用条件下最优的库存和效劳水平对应关系; (2)帮助决策人员分析、预测供给链中的不确定因素,确定平安库存 水平和订货策略,优化投资; (3)进行What-if分析,帮助决策人员评估各种方案以选择其中最有 利的方案; (4)进行面向供给链M的设计(Design-for-供给链M ),评价不同设 计和工艺对供给链运行中库存和效劳水平的影响,通过协调提高整体 效益。
表3.2 供给链管理决策内容
决策 短期决策内容
长期决策内容
采购 制造 运输 存储 销售
如何决定采购的材料种类、数量和日期等? 如何实现近期的生产任务? 如何安排运输车辆和路线? 如何制定履行定单计划? 按照何种顺序履行客户定单?
如何选择供应商?供应商的具体选择 个数?
如何快速响应全球客户的需求?决定 在何处设立分厂?
多企业〔特别是汽车行业企业〕都应用JIT方法进行管理,这样一种 方法要求企业加快对用户变化需求的反响速度,同时加强与合作伙伴 的合作。全球竞争中先进制造技术的开展要求企业将自身业务与合作 伙伴业务集成在一起,缩短相互之间的距离,站在整个供给链的观点 考虑增值,所以许多成功的企业都将与合作伙伴的附属关系转向建立 联盟或战略合作关系。
一般来说,供给链还具有以下特征: ①复杂性。因为供给链节点企业的组成跨度(层次)不同,供给链往
往由有多个、多类型的企业构成,它们之间的关系错综复杂,关联往 来和交易多。 ②动态性。供给链管理因企业战略和适应市场需求变化的需要,其中 的节点企业需要动态的更新和调整,这就使得供给链具有明显的动态 性。 ③面向用户需求。供给链的形成、存在、重构,都是基于一定的市场 需求而发生的,并且在供给链的运作过程中,用户的需求拉动是供给 链中信息流、产品、效劳流、资金流运作的驱动源。 ④交叉性。节点企业可以是这个供给链的成员,同时也可以是另外一 个供给链的成员,大多的供给链形成交叉结构,增加了协调管理的难 度。

系统动力学

系统动力学

1.系统动力学基本概念
因果关系图:
表示系统反馈结构的重要工具,因果图包 含多个变量,变量之间由标出因果关系的 箭头所连接。变量是由因果链所联系,因 果链由箭头所表示。
杯中水位 + 斟水速率 + + 决定添水 水位差 + 期望 水位
因果链极性:
每条因果链都具有极性,或者为正(+)或者 为负(-)。
反馈回路的极性:
反馈回路的极性取决于回路中各因果链符 号。回路极性也分为正反馈和负反馈,正 反馈回路的作用是使回路中变量的偏离增 强,负则趋于稳定。
1.系统动力学基本概念
系统动力学模型流图:是指由专用符号组成用以表示因果关
系环中各个变量之间相互关系的图示。专用符号主要如下
1.系统动力学基本概念
状态变量:代表事物(包括物质和非物质的)的积累。其数值大小是表
系统流图
公路货物运输系统流图,如图所示
公路货物运输系统用公路货运量 ( LGLHY) 总人口数 ( LZRK ) 和GDP 作 为每个子系统的状态变量,分别用公路货运量年增长量 ( DHY) 年净增 人口数 ( DRK ) GDP 年增长量 ( DGDP ) 作为速率变量,其他变量均为 辅助变量
Contents
系统动力学基本概念 系统动力学分析问题的步骤 系统动力学的应用
1 2
3
5
3.系统动力学的应用
系统动力学以一种结构性的视角,通过对各种系统关 系进行精确的定量分析研究解决问题。系统动力学的应用 几乎遍及各类系统,深入到各个领域,例如在区域货运系 统与经济互动关系研究、城市私家车拥有量发展问题、 航空系统客运量预测、 城市物流园区规划中的需求预测、 机动化发展政策对城市发展、城市交通系统的影响以及城 市公交价格组合策略研究等方面都有所应用。 下例是将系统动力学的方法应用于公路货物运输系统, 建立货物运输系统动力学模型,对未来运量预测,并以黑 龙江省公路货物运输相关统计数据对模型进行验证。

12.1 系统动力学的基本原理

12.1  系统动力学的基本原理

③ 初步划定系统的边界,确定内生变量、 外生变量和输入变量。 ④ 确定系统行为的参考模式。 ⑤ 调查、收集有关资料。
(二)构建模型 ① 分析系统结构。
首先要分析系统整体与局部的关系,
然后分析变量与变量之间的关系(正关系、
负关系、无关系),
最后把这些关系转绘成反映系统结构的
因果关系图和流图。
分析因果关系,绘制因果关系图 因果关系图,是反映变量与变量之间因果 关系的示意图。其中,变量之间相互影响作用 的性质用因果关系键来表示。因果关系键中的
如人口数量(状态变量)的输入速率(出生率)方
程可以写成:
BIRTHS.KL BRF POP.K
式中,BIRTHS代表出生率(人/a),BRF代 表出生率系数(人/a· 人),POP代表人口数(人)。
C)辅助方程 A 。附加的代数运算方程称为辅
助方程。“辅助”即帮助建立速率方程。一 般而言,辅助方程没有统一的标准格式,但 其下标总是K。辅助变量的值可由现在时刻的 其它变量和常量求得。如土地占用率LFO的辅 助方程式可以写成:
② 模型行为适合性检验 A) 结构灵敏度检验。模型行为对结构的合理变 动过于敏感,则模型不宜作仿真分析之用。 B) 参数灵敏度检验。系统动力学模型对参数变 化是不敏感的。
③ 模型结构与真实系统一致性检验。判定模 型结构是否与真实系统相象。 ④ 模型行为与真实系统一致性检验。
③ 参数的确定与赋值 DYNAMO模型中的参数,主要有表函数、 初始值、常数、转换系数、调节时间与参考 数值等。 在运用 DYNAMO 模型对真实系统进行
模拟之前,首先应对以上参数赋值。
(三)模型的模拟与评估 当模型调试运行通过后,根据研究目的,
设计不同的方案,运用模型进行模拟运算,对
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档