江苏专版2019版高考数学一轮复习第六章数列课时达标检测试卷三十一数列求和与数列的综合问题

合集下载

近年届高考数学一轮复习第六章数列课时训练33数列求和文(2021年整理)

近年届高考数学一轮复习第六章数列课时训练33数列求和文(2021年整理)

2019届高考数学一轮复习第六章数列课时跟踪训练33 数列求和文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习第六章数列课时跟踪训练33 数列求和文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习第六章数列课时跟踪训练33 数列求和文的全部内容。

课时跟踪训练(三十三) 数列求和[基础巩固]一、选择题1.(2018·湖南师大附中月考)已知公差不为0的等差数列{a n}满足a1,a3,a4成等比数列,S n为数列{a n}的前n项和,则错误!的值为( ) A.2 B.3 C.-2 D.-3[解析] 设等差数列的公差为d,首项为a1,所以a3=a1+2d,a4=a1+3d。

因为a1、a3、a4成等比数列,所以(a1+2d)2=a1(a1+3d),解得:a1=-4d.所以错误!=错误!=2,故选A。

[答案] A2.(2017·河南百校联盟质量监测)已知等差数列{a n}的前n项和为S n,S5=-20,则-6a4+3a5=( )A.-20 B.4 C.12 D.20[解析] 设{a n}的公差为d,∵S5=错误!=-20,∴a1+a5=-8,∴a3=-4。

又-6a4+3a5=-6(a3+d)+3(a3+2d)=-3a3=12.选C。

[答案] C3.已知等比数列{a n}的首项为1,若4a1,2a2,a3成等差数列,则数列错误!的前5项和为()A.3116B.2 C。

错误! D.错误![解析]设数列{a n}的公比为q,则有4+q2=2×2q,解得q=2,所以a n=2n-1。

2019版高考数学大一轮复习江苏专版文档:第六章 数列6-3 含答案 精品

2019版高考数学大一轮复习江苏专版文档:第六章 数列6-3 含答案 精品

§6.3 等比数列及其前n 项和考情考向分析 以考查等比数列的通项、前n 项和及性质为主,等比数列的证明也是考查的热点.本节内容在高考中既可以以填空题的形式进行考查,也可以以解答题的形式进行考查.解答题往往与等差数列、数列求和、不等式等问题综合考查.1.等比数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1(a 1≠0,q ≠0).3.等比中项如果在a 与b 中插入一个数G ,使得a ,G ,b 成等比数列,那么根据等比数列的定义,Ga =bG,G 2=ab ,G =±ab ,称G 为a ,b 的等比中项. 4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .知识拓展等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }是递增数列. (2)满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.(3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × ) (2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × ) (5)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( × )(6)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × ) 题组二 教材改编2.[P54习题T3(2)]已知{a n }是等比数列,a 2=2,a 5=14,则公比q =______.答案 12解析 由题意知q 3=a 5a 2=18,∴q =12.3.[P54习题T5]在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 答案 27,81解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81. 题组三 易错自纠4.若1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为________.答案 -12解析 ∵1,a 1,a 2,4成等差数列, ∴3(a 2-a 1)=4-1,∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q ,则b 22=1×4=4,且b 2=1×q 2>0,∴b 2=2,∴a 1-a 2b 2=-(a 2-a 1)b 2=-12.5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.答案 -11解析 设等比数列{a n }的公比为q , ∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=a 1(1-q 5)1-q ·1-q a 1(1-q 2)=1-q 51-q 2=1-(-2)51-4=-11. 6.一种专门占据内存的计算机病毒开机时占据内存1 KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机________分钟,该病毒占据内存64 MB.(1 MB =210 KB) 答案 48解析 由题意可知,病毒每复制一次所占内存的大小构成一等比数列{a n },且a 1=2,q =2,∴a n =2n ,则2n =64×210=216,∴n =16. 即病毒共复制了16次. ∴所需时间为16×3=48(分钟).题型一 等比数列基本量的运算1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=________.答案 12解析 由{a n }为等比数列,得a 3a 5=a 24,又a 3a 5=4(a 4-1),所以a 24=4(a 4-1),解得a 4=2.设等比数列{a n }的公比为q , 则由a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.2.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =________.答案 2n -1解析 ∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52, ①a 1q +a 1q 3=54, ②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S n a n =4⎝⎛⎭⎫1-12n 42n=2n -1. 思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解. 题型二 等比数列的判定与证明典例 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2(n ∈N *). (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式. (1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2(n ≥2), ② 由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列.(2)解 由(1)知b n =a n +1-2a n =3·2n -1(n ∈N *),∴a n +12n 1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2(n ∈N *).引申探究若将本例中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n . ∴S n +1-S n =2S n -2S n -1+1,∴a n +1=2a n +1, ∴a n +1+1=2(a n +1),n ≥2,(*)又a 1=1,S 2=a 1+a 2=2a 1+2,即a 2+1=2(a 1+1), ∴当n =1时(*)式也成立,故{a n +1}是以2为首项,2为公比的等比数列, ∴a n +1=2·2n -1=2n ,∴a n =2n -1(n ∈N *).思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. (2)利用递推关系时要注意对n =1时的情况进行验证. 跟踪训练 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1, 两式相减得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0,得a n ≠0, 所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)解 由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132,得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.题型三 等比数列性质的应用1.已知等比数列{a n },且a 6+a 8=4,则a 8(a 4+2a 6+a 8)的值为________. 答案 16解析 ∵a 6+a 8=4,∴a 8(a 4+2a 6+a 8)=a 8a 4+2a 8a 6+a 28=(a 6+a 8)2=16.2.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=________. 答案 60解析 由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,因此S 12=4+8+16+32=60. 思维升华 等比数列常见性质的应用 等比数列性质的应用可以分为三类: (1)通项公式的变形. (2)等比中项的变形. (3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.分类讨论思想在等比数列中的应用典例 (16分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式; (2)求出前n 项和,根据函数的单调性证明. 规范解答(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.[2分]又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n (n ∈N *).[5分] (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n=1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n (2n+1),n 为奇数,2+12n(2n-1),n 为偶数.[8分]当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.[12分]当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.[14分]故对于n ∈N *,有S n +1S n ≤136.[16分]1.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5=________.答案 33解析 设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18,∴1-q 31-q 6=218,得q 3=8,∴q =2. ∴S 10S 5=1-q 101-q5=1+q 5=33. 2.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则a 1=________. 答案 -1解析 由S 2=3a 2+2,S 4=3a 4+2,得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍去)或q =32,将q =32代入S 2=3a 2+2中得a 1+32a 1=3×32a 1+2,解得a 1=-1.3.已知等比数列{a n }中,a 3=2,a 4a 6=16,则a 10-a 12a 6-a 8的值为________.答案 4解析 a 5=±a 4·a 6=±16=±4, ∵q 2=a 5a 3>0,∴a 5=4,q 2=2,则a 10-a 12a 6-a 8=q 4=4. 4.(2017·无锡期末)设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________. 答案 58解析 设{a n }的公比为q ,q ≠1.由等比中项的性质可得a 1a 2a 3=a 32=-18,所以a 2=-12.因为a 2,a 4,a 3成等差数列,所以2a 4=a 2+a 3,即2a 2q 2=a 2+a 2q ,化简得2q 2-q -1=0,即(q -1)(2q +1)=0,解得q =1(舍)或q =-12.又因为a 1=a 2q =1,所以S 4=a 1(1-q 4)1-q=1×⎣⎡⎦⎤1-⎝⎛⎭⎫-1241-⎝⎛⎭⎫-12=58. 5.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=________. 答案 10解析 由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9, 则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了________里. 答案 96解析 设等比数列{a n }的首项为a 1,公比为q =12,由题意得a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里.7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________. 答案 32解析 设{a n }的首项为a 1,公比为q ,则⎩⎪⎨⎪⎧a 1(1-q 3)1-q=74,a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a 8=14×27=25=32.8.(2014·江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值为________. 答案 4解析 因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4,得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1(舍去),a 6=a 2q 4=1×22=4.9.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和为________. 答案 2n -1解析 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=1,q =2,∴数列{a n }的前n 项和为1-2n 1-2=2n-1(n ∈N *).10.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 答案12n解析 ∵a n +S n =1,① ∴a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),又a 1=12,∴数列{a n }是首项为12,公比为12的等比数列,则a n =12×⎝⎛⎭⎫12n -1=12n .11.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0(n ∈N *).(1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0,得 2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数, 所以a n +1≠0,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1(n ∈N *).12.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .解 (1)∵a n ·a n +1=⎝⎛⎭⎫12n ,∴a n +1·a n +2=⎝⎛⎭⎫12n +1, ∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12,∴a 2=12,∴b 1=a 1+a 2=32.∴{b n }是首项为32,公比为12的等比数列.∴b n =32×⎝⎛⎭⎫12n -1=32n (n ∈N *). (2)由(1)可知,a n +2=12a n ,∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列, ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n (n ∈N *).13.(2017·扬州期末)在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________.答案 48解析 方法一 由a 4+a 3-2a 2-2a 1=6,得a 1(q +1)·(q 2-2)=6,所以a 1(q +1)=6q 2-2.因为a n >0,所以q 2-2>0,a 5+a 6=a 1(1+q )q 4=6q 4q 2-2=6×(q 4-4)+4q 2-2=6×⎣⎡⎦⎤(q 2+2)+4q 2-2=6×⎝⎛⎭⎫q 2-2+4q 2-2+4≥6×⎝ ⎛⎭⎪⎫2(q 2-2)×4q 2-2+4=6×8=48,当且仅当q 2-2=4q 2-2,即q =2,a 1=1时,等号成立,所以a 5+a 6的最小值为48.方法二 由a 4+a 3-2a 2-2a 1=6,得(a 2+a 1)(q 2-2)=6,所以a 2+a 1=6q 2-2.因为a n >0,所以q 2-2>0,即q 2>2,a 5+a 6=(a 1+a 2)q 4=6q 4q 2-2=61q 2-2q 4.令t =1q 2∈⎝⎛⎭⎫0,12,则1q 2-2q 4=t -2t 2=-2⎝⎛⎭⎫t -142+18,当t =14∈⎝⎛⎭⎫0,12时,式子1q 2-2q 4取得最大值18,从而a 5+a 6=61q 2-2q 4取得最小值6×8=48.14.设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=____________. 答案 43⎝⎛⎭⎫1-14n +2 解析 由题意,得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1 =43⎝⎛⎭⎫1-14n +2(n ∈N *).15.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T n >1的n 的最小值为________.答案 6解析 ∵{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6. 16.设S n 为数列{a n }的前n 项和,S n +12n =(-1)n a n (n ∈N *),则数列{S n }的前9项和为________. 答案 -3411 024解析 因为S n +12n =(-1)n a n , 所以S n -1+12n -1=(-1)n -1a n -1(n ≥2). 两式相减得S n -S n -1+12n -12n -1 =(-1)n a n -(-1)n -1a n -1, 即a n -12n =(-1)n a n +(-1)n a n -1(n ≥2), 当n 为偶数时,a n -12n =a n +a n -1, 即a n -1=-12n ,此时n -1为奇数, 所以若n 为奇数,则a n =-12n +1; 当n 为奇数时,a n -12n =-a n -a n -1, 即2a n -12n =-a n -1, 所以a n -1=12n -1,此时n -1为偶数, 所以若n 为偶数,则a n =12n . 所以数列{a n }的通项公式为a n =⎩⎨⎧ -12n +1,n 为奇数,12n ,n 为偶数.所以数列{S n }的前9项和为S 1+S 2+S 3+…+S 9=9a 1+8a 2+7a 3+6a 4+…+3a 7+2a 8+a 9=(9a 1+8a 2)+(7a 3+6a 4)+…+(3a 7+2a 8)+a 9=-122-124-126-128-1210=-122×⎣⎡⎦⎤1-⎝⎛⎭⎫1451-14=-3411 024.。

2019版高考数学大一轮复习江苏专版文档:第六章 数列6

2019版高考数学大一轮复习江苏专版文档:第六章 数列6

§6.4 数列的递推与通项考情考向分析 由递推关系求数列的通项公式是高考的热点和重点,一般是解答题的前两问,是解数列综合题的基础,难度为中档.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式. 知识拓展由递推关系求数列通项公式的常用方法: (1)累加型形如a n =a n -1+f (n -1),则a n -a n -1=f (n -1), a 2-a 1=f (1),a 3-a 2=f (2),…,a n -a n -1=f (n -1), 以上(n -1)个等式经累加,得a n =a 1+∑n -1k =1f (k ). (2)累乘型形如a n =a n -1f (n -1),a n ≠0,则a na n -1=f (n -1),可利用a 2a 1=f (1),a 3a 2=f (2),…,a n a n -1=f (n -1),以上(n -1)个等式经累乘,得a na 1=f (1)·f (2)·…·f (n-1),即a n =a 1·a 2a 1·a 3a 2·…·a na n -1.(3)构造型①形如a n =Aa n -1+B ,其中A ,B 为常数且A ≠1,A ≠0,B ≠0的构造可用待定系数法,构造一个公比为A 的等比数列,令a n +λ=A (a n -1+λ),经整理比较得(A -1)λ=B ,λ=BA -1,从而⎩⎨⎧⎭⎬⎫a n +B A -1是一个公比为A 的等比数列.②形如a n =Aa n -1+b n ,且A ≠0,b ≠0型的构造可变形成a n b n =A b ⎝ ⎛⎭⎪⎫a n -1b n -1+1,令c n =a n b n ,则c n =Ab c n -1+1(此问题就转化成a n =Aa n -1+B 的模型求解).③a n =Aa n -1+n ,且A ≠0,A ≠1型的构造可用待定系数法构造a n +λn =A [a n -1+λ(n -1)]+γ,然后经整理比较a n =Aa n -1+n 得出λ=1A -1,γ=A A -1,从而转化为a n =Aa n -1+B 型的构造. ④形如a n =ma k n -1(m >0,k ∈N ,k ≠0,k ≠1)的构造可两边取对数得lg a n =k lg a n -1+lg m ,令b n =lg a n ,得b n =k ·b n -1+lg m ,所以该问题转化为a n =Aa n -1+B 模型求解.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),则a n =1n .( √ )(2)在数列{a n }中,a 1=2,a n +1=a n +3n +2,则a n =32n 2+n2.( √ )(3)已知在数列{a n }中,a 1=1,前n 项和S n =n +23a n ,则a n =n (n +1)2.( √ )(4)已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n =2n .( × ) 题组二 教材改编2.(P67习题T 4)在数列{a n }中,a 1=1,a n +1=a n1+na n,则a n =________. 答案2n 2-n +2解析 原式可化为1a n +1-1a n=n ,∴1a 2-1a 1=1,1a 3-1a 2=2,1a 4-1a 3=3,…, 1a n -1a n -1=n -1. 累加得1a n -1a 1=1+2+…+(n -1),∴a n =2n 2-n +2.3.(P68习题T 14)已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,则a n =________. 答案 2n -1解析 方法一 由已知2S n =a n +1,得当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1,代入已知得2S n =S n -S n -1+1,即S n -1=(S n -1)2. 又a n >0,故S n -1=S n -1或S n -1= 1-S n (舍), 即S n -S n -1=1(n ≥2),由定义得{S n }是以1为首项,1为公差的等差数列, ∴S n =n .故a n =2n -1.方法二 ∵2Sn =a n +1,∴4Sn =(a n +1)2, 当n ≥2时,4S n -1=(a n -1+1)2,两式相减,得4a n =(a n +1)2-(a n -1+1)2, 化简可得(a n +a n -1)(a n -a n -1-2)=0, ∵a n >0,∴a n -a n -1=2, ∵2a 1=a 1+1,∴a 1=1.∴数列{a n }是以1为首项,2为公差的等差数列, ∴a n =2n -1. 题组三 易错自纠4.已知数列{a n }的前n 项和S n =n 2-n +1,它的通项公式a n =____________.答案 a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2解析 ∵a 1=S 1=12-1+1=1, 当n ≥2时,a n =S n -S n -1=(n 2-n +1)-[(n -1)2-(n -1)+1]=2n -2.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.5.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N *,则数列{a n }的通项公式为____________. 答案 a n =3n -1解析 由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2.由已知a 1=S 1>1,得a 1=2. 又由a n +1=S n +1-S n=16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2), 得a n +1-a n -3=0或a n +1=-a n .因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0,即a n +1-a n =3,从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项公式为a n =3n -1. 6.已知数列{a n }满足a 1=1,a n +1=3a n +2,则a n =____________. 答案 2×3n -1-1解析 因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3,又a 1+1=2,所以a n +1=2×3n -1,所以a n =2×3n -1-1.题型一 累加型和累乘型1.数列{}a n 满足a 1=12,a n =a n -1+1n 2-n (n ≥2),求数列{}a n 的通项.解 由a n -a n -1=1n 2-n 且a 1=12,a n -a n -1=1n 2-n =1n -1-1na n -1-a n -2=1n -2-1n -1,…,a 2-a 1=1-12,所以a n -a 1=1-1n ,所以a n =32-1n.2. 已知在数列{}a n 中,a 1=2,且na n +1=(n +2)a n ,求a n .解 由已知得,a n +1a n =n +2n ,故a n =a n a n -1.a n -1a n -2.....a 2a 1.a 1=n +1n -1.n n -2.. (3)1·2=n (n +1).思维升华 (1)求形如a n +1=a n +f (n )数列的通项公式,此类题型一般可以利用累加法求其通项公式,即a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1,累加求得通项公式; (2)求形如a n +1a n=f (n )数列的通项,此类题型一般可以利用累乘法求其通项公式,即a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1,累乘求得其通项.题型二 构造法求数列的通项公式命题点1 形如a n =Aa n -1+B ,其中A ,B 为常数且A ≠1,A ≠0,B ≠0的构造 典例 已知在数列{}a n 中,a 1=1,a n +1=2a n +1,求a n .解 方法一 令a n +1+k =2(a n +k ),即a n +1=2a n +k ,与a n +1=2a n +1比较得k =1, 即数列{a n +1}是以2为首项,2为公比的等比数列,所以a n +1=2·2n -1,即a n =2n -1.方法二 由已知得a 2=3,a n +1-a n =(2a n +1)-(2a n -1+1)=2(a n -a n -1)(n ≥2),所以数列{a n +1-a n }是以2为首项,2为公比的等比数列,故a n +1-a n =2n ,下面利用叠加法求:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+21+1=2n -1.方法三 将a n +1=2a n +1两边同除以2n +1得a n +12n +1=a n 2n +12n +1,即a n +12n +1-a n 2n =12n +1,利用叠加法可求得a n =2n-1. 思维升华 求形如“a n +1=pa n +q (p ,q 为常数,pq ≠0,p ≠1)”的通项方法有三种: 方法一:数法,引入待定参数k ,使a n +1-k =p (a n -k ),所以数列{a n -k }为等比数列.要求出k ,只要把所构造的递推式与原递推式比较得(1-p )k =q ,故k =q 1-p .方法二:a n +1-a n =p (a n -a n -1),所以数列{a n +1-a n }为等比数列. 方法三:两边同除以p n+1得a n +1pn +1=a n p n +qp n +1,故可以利用累加法来求. 跟踪训练 已知数列{}a n 满足a n =13a n -1+2,a 1=1,求数列{}a n 的通项公式.解 设a n +λ=13(a n -1+λ),解得λ=-3,则a n -3=13(a n -1-3),令b n =a n -3,则数列{}b n 是以b 1=a 1-3=-2为首项,13为公比的等比数列,所以b n =-23n -1,所以a n =3-23n -1.命题点2 形如a n =Aa n -1+b n ,且A ≠0,b ≠0型的构造 典例 已知在数列{}a n 中,a 1=2,a n +1=2a n +3·2n ,求a n .解 在递推关系a n +1=2a n +3·2n 的两边同除以2n +1,得a n +12n +1=a n 2n +32,令b n +1=a n +12n +1,则b n +1=b n +32,b 1=1,所以b n =32n -12,故a n =2n ·⎝⎛⎭⎫32n -12. 思维升华 求形如“a n +1=pa n +f (n )(其中p 为非零常数)”的递推数列的通项.若f (n )=a ·b n 时,即a n +1=pa n +a ·b n ,在此递推关系两边同除以b n +1,得a n +1bn +1=p b ·a n b n +a b ,令c n+1=a n +1bn +1,则有c n +1=p b ·c n +ab ,转化为命题点1类型来解.跟踪训练 已知在数列{}a n 中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1,求a n . 解 在a n +1=13a n +⎝⎛⎭⎫12n +1的两边同乘以2n +1得2n +1·a n +1=23·(2n a n )+1,令b n =2n a n .则b n +1=23b n +1,于是可得b n +1-3=23(b n -3),∴b n -3=-43×⎝⎛⎭⎫23n -1=-2⎝⎛⎭⎫23n , ∴b n =3-2⎝⎛⎭⎫23n,∴a n =b n2n =3⎝⎛⎭⎫12n -2⎝⎛⎭⎫13n =32n -23n . 命题点3 形如a n =Aa n -1+n ,且A ≠0型的构造 典例 已知在数列{}a n 中,a 1=1,a n +1=3a n +2n ,求a n . 解 由已知得a n +1=3a n +2n ,a n =3a n -1+2(n -1), 两式相减得,a n +1-a n =3(a n -a n -1)+2, 令b n =a n +1-a n ,则b n =3b n -1+2,故b n =5·3n -1-1,即a n +1-a n =5·3n -1-1,又已知a n +1=3a n +2n ,所以a n =52·3n -1-n -12.思维升华 求形如“a n +1=pa n +f (n )(其中p 为非零常数)”的递推数列的通项.若f (n )=an +b 时,即a n +1=pa n +an +b ,所以a n +1-a n =p (a n -a n -1)+a ,令b n +1=a n +1-a n ,则有b n +1=pb n +a ,转化为命题点1类型来解.跟踪训练 设在数列{}a n 中,a 1=1,a n +1=3a n +2n +1,求数列{}a n 的通项公式. 解 由a n +1=3a n +2n +1可得 a n +1+(n +1)+1=3(a n +n +1), 令b n =a n +n +1,则b n +1=3b n , ∴b n =b 1·3n -1=3n ,∴a n =3n -n -1 .命题点4 形如a n =ma k n -1(m >0,k ≠0,k ≠1)型的构造典例 已知数列{}a n 与{}b n 有如下关系:a 1=2, a n +1=12⎝⎛⎭⎫a n +1a n , b n =a n +1a n -1,求数列{}a n 和{}b n 的通项公式.解 由已知得b n +1=a n +1+1a n +1-1=12⎝⎛⎭⎫a n +1a n +112⎝⎛⎭⎫a n +1a n -1=⎝ ⎛⎭⎪⎫a n +1a n -12=b 2n ,且b 1=3,b n>0.即b n +1=b 2n ,取对数得lg b n +1=2lg b n ,即数列{lg b n }是首项为lg 3,公比为2的等比数列. ∴lg b n =2n -1lg 3,于是b n =123-n ,从而a n =b n +1b n -1=11223131--n n +-.思维升华 求形如“a n +1=p ·a r n (其中p ,r 为常数,且p >0,a n >0)”的递推数列的通项. 此种题型可以通过两边取对数的方法变为lg a n +1=r lg a n +lg p ,令b n =lg a n ,则有b n +1=r ·b n +lg p ,转化为命题点1类型来解.跟踪训练 已知在数列{}a n 中,a 1=3,a n +1=a 2n ,求a n .解 由条件可知:a n >0,对a n +1=a 2n 两边取以3为底的对数得log 3a n +1=2log 3a n ,令b n =log 3a n ,则有b n +1=2b n ,所以数列{}b n 是以b 1=log 33=1为首项,2为公比的等比数列,所以b n =2n -1,故a n =123-n .1.已知a 1=3,a n +1=3n -13n +2a n (n ≥1),则a n =________.答案63n -1解析 a n =3(n -1)-13(n -1)+2·3(n -2)-13(n -2)+2·…·3×2-13×2+2·3-13+2a 1=3n -43n -1·3n -73n -4·…·58·25·3=63n -1.2.已知在数列{}a n 中,a 1=12,a n +1=a n +14n 2-1,则a n =____________.答案4n -34n -2解析 由已知可得a n +1-a n =14n 2-1=12⎝⎛⎭⎫12n -1-12n +1,令n =1,2,…,(n -1),代入得(n -1)个等式累加,即 (a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -3-12n -1, ∴a n -a 1=12⎝⎛⎭⎫1-12n -1,∴a n =a 1+12-12·12n -1,即a n =1-14n -2=4n -34n -2.3.在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1) (n ≥2,n ∈N *),这个数列的通项公式是____________.答案 a n =⎩⎪⎨⎪⎧1,n =1,2×3n -2,n ≥2 解析 由已知,得当n ≥2时,a n =2S n -1,① 当n ≥3时,a n -1=2S n -2,② ①-②整理得a na n -1=3(n ≥3),∵a 2=2≠0,∴a n =2×3n -2,n ≥2,∴a n =⎩⎪⎨⎪⎧1,n =1,2×3n -2,n ≥2. 4.已知在数列{}a n 中,a 1=15,且当n >1时,有a n -1-a n -4a n a n -1=0,则a n =____________.答案14n +1解析 将等式a n -1-a n -4a n a n -1=0两边同除以a n a n -1得1a n -1a n -1=4,n >1,则数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,且首项为1a 1=5,公差d =4,故1a n =1a 1+(n -1)d =5+4(n -1)=4n +1, ∴a n =14n +1.5. 已知数列{}a n 的首项a 1=35,a n +1=3a n2a n +1,n =1,2,3,…,则{}a n 的通项公式为____________. 答案 a n =3n3n +2解析 ∵a n +1=3a n 2a n +1,∴1a n +1=23+13a n ,∴1a n +1-1=13⎝⎛⎭⎫1a n -1. 又1a 1-1=23, ∴⎩⎨⎧⎭⎬⎫1a n -1是以23为首项,13为公比的等比数列.∴1a n -1=23·13n -1=23n ,∴a n =3n3n +2. 6.在数列{a n }中,S n 为{a n }的前n 项和,n (a n +1-a n )=a n (n ∈N *),且a 3=π,则tan S 4=____________. 答案3解析 ∵由n (a n +1-a n )=a n ,得na n +1=(n +1)a n ,即a n +1n +1=a nn,∴a n n =a n -1n -1=a n -2n -2=…=a 33=π3,∴a n =π3n , ∴S 4=a 1+a 2+a 3+a 4=π3()1+2+3+4=10π3,tan S 4=tan 10π3= 3.7. 已知在数列{}a n 是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0,n =1,2,3,…,则a n =____________. 答案 1n解析 由已知得[(n +1)a n +1-na n ](a n +1+a n )=0, 因为数列{}a n 是正项数列, 所以(n +1)a n +1-na n =0,即a n +1a n =nn +1,且利用第二种类型的累乘法得a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=n -1n ·n -2n -1·…·12·1=1n .8.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________. 答案 2n -1解析 当n =1时,S 1=a 1=2a 1-1,得a 1=1, 当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1), 即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.9.已知数列{}a n 满足a n +1+a n -1a n +1-a n +1=n (n ∈N *),且a 2=6,则数列{a n }的通项公式为____________. 答案 a n =n (2n -1)解析 由a n +1+a n -1a n +1-a n +1=n ,得(n -1)a n +1-(n +1)a n =-(n +1),当n ≥2时,有a n +1n +1-a n n -1=-1n -1, 所以a n +1n (n +1)-a n (n -1)n =-1n (n -1)=-⎝⎛⎭⎫1n -1-1n ,由累加法,得当n ≥3时,a n =n (2n -1). 把n =1,a 2=6代入a n +1+a n -1a n +1-a n +1=n ,得a 1=1,经验证:a 1=1,a 2=6均满足a n =n (2n -1).综上,a n =n (2n -1),n ∈N *.10.已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N *),则该数列的前2 019项的乘积a 1·a 2·a 3·…·a 2019=________.答案 3解析 由题意可得,a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1,∴数列{a n }是以4为周期的数列,而2 019=4×504+3,a 1a 2a 3a 4=1, ∴前2 019项的乘积为1504·a 1a 2a 3=3.11.已知在数列{}a n 中,a 1=1,a 2=2,且a n +1=(1+q )a n -qa n -1(n ≥2,q ≠0). (1)设b n =a n +1-a n (n ∈N *),证明{}b n 是等比数列; (2)求数列{}a n 的通项公式.(1)证明 由题设a n +1=(1+q )a n -qa n -1(n ≥2),得a n +1-a n =q (a n -a n -1),即b n =qb n -1(n ≥2). 又b 1=a 2-a 1=1,q ≠0,所以{}b n 是首项为1,公比为q 的等比数列. (2)解 由(1),知a 2-a 1=1, a 3-a 2=q , …,a n -a n -1=q n -2(n ≥2).将以上各式相加,得a n -a 1=1+q +…+q n -2(n ≥2).所以当n ≥2时,a n =⎩⎪⎨⎪⎧1+1-q n -11-q ,q ≠1,n ,q =1. 上式对n =1显然成立.12.已知在数列{a n }中,a 1=1,且满足递推关系a n +1=2a 2n +3a n +ma n +1(n ∈N *).(1)当m =1时,求数列{a n }的通项公式;(2)当n ∈N *时,数列{a n }满足不等式a n +1≥a n 恒成立,求m 的取值范围. 解 (1)因为m =1,由a n +1=2a 2n +3a n +1a n +1(n ∈N *),得a n +1=(2a n +1)(a n +1)a n +1=2a n +1,所以a n +1+1=2(a n +1),又a 1+1=2≠0,所以数列{a n +1}是以2为首项,2为公比的等比数列. 于是a n +1=2×2n -1,所以a n =2n -1.(2)因为a n +1≥a n ,而a 1=1,知a n ≥1,所以2a 2n +3a n +m a n +1≥a n ,即m ≥-a 2n -2a n , 由题意,得m ≥-(a n +1)2+1恒成立.因为a n ≥1,所以m ≥-22+1=-3,即满足题意的m 的取值范围是[-3,+∞).13.(2015·江苏)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.答案 2011解析 ∵a 1=1,a n +1-a n =n +1,∴a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,将以上n -1个式子相加得a n -a 1=2+3+…+n =(2+n )(n -1)2,即a n =n (n +1)2, 令b n =1a n, 故b n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,故S 10=b 1+b 2+…+b 10 =2⎝⎛⎭⎫1-12+12-13+…+110-111=2011. 14. 已知数列{}a n 的前n 项和S n 满足S n =2a n +(-1)n ,n ≥1,则数列{}a n 的通项公式为____________.答案 a n =2n -1-2(-1)n 3 解析 ∵S n =2a n +(-1)n ,n ≥1,∴当n =1时,a 1=2a 1-1,解得a 1=1,当n ≥2时,S n -1=2a n -1+(-1)n -1, ∴a n =S n -S n -1=2a n +(-1)n -2a n -1-(-1)n -1, 化简得a n +23(-1)n =2⎣⎡⎦⎤a n -1+23(-1)n -1, ∴数列⎩⎨⎧⎭⎬⎫a n +23(-1)n 是首项为a 1+23×(-1)=13,公比为2的等比数列, ∴a n +23(-1)n =13×2n -1,∴a n =2n -1-2(-1)n 3.15.已知在数列{a n }中, a 1=1,a 2=10,a n a n -1= a n -1a n -2(n =3,4,5…),则a n =____________. 答案 112[1()]210n --解析 递推式两边同时取对数,得lg a n -lg a n -1=12(lg a n -1-lg a n -2), 令b n =lg a n +1-lg a n ,则⎩⎪⎨⎪⎧ b 1=lg a 2-lg a 1=1,b n -1=12b n -2(n =3,4,5,…)⇒b n =⎝⎛⎭⎫12n -1(n =1,2,3…) ⇒lg a n +1-lg a n =⎝⎛⎭⎫12n -1⇒a n +1a n =11()210n -, 由累乘法可得a n a 1=10·1210·1410·…·21()210n -=112[1()]210n --⇒a n =112[1()]210n --. 16.设数列{}a n 的前n 项和为S n ,已知ba n -2n =()b -1S n ,b ≠0,且b ≠2,则{}a n 的通项公式为____________.答案 a n =12-b[]2n +()2-2b b n -1 解析 由题意知a 1=2,且ba n -2n =()b -1S n , ba n +1-2n +1=()b -1S n +1, 两式相减得b ()a n +1-a n -2n =()b -1a n +1, 即a n +1=ba n +2n ,①由①得a n +1-12-b ·2n +1=ba n +2n -12-b·2n +1 =ba n -b 2-b·2n =b ⎝⎛⎭⎫a n -12-b ·2n , 设c n =a n -12-b ×2n ,则c 1=2(1-b )2-b, 当b ≠1时,c 1≠0,则{c n }是首项为2(1-b )2-b,公比为b 的等比数列, ∴c n =2(1-b )2-b b n -1,∴a n =12-b[2n +(2-2b )b n -1], 当b =1时,a n =2n 也符合上式,∴a n =12-b[]2n +()2-2b b n -1.。

2019版高考数学大一轮复习江苏专版文档:第六章 数列6.1

2019版高考数学大一轮复习江苏专版文档:第六章 数列6.1

§6.1数列的概念与简单表示法考情考向分析以考查S n与a n的关系为主,简单的递推关系也是考查的热点.本节内容在高考中以填空题的形式进行考查,难度属于低档.1.数列的定义按照一定次序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 知识拓展1.若数列{an }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,n ∈N *.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)所有数列的第n 项都能使用公式表达.( × )(3)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (4)1,1,1,1,…,不能构成一个数列.( × )(5)任何一个数列不是递增数列,就是递减数列.( × )(6)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ ) 题组二 教材改编2.[P34习题T6(3)]在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5= .答案 23解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.3.[P34习题T7]根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n = .答案 5n -4 题组三 易错自纠4.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是 . 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 5.在数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值为 . 答案 30解析 a n =-n 2+11n =-⎝⎛⎭⎫n -1122+1214, ∵n ∈N *,∴当n =5或n =6时,a n 取最大值30.6.已知数列{a n }的前n 项和S n =n 2+1(n ∈N *),则a n = .答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N * 解析 当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N *.题型一 由数列的前几项求数列的通项公式1.数列0,23,45,67,…的一个通项公式为 .答案 a n =2(n -1)2n -1(n ∈N *)2.数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n = .答案 (-1)n 1n (n +1)解析 这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n 1n (n +1).思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理.题型二 由a n 与S n 的关系求通项公式典例 (1)已知数列{a n }的前n 项和S n =3n 2-2n +1(n ∈N *),则其通项公式为 .答案 a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N * 解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N *.(2)若数列{a n }的前n 项和S n =23a n +13(n ∈N *),则{a n }的通项公式a n = .答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.思维升华 已知S n ,求a n 的步骤 (1)当n =1时,a 1=S 1. (2)当n ≥2时,a n =S n -S n -1.(3)对n =1时的情况进行检验,若适合n ≥2的通项,则可以合并;若不适合,则写成分段函数形式.跟踪训练 (1)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1(n ∈N *),则数列的通项公式a n = . 答案 -2n -1解析 由题意,得S n +1=2a n +1+1,S n =2a n +1, 两式相减,得S n +1-S n =2a n +1-2a n , 即a n +1=2a n ,又S 1=2a 1+1=a 1,所以a 1=-1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2n -1.(2)已知数列{a n }的前n 项和S n =3n +1(n ∈N *),则数列的通项公式a n = .答案 ⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2,n ∈N * 解析 当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1.显然当n =1时,不满足上式.∴a n =⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2,n ∈N *.题型三 数列的简单性质命题点1 数列的单调性典例 (2017·江苏新海中学质检)已知数列{a n }的通项公式为a n =-8⎝⎛⎭⎫18n +9⎝⎛⎭⎫14n -3⎝⎛⎭⎫12n(其中n ∈N *),若第m 项是数列{a n }中的最小项,则a m = . 答案 -516解析 令⎝⎛⎭⎫12n=t ,由a n =-8⎝⎛⎭⎫18n+9⎝⎛⎭⎫14n -3⎝⎛⎭⎫12n , 得a n =-8t 3+9t 2-3t . 设f (t )=-8t 3+9t 2-3t ,则f ′(t )=-24t 2+18t -3=-3(2t -1)(4t -1). ∵0<t =⎝⎛⎭⎫12n ≤12,且当0<t <14时,f ′(t )<0, 当14<t <12时,f ′(t )>0, ∴f (t )在⎝⎛⎭⎫0,14上单调递减,在⎝⎛⎭⎫14,12上单调递增. ∴当t =14,即n =2时,a n 最小,∴a m =a 2=-8×⎝⎛⎭⎫182+9×⎝⎛⎭⎫142-3×⎝⎛⎭⎫122=-516,即a m =-516.命题点2 数列的周期性典例 数列{a n }满足a n +1=11-a n (n ∈N *),a 8=2,则a 1= .答案 12解析 ∵a n +1=11-a n ,∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1 =1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值典例 数列{a n }的通项a n =nn 2+90(n ∈N *),则数列{a n }中的最大项的值为 .答案119解析 令f (x )=x +90x (x >0),运用基本不等式,得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现,当n =9或n =10时,a n =119最大.思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列; ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断;③结合相应函数的图象直观判断.(2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.跟踪训练 (1)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,n ∈N *,2a n-1,12<a n<1,n ∈N *, a 1=35,则数列的第2 018项为 . 答案 15解析 由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 018=a 504×4+2=a 2=15.(2)已知数列{a n }的首项为2,且数列{a n }满足a n +1=a n -1a n +1(n ∈N *),数列{a n }的前n 项的和为S n ,则S 2 016= . 答案 -588解析 ∵a 1=2,a n +1=a n -1a n +1,∴a 2=13,a 3=-12,a 4=-3,a 5=2,…,∴数列{a n }的周期为4,且a 1+a 2+a 3+a 4=-76,∵2 016÷4=504,∴S 2 016=504×⎝⎛⎭⎫-76=-588.解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·⎝⎛⎭⎫1011n (n ∈N *),则此数列的最大项是第 项. (2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是 . 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析.解析 (1)∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9,10项. (2)由a n +1>a n 知该数列是一个递增数列, 又∵通项公式a n =n 2+kn +4, ∴(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,∴k >-3. 答案 (1)9或10 (2)(-3,+∞)1.数列{a n }满足a n =log 2(n 2+3)-2,则log 23是这个数列的第 项.答案 3解析 令a n =log 2(n 2+3)-2=log 23,解得n =3.2.数列23,-45,67,-89,…的第10项是 . 答案 -2021解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1(n ∈N *),故a 10=-2021. 3.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5= . 答案 6116解析 令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116. 4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018= . 答案 3解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12, a 5=a 4a 3=13,a 6=a 5a 4=23,a 7=a 6a 5=2,a 8=a 7a 6=3, ∴数列{a n }具有周期性,且T =6,∴a 2 018=a 336×6+2=a 2=3.5.已知a n =n - 2 000n - 2 001,且数列{a n }共有100项,则此数列中最大项为第 项,最小项为第 项.答案 45 44解析 a n =n - 2 000n - 2 001=1+ 2 001- 2 000n - 2 001, 又44< 2 001<45, 2 001- 2 000>0,故第45项最大,第44项最小.6.已知数列{a n }满足a n =⎩⎪⎨⎪⎧(5-a )n -11,n ≤5,a n -4,n >5,且{a n }是递增数列(n ∈N *),则实数a 的取值范围是 .答案 (2,5)解析 ∵a n =⎩⎪⎨⎪⎧(5-a )n -11,n ≤5,a n -4,n >5,且{a n }是递增数列(n ∈N *), ∴⎩⎪⎨⎪⎧ 5-a >0,a >1,5(5-a )-11<a 2,解得2<a <5.7.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5= . 答案 85解析 借助递推关系,由a 8递推依次得到a 7=2113,a 6=138,a 5=85. 8.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n = .答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2,n ∈N * 解析 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2,n ∈N *. 9.已知数列{a n }的通项公式a n =(n +2)·⎝⎛⎭⎫67n (n ∈N *),则数列{a n }的项取最大值时,n = .答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1, 即⎩⎨⎧ (n +2)·⎝⎛⎭⎫67n ≥(n +1)·⎝⎛⎭⎫67n -1,(n +2)·⎝⎛⎭⎫67n ≥(n +3)·⎝⎛⎭⎫67n +1,解得⎩⎪⎨⎪⎧n ≤5,n ≥4, 即4≤n ≤5, 又n ∈N *,所以n =4或n =5,故在数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574. 10.已知在数列{a n }中,a n =n 2-kn (n ∈N *),且{a n }单调递增,则k 的取值范围是 . 答案 (-∞,3)解析 由题意知,a n +1-a n =2n +1-k ,又{a n }单调递增,故2n +1-k >0恒成立,分离变量得k <2n +1(n ∈N *),当n =1时,2n +1取得最小值3,故k <3,即k 的取值范围是(-∞,3).11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解 (1)由S n =12a 2n +12a n (n ∈N *)可得 a 1=12a 21+12a 1,解得a 1=1,S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4.(2)S n =a n 2+12a 2n ,① 当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列,故a n =n (n ∈N *).12.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1. (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有无数列中的项?若有,是第几项?若没有,请说明理由.(1)解 设a n =f (n )=9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1. 令n =10,得第10项a 10=f (10)=2831. (2)解 令3n -23n +1=98101,得9n =300. 此方程无正整数解,∴98101不是该数列中的项.(3)证明 ∵a n =3n -23n +1=1-33n +1, 又n ∈N *,∴0<1-33n +1<1, ∴0<a n <1.∴数列中的各项都在区间(0,1)内.(4)解 令13<a n =3n -23n +1<23, ∴⎩⎪⎨⎪⎧ 3n +1<9n -6,9n -6<6n +2,∴⎩⎨⎧ n >76,n <83,∴当且仅当n =2时,上式成立,故在区间⎝⎛⎭⎫13,23内有数列中的项,且只有一项为a 2=47.13.f (x )是R 上的奇函数,当x >0时,f (x )=2x +ln x 4,记a n =f (n -5),则数列{a n }的前8项和为 .答案 -16解析 由已知条件可知,a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=f (-4)+f (-3)+f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=f (-4)=-f (4)=-24-ln 44=-16. 14.若数列⎩⎨⎧⎭⎬⎫n (n +4)⎝⎛⎭⎫23n 中的最大项是第k 项,则k = . 答案 4解析 设数列为{a n },则a n +1-a n =(n +1)(n +5)·⎝⎛⎭⎫23n +1-n (n +4)·⎝⎛⎭⎫23n =⎝⎛⎭⎫23n ⎣⎡⎦⎤23(n 2+6n +5)-n 2-4n =2n3n +1(10-n 2).所以当n ≤3时,a n +1>a n ;当n ≥4时,a n +1<a n .因此,a 1<a 2<a 3<a 4,a 4>a 5>a 6>…,故a 4最大,所以k =4.15.数列{a n }的通项公式为a n =an 2+n ,若满足a 1<a 2<a 3<a 4<a 5,且a n >a n +1对n ≥8恒成立,则实数a 的取值范围为 .答案 ⎝⎛⎭⎫-19,-117 解析 可以把a n 看成是关于n 的二次函数,根据其对称轴为n =-12a ,易知对称轴应满足92<-12a <172, 解得-19<a <-117. 16.在数列{a n },{b n }中,a 1=2,a n +1-a n =6n +2,点⎝⎛⎭⎫a n n ,b n 在y =x 3+mx 的图象上,{b n }的最小项为b 3.(1)求数列{a n }的通项公式;(2)求m 的取值范围.解 (1)∵a n +1-a n =6n +2,∴当n ≥2时,a n -a n -1=6n -4.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(6n -4)+(6n -10)+…+8+2=(n -1)[8+(6n -4)]2+2 =3n 2-3n +2n -2+2=3n 2-n ,显然a 1也满足a n =3n 2-n ,∴a n =3n 2-n .(2)∵点⎝⎛⎭⎫a n n ,b n 在y =x 3+mx 的图象上, ∴b n =(3n -1)3+m (3n -1),∴b 1=8+2m ,b 2=125+5m ,b 3=512+8m ,b 4=1 331+11m .∵{b n }的最小项是b 3,∴⎩⎪⎨⎪⎧ 8+2m ≥512+8m ,125+5m ≥512+8m ,1 331+11m ≥512+8m ,∴-273≤m ≤-129.∵b n +1=(3n +2)3+m (3n +2),b n =(3n -1)3+m (3n -1), ∴b n +1-b n =3[(3n +2)2+(3n -1)2+(3n +2)(3n -1)]+3m =3(27n 2+9n +3+m ), 当n ≥4时,27n 2+9n +3>273,∴27n 2+9n +3+m >0,∴b n +1-b n >0,∴当n ≥4时,b n +1>b n .综上可知,m 的取值范围为[-273,-129].。

2019届高三数学课标一轮复习单元质检 六数列 含解析

2019届高三数学课标一轮复习单元质检 六数列 含解析

单元质检六数列(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列{a n}满足a1=2,a n+1=,则a5的值为()A.B.C.D.2.(2017课标Ⅱ高考)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.在下面的图案中,图(1)是边长为1的正方形,图(2)是将图(1)的正方形向外作直角三角形和正方形,按此分形规律,若每幅图案的正方形面积之和依次构成一个数列{a n},则a10=()A.9B.10C.11D.124.(2017广西联考)已知等差数列{a n}的前n项和为S n,S8=-3S4≠0,则的值为()A.-B.-C.D.+(n+1),则a20的5.(2017浙江衢州第二次质量预测)设数列{a n}满足:a1=1,a2=3,且2na n=(n-1)-值是()A. B. C. D.6.已知数列{a n}满足a1=1,a n+1·a n=2n,则S2 015=()A.22 015-1B.21 009-3C.3×21 007-3D.21 008-37.(2017浙江金华期末)若等差数列{a n}的公差为d,前n项和为S n,记b n=,则()A.数列{b n}是等差数列,{b n}的公差也为dB.数列{b n}是等差数列,{b n}的公差为2dC.数列{a n+b n}是等差数列,{a n+b n}的公差为dD.数列{a n-b n}是等差数列,{a n-b n}的公差为8.(2017安徽马鞍山二模)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为()A.2B.3C.4D.59.(2017浙江温州十校联合)已知数列{a n}的首项a1=1,前n项和为S n,且满足2a n+1+S n=2,则满足的n的最大值是()A.8B.9C.10D.1110.已知数列{a n}的首项a1=a,其前n项和为S n,且满足S n+S n-1=3n2+2n+4(n≥2),若对任意的n∈N*,a n<a n+1恒成立,则a的取值范围是()A.B.C.D.-二、填空题(本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.将答案填在题中横线上)11.(2017浙江台州考试)已知公差不为0的等差数列{a n},若a2+a4=10且a1,a2,a5成等比数列,则a1=.a n=.12.(2017浙江宁波慈溪统考)设等差数列{a n}的前n项和为S n,且满足a8>0,a8+a9<0,则使S n>0的最大n是;数列(1<n<15)中最大的项为第项.13.(2017浙江高考样卷)已知等差数列{a n}的公差为d,等比数列{b n}的公比为q,设{a n},{b n}的前n项和分别为S n,T n,若n2(T n+1)=2n S n,n∈N*,则d=,q=.14.(2017浙江金丽衢联考)对于各项均为整数的数列{a n},如果a i+i(i=1,2,3,…)为完全平方数,则称数列{a n}具有“P性质”.不论数列{a n}是否具有“P性质”,如果存在与{a n}不是同一数列的{b n},且{b n}同时满足下面两个条件:①b1,b2,b3,…,b n是a1,a2,a3,…,a n的一个排列;②数列{b n}具有“P性质”,则称数列{a n}具有“变换P性质”.下面三个数列:①数列{a n}的前n项和S n=(n2-1);②数列1,2,3,4,5;③1,2,3, (11)具有“P性质”的为;具有“变换P性质”的为.15.(2017浙江衢州考试)在数列{a n}中,a1=1,(n2+2n)·(a n+1-a n)=1(n∈N*),则通项公式a n=.16.(2017浙江温州联考改编)已知等比数列{a n}前n项和满足S n=1-A·3n,数列{b n}是递增数列,且b n=An2+Bn,则B的取值范围为.17.(2017浙江温州模拟)设S n为数列{a n}的前n项和,S n=(-1)n a n-,n∈N*,则S1+S2+S3+…+S100=.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)18.(14分)已知数列{a n}的前n项和S n=,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=+(-1)n a n,求数列{b n}的前2n项和.19.(15分)(2017浙江湖州菱湖中学)已知在递增的等差数列{a n}中,a1=2,a3是a1和a9的等比中项. (1)求数列{a n}的通项公式;(2)若b n=,S n为数列{b n}的前n项和,是否存在实数m,使得S n<m对于任意的n∈N*恒成立?若存在,请求出实数m的取值范围,若不存在,试说明理由.20.(15分)(2017山东高考)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.21.(15分)已知数列{a n}是单调递增数列,且a1>0,若=4S n-2a n+3,n∈N*,其中S n为{a n}的前n项和.(1)求数列{a n}的通项公式;(2)若使不等式--≥1+-,对n≥4,n∈N*恒成立,求正数p的取值范围.22.(15分)数列{a n}的前n项和为S n,a1=2,a2=7,a n=3a n-1+2a n-2,n∈N*,n≥3.(1)求证:a2 017一定是奇数;(2)①求证:4S n+3<a n(n≥2,n∈N);②求证:--(n≥2,n∈N).答案:1.C由a n+1=,得+1,是以为首项,以1为公差的等差数列,+4=,a5=故选C.2.B设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:--=381,解得x=3,即塔的顶层共有灯3盏,故选B.3.B如图,由条件可知,a1=1,a2=1+BC2+AC2=1+AB2=2,同理a3=1+1+1=3,故有a10=10.4.B因为S8=S4+S4+4×4d=2S4+16d,即-3S4=2S4+16d⇒S4=-,所以S12=S8+S4+4×8d=3S4+48d=,则=-=-,故选B.5.D由2na n=(n-1)a n-1+(n+1)a n+1得na n-(n-1)a n-1=(n+1)a n+1-na n,又因为1×a1=1,2×a2-1×a1=5,所以数列{na n}是首项为1,公差为5的等差数列,则20a20=1+19×5,解得a20=,故选D.6.B7.D设等差数列{a n}的公差为d,S n=na1+- d.b n==a1+-d.b n-b n-1=a1+-d-a1--d=(常数).故得b n的公差为,故A,B不对.数列{a n+b n}是等差数列,{a n+b n}的公差为d+d,故C不对.数列{a n-b n}是等差数列,{a n-b n}的公差为d-,故D对.故选D.8.C由S4≥10,S5≤15,可得-即a4≤3+d,由3+d得d≤1,a4≤3+d≤3+1=4,故a4的最大值为4,故选C.9.B当n=1时,2a2+S1=2,得a2=当n≥2时,有2a n+S n-1=2,已知2a n+1+S n=2,两式相减得a n+1=a n.再考虑到a2=a1,所以数列{a n}是等比数列,故有S n=2-2因此原不等式化为--,化简得,得n=4,5,6,7,8,9,所以n的最大值为9.故选B.10.C由S n+S n-1=3n2+2n+4(n≥2),可以得到S n+1+S n=3(n+1)2+2(n+1)+4,两式相减得a n+1+a n=6n+5,故a n+2+a n+1=6n+11,两式再相减得a n+2-a n=6,由n=2得a1+a2+a1=20,a2=20-2a,故偶数项为以20-2a为首项,以6为公差的等差数列,从而a2n=6n+14-2a;由n=3得a1+a2+a3+a1+a2=37,a3=2a-3,从而a2n+1=6n-9+2a,由条件得-----解得<a<,故选C.11.12n-1由题设条件可得⇒则a n=1+2(n-1)=2n-1,应填:1和2n-1.12.158∵a8>0,a8+a9<0,∴S15==15a8>0,而S16==8(a8+a9)<0,∴使S n>0的最大n为15.∵a8>0,a9<0,∴S8最大,且a8为{a n}的最小正数项,a9,a10,…均小于零,所以当9≤n<15时,均小于零,当n=8时,最大,即数列(1<n<15)的最大项是第8项.13.22由题意得,⇒----,∴q=2,-=1⇒b1=1,a1=,此时⇒d=2,故填:2,2.14.①②对于①,当n≥2时,a n=S n-S n-1=n2-n,∵a1=0,∴a n=n2-n,∴a i+i=i2(i=1,2,3,...)为完全平方数,∴数列{a n}具有“P性质”;对于②,数列1,2,3,4,5,具有“变换P性质”,数列{b n}为3,2,1,5,4,具有“P性质”,∴数列{a n}具有“变换P性质”;对于③,因为11,4都只有与5的和才能构成完全平方数,所以1,2,3, (11)不具有“变换P性质”.15由(n2+2n)(a n+1-a n)=1(n∈N*),得:a n+1-a n=-∴a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=----+…+-+1=--+1=故答案为:16.(-3,+∞)∵等比数列{a n}的前n项和满足S n=1-A·3n, ∴a1=S1=1-3A,a2=S2-S1=(1-9A)-(1-3A)=-6A,a3=S3-S2=(1-27A)-(1-9A)=-18A.∵等比数列{a n}中=a1a3,∴36A2=(1-3A)(-18A),解得A=1或A=0(舍),故A=1.∵数列{b n}是递增数列,且b n=An2+Bn=n2+Bn,∴b n+1-b n=(n+1)2+B(n+1)-(n2+Bn)=2n+1+B>0.∴B>-2n-1,∵n∈N*,∴B>-3.∴B的取值范围为(-3,+∞).故答案为:(-3,+∞).17-当n=1时,a1=-a1-,解得a1=-;当n≥2时,a n=S n-S n-1=(-1)n a n--(-1)n-1an-1+-,即a n=(-1)n a n+(-1)n a n-1+若n为偶数,则a n-1=-,故a n=-(n为奇数);若n为奇数,则a n-1=-2a n+=(-2)--,故a n=(n是偶数).因为a1=-⇒-a1=,a2=-,所以-a1+a2=2,同理可得-a3+a4=2,-a5+a6=2,…,-a99+a100=2,所以S1+S2+…+S100=2……=2-----,应填-18.解(1)当n=1时,a1=S1=1;当n≥2时,a n=S n-S n-1=--=n.故数列{a n}的通项公式为a n=n.(2)由(1)知,b n=2n+(-1)n n.记数列{b n}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).记A=21+22+…+22n,B=-1+2-3+4-…+2n,则A=--=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故数列{b n}的前2n项和T2n=A+B=22n+1+n-2.19.解(1)由{a n}为等差数列,设公差为d,则a n=a1+(n-1)d, ∵a3是a1和a9的等比中项,=a1·a9,即(2+2d)2=2(2+8d),解得d=0(舍)或d=2,∴a n=2+2(n-1)=2n.(2)存在m b n=-,∴数列{b n}的前n项和S n=--…-=-,∴存在实数m,使得S n<m对于任意的n∈N*恒成立.20.分析(1)依题意列x1和公比q的方程组.(2)利用梯形的面积公式,记梯形P n P n+1Q n+1Q n的面积为b n.求得b n=2n-1=(2n+1)×2n-2,应用错位相减法计算得到T n=-解(1)设数列{x n}的公比为q,由已知q>0.由题意得-所以3q2-5q-2=0,因为q>0,所以q=2,x1=1,因此数列{x n}的通项公式为x n=2n-1.(2)过P1,P2,P3,…,P n+1向x轴作垂线,垂足分别为Q1,Q2,Q3,…,Q n+1,由(1)得x n+1-x n=2n-2n-1=2n-1.记梯形P n P n+1Q n+1Q n的面积为b n.由题意b n=2n-1=(2n+1)×2n-2,所以T n=b1+b2+b3+…+b n=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2, ①又2T n=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1, ②①-②得-T n=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1=----(2n+1)×2n-1.所以T n=-21.解(1)当n≥2,n∈N*时,a n=S n-S n-1,由4S n=+2a n-3,n∈N*,可得4S n-1=-+2a n-1-3,n∈N*,两式相减得4a n=+2a n---2a n-1,n∈N*,-=2a n+2a n-1,n∈N*,化为(a n-a n-1)(a n+a n-1)=2(a n+a n-1),n∈N*,∵数列{a n}是单调递增数列,且a1>0,∴a n+a n-1≠0,∴a n-a n-1=2,=4S1-2a1+3,且a1>0,∴a1=3.∴数列{a n}是首项为3,公差为2的等差数列,a n=2n+1.(2)由(1)得不等式--1+-,可化为-,p>0,即-(n≥4).令f(n)=-,则f(n+1)-f(n)=---,∵f(4)<f(5),n≥5,n∈N*时,f(n+1)<f(n),∴f(x)max=f(5)=,,p∴正数p的取值范围是22.(1)证明∵a n=3a n-1+2a n-2,n∈N*,n≥3,∴a n与a n-1有相同的奇偶性.∵a2=7是奇数,∴a2 017一定是奇数.(2)①证明当n≥3时,∵a n=3a n-1+2a n-2,a n-1=3a n-2+2a n-3,…a3=3a2+2a1,相加得S n-a1-a2=3(S n-a n-a1)+2(S n-a n-1-a n),4S n+3=5a n+2a n-1,∵a1=2,a2=7,∴a n=3a n-1+2a n-2>0,∴a n>0,当n≥3时,a n=3a n-1+2a n-2>3a n-1,∴a n-1<a n.∵a1=2,a2=7,∴a n-1<a n(n≥2).∴4S n+3=5a n+2a n-1<5a n+2a n=a n,即4S n+3<a n.②证明当n≥3时,=-----------=-----,∵a n-1<a n(n≥2),--<1.-----<…<-,当n=2时,-,-(n≥2,n∈N).--。

2019届江苏专版高考数学一轮复习第六章数列6

2019届江苏专版高考数学一轮复习第六章数列6

方法技巧
方法 1 等比数列的基本运算
1.将条件用a1,q表示出来,在表示Sn时要注意判断q能否取1. 2.解方程(组)求出a1,q,消元时要注意两式相除和整体代入(消元). 3.利用a1,q来求结论.
例1 各项均为正数的等比数列{an}的前n项和为Sn,若Sn=2,S3n=14,则S4n
等于
.
解析 设等比数列{an}的公比为q.由题意得,q>0, ∵S3n=14≠3Sn=6,∴q≠1.
2n 1 2n1
所以Tn=5-
2n 2n
5
.
则{an}是等比数列.
2.等比中项法:若数列{an}中,an≠0且
a2 n1
=an·an+2(n∈N*),则数列{an}是等
比数列.
3.通项公式法:若数列的通项公式可写成an=c·qn(c,q均是不为0的常数,n ∈N*),则{an}是等比数列. 4.前n项和公式法:若数列{an}的前n项和Sn=k-k·qn(k为常数且k≠0,q≠0, 1),则{an}是等比数列.
高考数学
§6.3 等比数列
知识清单
1.等比数列的通项公式 如果等比数列{an}的公比为q,那么它的通项公式为① an=a1qn-1 . 2.等比数列的前n项和公式
② na1 (q 1),
设等比数列{an}的公比为q,其前n项和Sn=

a1(1 q 1 q
n
)
(q
1).
3.等比中项
如果a,G,b成等比数列,那么G叫做a与b的等比中项,且④ G=± ab
1 2
4
4
所以S1+
5 4
=
5 2
,
Sn1
5 4

2019年高考数学(文)一轮复习精品资料:专题31 数列求和(教学案)(原卷版)

1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法.1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n (a 1+a n ) 2 =na 1+n (n -1)2d . ②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n = (-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. (3)1n +n +1=n +1-n .高频考点一 分组转化法求和例1、已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.【感悟提升】某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.【变式探究】已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n 项和S n .高频考点二 错位相减法求和例2、(2019·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .【感悟提升】用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.【变式探究】已知数列{a n }满足首项为a 1=2,a n +1=2a n (n ∈N *).设b n =3log 2a n -2(n ∈N *),数列{c n }满足c n =a n b n .(1)求证:数列{b n }为等差数列; (2)求数列{c n }的前n 项和S n . 高频考点三 裂项相消法求和例3、设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 1+1+1a 2a 2+1+…+1a na n +1<13.【变式探究】已知函数f (x )=x a 的图象过点(4,2),令a n =1fn +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2019=________.【感悟提升】(1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k=1k (n +k -n ),1n n +k =1k (1n -1n +k )裂项后可以产生连续可以相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.【举一反三】在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n 2n +1,求{b n }的前n 项和T n .1.【2019高考新课标1文数】(本题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,.(I )求{}n a 的通项公式; (II )求{}n b 的前n 项和.2.【2019高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.3.【2019高考北京文数】(本小题13分)已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =.(1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和. 4.【2019高考山东文数】(本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+. (I )求数列{}n b 的通项公式;(II )令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 5.【2019高考浙江文数】(本题满分15分)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈.(I )求通项公式n a ;(II )求数列{2n a n --}的前n 项和.【2019高考福建,文17】等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【2019高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=.(I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【2019高考安徽,文18】已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .83241=⋅=⋅a a a a 1112--==n n n q a a .1111111n n n n n n n n n n a S S b S S S S S S +++++-===-【2019高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬∙⎩⎭的前n 项和为21nn +. (I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .【2019高考重庆,文16】已知等差数列{}n a 满足3a =2,前3项和3S =92. (Ⅰ)求{}n a 的通项公式,(Ⅱ)设等比数列{}n b 满足1b =1a ,4b =15a ,求{}n b 前n 项和n T .1.(2019·江西卷)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足 a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .2.(2019·全国卷)等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .3.(2019·山东卷)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .4.(2019·江西卷)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n)=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. 5.(2019·湖南卷)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则 (1)a 3=________;(2)S 1+S 2+…+S 100=________.6.(2019·山东卷)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n =λ(λ为常数),令c n =b 2n (n ∈N *),求数列{c n }的前n 项和R n .1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( ) A .n 2+1-12n B .2n 2-n +1-12n C .n 2+1-12n -1D .n 2-n +1-12n2.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .1103.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( ) A .-100 B .0 C .100D .102004.数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80D .825.已知函数f (n )=⎩⎪⎨⎪⎧n 2 当n 为奇数时,-n2当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .102006.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.7.整数数列{a n }满足a n +2=a n +1-a n (n ∈N *),若此数列的前800项的和是2019,前813项的和是2000,则其前2019项的和为________.8.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n ,令b n =1a n a n +1+a n +1a n ,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________.9.已知数列{a n}中,a1=3,a2=5,且{a n-1}是等比数列.(1)求数列{a n}的通项公式;(2)若b n=na n,求数列{b n}的前n项和T n.10.正项数列{a n}的前n项和S n满足:S2n-(n2+n-1)S n-(n2+n)=0.(1)求数列{a n}的通项公式a n;(2)令b n=n+1n+22a2n,数列{b n}的前n项和为T n,证明:对于任意的n∈N*,都有Tn<564.。

2019苏教版高考一轮优化探究理数练习:第六章 第四节 数列求和 Word版含解析

一、填空题1.若数列{a n }的前n 项和S n =(-1)n (2n 2+4n +1)-1(n ∈N *),且a n b n =(-1)n ,数列{b n }的前n 项和为T n ,则T 10等于________.解析:由S n =(-1)n (2n 2+4n +1)-1可求得a n =(-1)n ·4n (n +1),所以b n =14n (n +1),于是T 10=14(1-12+12-13+…+110-111)=522. 答案:5222.数列{a n }满足a n +a n +1=12(n ∈N *),a 1=-12,S n 是{a n }的前n 项和,则S 2 014=________. 解析:由题意得数列{a n }的各项为-12,1,-12,1,…,以2为周期的周期数列,所以S 2 014=12×1 007=1 0072. 答案:1 00723.在数列{a n }中,若对任意的n 均有a n +a n +1+a n +2为定值(n ∈N *),且a 7=2,a 9=3,a 98=4,则此数列{a n }的前100项的和S 100=________. 解析:由题设得a n +a n +1+a n +2=a n +1+a n +2+a n +3, ∴a n =a n +3,∴a 3k +1=2(k ∈N),a 3k +2=4(k ∈N),a 3k =3(k ∈N *), ∴S 100=34×2+33×4+33×3=299. 答案:2994.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列{1b n b n +1}的前n 项和S n =________.解析:设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n ,故b n =log 3a n =n ,所以1b n b n +1=1n (n +1)=1n -1n +1.则数列{1b n b n +1}的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案:nn +15.若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+a nn +1=________.解析:令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2+3(n -1)]=2n +2,所以a n =4(n +1)2,当n =1时,也适合,所以a n =4(n +1)2(n ∈N *).于是a n n +1=4(n +1),故a 12+a 23+…+a n n +1=2n 2+6n .答案:2n 2+6n6.设a 1,a 2,…,a 50是从-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有________个.解析:(a 1+1)2+(a 2+1)2+…+(a 50+1)2=a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107, ∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11个. 答案:117.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是________. 解析:f ′(x )=mx m -1+a =2x +1,∴a =1,m =2, ∴f (x )=x (x +1), 1f (n )=1n (n +1)=1n -1n +1, 用裂项法求和得S n =nn +1.答案:n n +18.设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.解析:由x 2-x <2nx (n ∈N *)得0<x <2n +1,因此a n =2n ,所以数列{a n }是一个等差数列, 所以S 100=100×(2+200)2=10 100.答案:10 1009.已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________. 解析:f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2 (n 为奇数)n 2 (n 为偶数)=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2 =(-1)n [n 2-(n +1)2] =(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100. 答案:-100 二、解答题10.已知函数f (x )=2n -3n -1,点(n ,a n )在f (x )的图象上,a n 的前n 项和为S n . (1)求使a n <0的n 的最大值; (2)求S n .解析:(1)依题意a n =2n -3n -1, ∴a n <0即2n -3n -1<0.当n =3时,23-9-1=-2<0, 当n =4时,24-12-1=3>0, ∴2n -3n -1<0中n 的最大值为3. (2)S n =a 1+a 2+…+a n=(2+22+…+2n )-3(1+2+3+…+n )-n =2(1-2n )1-2-3·n (n +1)2-n=2n +1-n (3n +5)2-2.11.已知函数f (x )=ax 2+bx (a ≠0)的导函数f ′(x )=-2x +7,数列{a n }的前n 项和为S n ,点P n (n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式及S n 的最大值;(2)令b n =2a n ,其中n ∈N *,求数列{nb n }的前n 项和. 解析:(1)∵f (x )=ax 2+bx (a ≠0),∴f ′(x )=2ax +b , 又∵f ′(x )=-2x +7,得a =-1,b =7, ∴f (x )=-x 2+7x .又∵点P n (n ,S n )(n ∈N *)均在函数y =f (x )的图象上,∴有S n =-n 2+7n , 当n =1时,a 1=S 1=6,当n ≥2时,a n =S n -S n -1=-2n +8, ∴a n =-2n +8(n ∈N *).令a n =-2n +8≥0,得n ≤4,∴当n =3或n =4时, S n 取得最大值12. (2)由题意得b 1=26=8,b n =2-2n +8=2-n +4.∴b n +1b n =12,即数列{b n }是首项为8,公比为12的等比数列,故数列{nb n }的前n 项和T n =1×23+2×22+…+n ×2-n +4,① 12T n =1×22+2×2+…+(n -1)×2-n +4+n ×2-n +3,② 由①-②得:12T n =23+22+…+2-n +4-n ×2-n +3,∴T n =16×[1-(12)n ]1-12-n ·24-n =32-(2+n )24-n.12.已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列{1a 2n -1a 2n +1}的前n 项和.解析:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d . 由已知可得⎩⎪⎨⎪⎧ 3a 1+3d =0,5a 1+10d =-5.解得⎩⎪⎨⎪⎧a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12(12n -3-12n -1),从而数列{1a 2n -1a 2n +1}的前n 项和为12(1-1-11+11-13+…+12n -3-12n -1)=n 1-2n .。

2019年高考数学(理)一轮复习第六章 数列习题及答案

第六章⎪⎪⎪列第一节列的概念与简单表示突破点(一) 列的通项公式1.列的定义按照一定顺序排列的一列称为列.列中的每一个叫做这个列的项,列中的每一项都和它的序号有关,排在第一位的称为这个列的第一项(通常也叫做首项).2.列的通项公式如果列{a n }的第n 项与序号n 之间的关系可以用一个式子表示,那么这个公式叫做这个列的通项公式.3.列的递推公式如果已知列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做列{a n }的递推公式.4.S n 与a n 的关系已知列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意列均成立.本节主要包括2个知识点: 1.列的通项公式;2.列的单调性.[例1] 写出下面各列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…;(3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….[解] (1)各项减去1后为正偶,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成列21,22,23,24,…,所以a n =2n -12n .(3)奇项为负,偶项为正,故通项公式中含因式(-1)n ;各项绝对值的分母组成列1,2,3,4,…;而各项绝对值的分子组成的列中,奇项为1,偶项为3,即奇项为2-1,偶项为2+1,所以a n =(-1)n ·2+-nn.也可写为a n=⎩⎪⎨⎪⎧-1n,n 为正奇,3n ,n 为正偶.(4)将列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n=13(10n-1).[方法技巧]由列的前几项求通项公式的思路方法给出列的前几项求通项时,需要注意观察列中各项与其序号之间的关系,在所给列的前几项中,先看看哪些部分是变的,哪些是不变的,再探索各项中变部分与序号间的关系,主要从以下几个方面考虑:(1)分式形式的列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系.(2)若第n项和第n+1项正负交错,那么符号用(-1)n或(-1)n +1或(-1)n-1调控.(3)熟悉一些常见列的通项公式.(4)对于较复杂列的通项公式,其项与序号之间的关系不容易发现,这就需要将列各项的结构形式加以变形,可使用添项、通分、分割等方法,将列的各项分解成若干个常见列对应项的“和”“差”“积”“商”后再进行归纳.利用a n与S n的关系求通项[例2] n n n(1)S n=2n2-3n;(2)S n=3n+b.[解] (1)a1=S1=2-3=-1,当n≥2时,a n=S n-S n-1=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5,由于a 1也适合此等式,所以{a n }的通项公式为a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2×3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. 所以当b =-1时,a n =2×3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2×3n -1,n ≥2.[方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段写.利用递推关系求通项[例3] (1)已知列{a n }满足a 1=2,a n +1=a n +1n 2+n ,则a n =________;(2)若列{a n }满足a 1=23,a n +1=nn +1a n ,则通项a n =________;(3)若列{a n }满足a 1=1,a n +1=2a n +3,则a n =________; (4)若列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________.[解析] (1)由条件知a n +1-a n =1n 2+n =1nn +=1n -1n +1, 则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+1n -1-1n ,即a n -a 1=1-1n ,又∵a 1=12,∴a n =1-1n +12=32-1n.(2)由a n +1=nn +1a n (a n ≠0),得a n +1a n =nn +1,故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =n -1n ·n -2n -1·…·12·23=23n. (3)设递推公式a n +1=2a n +3可以转为a n +1-t =2(a n -t ),即a n+1=2a n -t ,则t =-3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,b n ≠0,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比列. 所以b n =4×2n -1=2n +1, 即a n =2n +1-3.(4)∵a n +1=2a na n +2,a 1=1,∴a n ≠0, ∴1a n +1=1a n +12, 即1a n +1-1a n =12, 又a 1=1,则1a 1=1, ∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差列. ∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1. [答案] (1)32-1n (2)23n (3)2n +1-3 (4)2n +1[方法技巧]由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n .(2)已知a 1且a na n -1=f (n ),可用“累乘法”求a n .(3)已知a 1且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系法确定),可转为等比列{a n +k }.(4)形如a n +1=Aa nBa n +C(A ,B ,C 为常)的列,可通过两边同时取倒的方法构造新列求解.(5)形如a n +1+a n =f (n )的列,可将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后按奇偶分类讨论即可.能力练通 抓应用体验的“得”与“失”1.[考点一]已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇,1,n 为偶,②a n =1+-n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪⎪⎪sin n π2.其中能作为列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解析:选A 检验知①②③都是所给列的通项公式.2.[考点一]列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N *)B .a n =(-1)n -12n +1n 3+3n(n ∈N *)C .a n =(-1)n +12n -1n 2+2n(n ∈N *)D .a n =(-1)n -12n +1n 2+2n(n ∈N *)解析:选D 所给列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二]已知列{a n }的前n 项和为S n =n 2-2n +2,则列{a n }的通项公式为( )A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.4.[考点三]设列{a n }满足a 1=1,且a n +1-a n =n +1,求列{a n }的通项公式.解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =n -+n2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *).5.[考点三]若列{a n }满足:a 1=1,a n +1=a n +2n ,求列{a n }的通项公式.解:由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=1-2n1-2=2n -1.又因为当n =1时满足此式,所以a n =2n -1.突破点(二) 列的单调性列的分类[例1] 已知列{a n }的前n 项和为S n ,常λ>0,且λa 1a n =S 1+S n 对一切正整n 都成立.(1)求列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?[解] (1)取n =1,得λa 21=2S 1=2a 1, 即a 1(λa 1-2)=0.若a 1=0,则S n =0,当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0.若a 1≠0,则a 1=2λ,当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而列{a n }是等比列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ.综上,当a 1=0时,a n =0; 当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n,由(1)知b n =lg 1002n =2-n lg 2.所以列{b n }是单调递减的等差列(公差为-lg 2). 则b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg 1=0,故当n =6时,列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项的和最大.[方法技巧]1.判断列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔列{a n }是单调递增列;a n +1-a n <0⇔列{a n }是单调递减列;a n +1-a n =0⇔列{a n }是常列.(2)作商比较法①当a n >0时,a n +1a n >1⇔列{a n }是单调递增列;a n +1a n<1⇔列{a n }是单调递减列;a n +1a n=1⇔列{a n }是常列.②当a n <0时,a n +1a n >1⇔列{a n }是单调递减列;a n +1a n<1⇔列{a n }是单调递增列;a n +1a n=1⇔列{a n }是常列.2.求列最大项或最小项的方法(1)可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到列的最小项.利用列的单调性求参的取值范围[例2] 已知函f (x )=⎩⎪⎨⎪⎧-a x +2,x ≤2,a 2x 2-9x +11,x >2(a >0,且a ≠1),若列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增列,则实a 的取值范围是( )A .(0,1) B.⎣⎢⎡⎭⎪⎫83,3 C .(2,3)D .(1,3)[解析]因为{a n }是递增列,所以⎩⎪⎨⎪⎧3-a >0,a >1,-a+2≤a ,解得83≤a <3,所以实a 的取值范围是⎣⎢⎡⎭⎪⎫83,3.[答案] B[方法技巧]已知列的单调性求参取值范围的两种方法(1)利用列的单调性构建不等式,然后将其转为不等式的恒成立问题进行解决,也可通过分离参将其转为最值问题处.(2)利用列与函之间的特殊关系,将列的单调性转为相应函的单调性,利用函的性质求解参的取值范围,但要注意列通项中n 的取值范围.能力练通 抓应用体验的“得”与“失” 1.[考点一]设a n =-3n 2+15n -18,则列{a n }中的最大项的值是( )A.163 B.133 C .4D .0解析:选D a n =-3⎝⎛⎭⎪⎫n -522+34,由二次函性质,得当n =2或n=3时,a n 取最大值,最大值为a 2=a 3=0.故选D.2.[考点一]若列{a n }满足:a 1=19,a n +1=a n -3,则列{a n }的前n 项和值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴列{a n }是以19为首项,-3为公差的等差列,∴a n =19+(n -1)×(-3)=22-3n ,则a n 是递减列.设{a n }的前k项和值最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-k +,∴193≤k ≤223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.3.[考点二]已知{a n }是递增列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实λ的取值范围是________.解析:∵对于任意的n ∈N *,a n =n 2+λn 恒成立, ∴a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ. 又∵{a n }是递增列,∴a n +1-a n >0,且当n =1时,a n +1-a n 最小, ∴a n +1-a n ≥a 2-a 1=3+λ>0,∴λ>-3. 答案:(-3,+∞)4.[考点一、二]已知列{a n }中,a n =1+1a +n -(n ∈N *,a∈R ,且a ≠0).(1)若a =-7,求列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +n -(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +n -=1+12n -2-a 2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函f (x )=1+12x -2-a 2的单调性,知5<2-a2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设S n 是列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1. ∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差列. ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.答案:-1n2.(2014·新课标全国卷Ⅱ)列 {a n }满足 a n +1=11-a n, a 8=2,则a 1 =________.解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n ,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出列{a n }是一个周期列,且周期为3,所以a 1=a 7=12. 答案:123.(2013·新课标全国卷Ⅰ)若列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝ ⎛⎭⎪⎫23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以列{a n }为以1为首项,以-2为公比的等比列,所以a n =(-2)n -1.答案:(-2)n -14.(2016·全国丙卷)已知各项都为正的列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因此{a n}的各项都为正,所以a n+1a n=12.故{a n}是首项为1,公比为12的等比列,因此a n=12n-1.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强运算能力]1.列1,23,35,47,59,…的一个通项公式a n=( )A.n2n+1B.n2n-1C.n2n-3D.n2n+3解析:选 B 由已知得,列可写成11,23,35,…,故该列的一个通项公式为n2n-1.2.设列{a n}的前n项和S n=n2+n,则a4的值为( )A.4 B.6 C.8 D.10解析:选C a4=S4-S3=20-12=8.3.已知列{a n}满足a1=1,a n+1a n=2n(n∈N*),则a10=( ) A.64 B.32 C.16 D.8解析:选B ∵a n+1a n=2n,∴a n+2a n+1=2n+1,两式相除得a n+2a n=2.又a1a2=2,a1=1,∴a2=2.则a10a8·a8a6·a6a4·a4a2=24,即a10=25=32.4.在列{a n}中,a1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N*),则a3 a5的值是( )A.1516B.158C.34D.38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34. 5.现定义a n =5n+⎝ ⎛⎭⎪⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为________.解析:令5n=t >0,考虑函y =t +1t,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函t =5x,当0<x ≤1时,t ∈(1,5],则可知a n =5n+⎝ ⎛⎭⎪⎫15n在(0,1]上单调递增,所以当n =110时,a n 取得最小值.答案:110[练常考题点——检验高考能力]一、选择题1.已知列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .33解析:选C 当n ≥2时,a n =S n -S n -1=2n -3;当n =1时,a 1=S 1=-1,所以a n =2n -3(n ∈N *),所以a 2+a 18=34.2.列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A.6116B.259C.2516D.3115解析:选A 令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116. 3.在各项均为正的列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正的列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8=512.4.已知列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整k =( )A .21B .22C .23D .24解析:选C 由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差列,又a 1=15,∴a n =473-23n .∵a k ·a k +1<0,∴⎝ ⎛⎭⎪⎫473-23k ·⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23,故选C. 5.在列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位,则a 2 015=( )A .8B .6C .4D .2解析:选D 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.6.如果列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个列的第10项等于( )A.1210 B.129 C.15D.110解析:选C ∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a na n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15. 二、填空题7.已知列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是________.解析:∵a n =2a n -1+1,∴a n +1=2(a n -1+1),∴a n +1a n -1+1=2,又a 1=1,∴{a n +1}是以2为首项,2为公比的等比列,即a n +1=2×2n-1=2n ,∴a 5+1=25,即a 5=31. 答案:318.在列-1,0,19,18,…,n -2n2,…中,0.08是它的第________项.解析:令n -2n2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).即0.08是该列的第10项.答案:109.已知列{a n }满足:a 1=1,a n +1(a n +2)=a n (n ∈N *),若b n +1=(n-p )⎝ ⎛⎭⎪⎫1a n +1,b 1=-p ,且列{b n }是单调递增列,则实p 的取值范围为________.解析:由题中条件,可得1a n +1=2a n+1,则1a n +1+1=21a n +1,易知1a 1+1=2≠0,则⎩⎨⎧⎭⎬⎫1a n +1是等比列,所以1a n +1=2n ,可得b n +1=2n (n -p ),则b n =2n -1(n -1-p )(n ∈N *),由列{b n }是单调递增列,得2n (n-p )>2n -1(n -1-p ),则p <n +1恒成立,又n +1的最小值为2,则p 的取值范围是(-∞,2).答案:(-∞,2)10.设{a n }是首项为1的正项列,且(n +1)a 2n +1-na 2n +a n +1·a n=0(n =1,2,3,…),则它的通项公式a n =________.解析:∵(n +1)a 2n +1+a n +1·a n -na 2n =0,∴(a n +1+a n )[(n +1)a n +1-na n ]=0,又a n +1+a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n,∵a 1=1,∴a n =1n.答案:1n三、解答题11.已知S n 为正项列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1;S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②,整得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故列{a n }是首项为1,公差为1的等差列,故a n =n . 12.已知列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则列中有多少项是负?n 为何值时,a n 有最小值?并求出最小值;(2)对于n ∈N *,都有a n +1>a n ,求实k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3, 所以列中有两项是负,即为a 2,a 3.因为a n =n 2-5n +4=⎝⎛⎭⎪⎫n -522-94,由二次函性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由对于n ∈N *,都有a n +1>a n 知该列是一个递增列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实k 的取值范围为(-3,+∞). 第二节等差列及其前n 项和突破点(一) 等差列的性质及基本量的计算1.等差列的有关概念(1)定义:如果一个列从第2项起,每一项与它的前一项的差都等于同一个常,那么这个列就叫做等差列.符号表示为a n +1-a n =d (n ∈N *,d 为常).(2)等差中项:列a ,A ,b 成等差列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差列的有关公式(1)通项公式:a n =a 1+(n -1)d .本节主要包括3个知识点:1.等差列的性质及基本量的计算;2.等差列前n 项和及性质的应用;3.等差列的判定与证明.(2)前n项和公式:S n=na1+n n-2d=n a1+a n2.3.等差列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n.(3)若{a n}是等差列,公差为d,则{a2n}也是等差列,公差为2d.(4)若{a n}是等差列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差列.(5)若列{a n},{b n}是公差分别为d1,d2的等差列,则列{pa n},{a n+p},{pa n+qb n}都是等差列(p,q都是常),且公差分别为pd1,d1,pd1+qd2.[例1] (1)(2016·东北师大附中摸底考试)在等差列{a n}中,a1+a5=10,a4=7,则列{a n}的公差为( )A.1 B.2C.3 D.4(2)(2016·惠州调研)已知等差列{a n}的前n项和为S n,若S3=6,a1=4,则公差d等于( )A.1 B.5 3C.-2 D.3[解析] (1)∵a1+a5=2a3=10,∴a3=5,则公差d=a4-a3=2,故选B.(2)由S 3=a1+a32=6,且a1=4,得a3=0,则d=a3-a13-1=-2,故选C.[答案] (1)B (2)C[方法技巧]1.等差列运算问题的通性通法(1)等差列运算问题的一般求法是设出首项a1和公差d,然后由通项公式或前n项和公式转为方程(组)求解.(2)等差列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了方程的思想.2.等差列设项技巧若奇个成等差列且和为定值时,可设中间三项为a-d,a,a+d;若偶个成等差列且和为定值时,可设中间两项为a-d,a+d,其余各项再依据等差列的定义进行对称设元.等差列的性质[例2] (1)n396n表示列{a n}的前n项和,则S11=( )A.18 B.99C.198 D.297(2)已知{a n},{b n}都是等差列,若a1+b10=9,a3+b8=15,则a5+b6=________.[解析] (1)因为a3+a9=27-a6,2a6=a3+a9,所以3a6=27,所以a6=9,所以S11=112(a1+a11)=11a6=99.(2)因为{a n},{b n}都是等差列,所以2a3=a1+a5,2b8=b10+b6,所以2(a3+b8)=(a1+b10)+(a5+b6),即2×15=9+(a5+b6),解得a5+b6=21.[答案] (1)B (2)211.[考点一]《九章算术》是我国古代的学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱 B.53钱C.32钱 D.43钱解析:选 D 设等差列{a n}的首项为a1,公差为d,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( )A .5B .6C .7D .8解析:选 D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.3.[考点二]已知列{a n }为等差列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( )A.32 B .-32 C.12 D .-12解析:选D 在等差列{a n }中,因为a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.解析:设等差列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求列{a n }的项及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n a 1+a n2=324,∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a 18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差列前n 项和及性质的应用等差列前n 项和的性质(1)列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1). (3)当项为偶2n 时,S 偶-S 奇=nd ;项为奇2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1).(4){a n },{b n }均为等差列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差列,则⎩⎨⎧⎭⎬⎫S n n 也是等差列,其首项与{a n }的首项相同,公差是{a n }的公差的12.[例1] 已知{a n }为等差列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.[解析] 法一:设列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d+a 8+12d +a 9+12d =10+36d =20.法二:由等差列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差列,设此列公差为D .所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20[例2] n 1S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?[解] 设等差列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n n -2d=na 1+n n -2·⎝ ⎛⎭⎪⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎪⎫n -1722+28964a 1,因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 法二:设此列的前n项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+n -⎝ ⎛⎭⎪⎫-18a 1≥0,a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n n -2d =d2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,设f (x )=d2x 2+⎝⎛⎭⎪⎫a 1-d 2x ,则函y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差列前n 项和S n 最值的三种方法(1)函法:利用等差列前n 项和的函表达式S n =an 2+bn ,通过配方结合图象借助求二次函最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶,则当n =p +q2时,S n 最大;②若p +q 为奇,则当n =p +q -12或n =p +q +12时,S n 最大.能力练通 抓应用体验的“得”与“失”1.[考点二]在等差列{a n }中,a 1=29,S 10=S 20,则列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n n -12×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7 解析:选D 由(n +1)S n <nS n +1得(n +1)n a 1+a n2<nn +a 1+a n +12,整得a n <a n +1,所以等差列{a n }是递增列,又a 8a 7<-1,所以a 8>0,a 7<0,所以列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.解析:∵S 10,S 20-S 10,S 30-S 20成等差列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整的正整n 的个是________.解析:由等差列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n为整,故使得a nb n为整的正整n 的个是5.答案:55.[考点一]一个等差列的前12项的和为354,前12项中偶项的和与奇项的和的比为32∶27,则该列的公差d =________.解析:设等差列的前12项中奇项的和为S 奇,偶项的和为S 偶,等差列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差列的判定与证明等差列的判定与证明方法[典例] 已知列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差列,并说明你的由.[解] 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差列.所以1S n =2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -1n -=-12n n -, 所以a n +1=-12n n +,而a n +1-a n =-12n n +--12n n -=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1nn -n +.所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常,故列{a n }不是等差列.1.若{a n }是公差为1的等差列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差列 B .公差为4的等差列 C .公差为6的等差列 D .公差为9的等差列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差列.2.已知列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:列{b n }是等差列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差列.3.已知公差大于零的等差列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求列{a n }的通项公式; (2)若列{}b n 满足b n =S nn +c,是否存在非零实c 使得{b n }为等差列?若存在,求出c 的值;若不存在,请说明由.解:(1)∵列{}a n 为等差列,∴a 3+a 4=a 2+a 5=22.又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n n -2×d =2n 2-n ,∴b n =S nn +c =2n 2-nn +c,∴b 1=11+c ,b 2=62+c ,b 3=153+c ,其中c ≠0.∵列{}b n 是等差列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实c =-12,使列{b n }为等差列.[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)已知等差列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97解析:选 C ∵{a n }是等差列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.2.(2015·新课标全国卷Ⅰ)已知{a n }是公差为1的等差列,S n为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12 解析:选B ∵列{a n }的公差为1,∴S 8=8a 1+-2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192. 3.(2013·新课标全国卷Ⅰ)设等差列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+m -d =2,S m=a 1m +12m m -d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m m -=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C.4.(2013·新课标全国卷Ⅱ)等差列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎪⎨⎪⎧S 10=10a 1+10×92d =0,S 15=15a 1+15×142d =25,解得a 1=-3,d=23,则nS n =n 2a 1+n 2n -2d =n 33-10n 23.由于函f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2016·全国甲卷)S n 为等差列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求列{b n }的前1 000项和.解:(1)设列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以列{b n }的前1 000项和为1×90+2×900+3×1=1 893. 6.(2014·新课标全国卷Ⅰ)已知列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差列?并说明由.解:(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差列,a2n=4n-1.所以a n=2n-1,则a n+1-a n=2.因此存在λ=4,使得列{a n}为等差列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强运算能力]1.若等差列{a n}的前5项之和S5=25,且a2=3,则a7=( ) A.12 B.13C.14 D.15解析:选B 由S 5=a2+a42,得25=+a42,解得a4=7,所以7=3+2d,即d=2,所以a7=a4+3d=7+3×2=13.2.在等差列{a n}中,a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为( )A.37 B.36C.20 D.19解析:选A a m=a1+a2+…+a9=9a1+9×82d=36d=a37,即m=37.3.在单调递增的等差列{a n}中,若a3=1,a2a4=34,则a1=( )A.-1 B.0C.14D.12解析:选B 由题知,a2+a4=2a3=2,又∵a2a4=34,列{a n}单调递增,∴a2=12,a4=32.∴公差d=a4-a22=12.∴a1=a2-d=0.4.设等差列{a n}的前n项和为S n,若a1=-11,a3+a7=-6,则当S n取最小值时,n等于( )A.9 B.8C.7 D.6解析:选D 设等差列{a n}的公差为d.因为a3+a7=-6,所以a5=-3,d=2,则S n=n2-12n,故当n等于6时S n取得最小值.5.已知等差列{a n}中,a n≠0,若n≥2且a n-1+a n+1-a2n=0,S2n -1=38,则n等于________.解析:∵{a n}是等差列,∴2a n=a n-1+a n+1,又∵a n-1+a n+1-a2n=0,∴2a n-a2n=0,即a n(2-a n)=0.∵a n≠0,∴a n=2.∴S2n-1=(2n-1)a n=2(2n-1)=38,解得n=10.答案:10[练常考题点——检验高考能力]一、选择题1.(2017·黄冈质检)在等差列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8=( )A.95 B.100C.135 D.80解析:选 B 由等差列的性质可知,a1+a2,a3+a4,a5+a6,a7+a8构成新的等差列,于是a7+a8=(a1+a2)+(4-1)[(a3+a4)-(a1+a2)]=40+3×20=100.2.(2017·东北三校联考)已知列{a n}的首项为3,{b n}为等差列,且b n=a n+1-a n(n∈N*),若b3=-2,b2=12,则a8=( ) A.0 B.-109C.-181 D.121解析:选B 设等差列{b n}的公差为d,则d=b3-b2=-14,因为a n+1-a n=b n,所以a8-a1=b1+b2+…+b7=b1+b72=72[(b2-d)+(b2+5d)]=-112,又a1=3,则a8=-109.3.在等差列{a n}中,a3+a5+a11+a17=4,且其前n项和为S n,则S17为( )A.20 B.17C.42 D.84解析:选B 由a3+a5+a11+a17=4,得2(a4+a14)=4,即a4+a14=2,则a 1+a17=2,故S17=a1+a172=17.4.设等差列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然n的值为( )A.6 B.7C.12 D.13解析:选C ∵a1>0,a6a7<0,∴a6>0,a7<0,等差列的公差小于零.又∵a3+a10=a1+a12>0,a1+a13=2a7<0,∴S12>0,S13<0,∴满足S n>0的最大自然n的值为12.5.设列{a n}的前n项和为S n,若S nS2n为常,则称列{a n}为“吉祥列”.已知等差列{b n}的首项为1,公差不为0,若列{b n}为“吉祥列”,则列{b n}的通项公式为( )A.b n=n-1 B.b n=2n-1C.b n=n+1 D.b n=2n+1解析:选 B 设等差列{b n}的公差为d(d≠0),S nS2n=k,因为b1=1,则n+12n(n-1)d=k⎣⎢⎡⎦⎥⎤2n+12×2n n-d,即2+(n-1)d=4k+2k(2n-1)d,整得(4k-1)dn+(2k-1)(2-d)=0.因为对任意的正整n上式均成立,所以(4k-1)d=0,(2k-1)(2-d)=0,解得d=2,k=14.所以列{b n}的通项公式为b n=2n-1.6.设等差列{a n}满足a1=1,a n>0(n∈N*),其前n项和为S n,若列{S n}也为等差列,则S n+10a2n的最大值是( )A.310 B.212C.180 D.121解析:选D 设列{a n}的公差为d,依题意得2S2=S1+S3,因为a1=1,所以22a1+d=a1+3a1+3d,简可得d=2a1=2,所以a n=1+(n-1)×2=2n-1,S n=n+n n-2×2=n2,所以S n+10a2n=n +2 n-2=⎝⎛⎭⎪⎫n+102n-12=⎣⎢⎡⎦⎥⎤12n-+2122n-12=14⎝⎛⎭⎪⎫1+212n-12≤121.即S n+10a2n的最大值为121.二、填空题7.已知等差列{a n}的前n项和为S n,且满足S33-S22=1,则列{a n}的公差d是________.解析:由S33-S22=1得a1+a2+a33-a1+a22=a1+d-2a1+d2=d2=1,所以d=2.答案:28.若等差列{a n}的前17项和S17=51,则a5-a7+a9-a11+a13等于________.解析:因为S17=a1+a172×17=17a9=51,所以a9=3.根据等差列的性质知a5+a13=a7+a11,所以a5-a7+a9-a11+a13=a9=3.答案:39.在等差列{a n}中,a9=12a12+6,则列{a n}的前11项和S11等于________.解析:S 11=a1+a112=11a6,设公差为d,由a9=12a12+6得a6+3d=12(a6+6d)+6,解得a6=12,所以S11=11×12=132.答案:13210.在等差列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8 时S n取得最大值,则d的取值范围为________.解析:由题意,当且仅当n=8时S n有最大值,可得。

2019届江苏专用高考数学一轮复习第六章数列6


解析 本题考查等差数列及等比数列的通项公式,数列求和.考查运算求解能力. (1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10. 解得d=2. 所以an=2n-1. (2)设等比数列{bn}的公比为q. 因为b2b4=a5,所以b1qb1q3=9. 解得q2=3. 所以b2n-1=b1q2n-2=3n-1.
从而b1+b3+b5+…+b2n-1=1+3+32+…+3n-1= 3n 1 .
2
方法总结 求解有关等差数列和等比数列问题的关键是对其基本量(首项,公差,公比)进行求解. 对于数列求和问题,常用的方法有公式法、裂项相消法、错位相减法、倒序相加法和分组转化 法等.
5.(2014课标Ⅱ,17,12分)已知数列{an}满足a1=1,an+1=3an+1.
1
1 000
成立的n的最小值为10.
评析 本题考查等差数列与等比数列的概念、等比数列通项公式与前n项和等基础知识,考查 运算求解能力.
6.(2013江西理,17,12分)正项数列{an}的前n项和Sn满足: Sn2 -(n2+n-1)Sn-(n2+n)=0. (1)求数列{an}的通项公式an;
(2)令bn=
(2)若λ=
1 k0
(k0∈N+,k0≥2),μ=-1,证明:2+
1<
3k0 1
ak0 1<2+
1.
2k0 1
解析 (1)由λ=0,μ=-2,有an+1an=2 an2(n∈N+).若存在某个n0∈N+,使得 an0 =0,则由上述递推公式易得 an0 1 =0.重复上述过程可得a1=0,此与a1=3矛盾,所以对任意n∈N+,an≠0. 从而an+1=2an(n∈N+),即{an}是一个公比q=2的等比数列. 故an=a1qn-1=3·2n-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时达标检测(三十一) 数列求和与数列的综合问题一、全员必做题1.(2017·山东高考)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连结点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知得q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0.因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1. 由(1)得x n +1-x n =2n-2n -1=2n -1,记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n = n +n +1 2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.①又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.②①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2 1-2n -1 1-2-(2n +1)×2n -1. 所以T n = 2n -1 ×2n+12.2.(2018·泰州调研)对于数列{x n },若对任意n ∈N *,都有x n +x n +22<x n +1成立,则称数列{x n }为“减差数列”.设数列{a n }是各项都为正数的等比数列,其前n 项和为S n ,且a 1=1,S 3=74.(1)求数列{a n }的通项公式,并判断数列{S n }是否为“减差数列”;(2)设b n =(2-na n )t +a n ,若数列b 3,b 4,b 5,…是“减差数列”,求实数t 的取值范围.解:(1)设数列{a n }的公比为q , 因为a 1=1,S 3=74,所以1+q +q 2=74,即4q 2+4q -3=0, 所以(2q -1)(2q +3)=0. 因为q >0,所以q =12,所以a n =12n -1,S n =1-12n1-12=2-12n -1,所以S n +S n +22=2-12n -12n +2<2-12n =S n +1,所以数列{S n }是“减差数列”.(2)由题设知,b n =⎝ ⎛⎭⎪⎫2-n 2n -1t +12n -1=2t -tn -12n -1.由b n +b n +22<b n +1(n ≥3,n ∈N *), 得t -tn -12n+t -t n +2 -12n +2<2t -t n +1 -12n,即tn -12n+t n +2 -12n +2>t n +1 -12n,化简得t (n -2)>1.又当n ≥3时,t (n -2)>1恒成立, 即t >1n -2恒成立, 所以t >⎝⎛⎭⎪⎫1n -2max=1.故实数t 的取值范围是(1,+∞).3.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式; (2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n .解:(1)设二次函数f (x )=ax 2+bx (a ≠0), 则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2, 所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上, 所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5. 当n =1时,a 1=S 1=3×12-2×1=1=6×1-5, 所以a n =6n -5(n ∈N *). (2)由(1)得b n =3a n a n +1=36n -5 [6 n +1 -5] =12⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =121-17+⎝ ⎛⎭⎪⎫17-113+…+16n -5-16n +1=12⎝ ⎛⎭⎪⎫1-16n +1=3n6n +1. 二、重点选做题1.(2017·北京高考)设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n -1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c nn>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.解:(1)c 1=b 1-a 1=1-1=0,c 2=max{b 1-2a 1,b 2-2a 2}=max{1-2×1,3-2×2}=-1,c 3=max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3×1,3-3×2,5-3×3}=-2.当n ≥3时,(b k +1-na k +1)-(b k -na k )=(b k +1-b k )-n (a k +1-a k )=2-n <0, 所以b k -na k 关于k ∈N *单调递减.所以c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }=b 1-a 1n =1-n . 所以对任意n ≥1,c n =1-n ,于是c n +1-c n =-1, 所以{c n }是等差数列.(2)证明:设数列{a n }和{b n }的公差分别为d 1,d 2,则b k -na k =b 1+(k -1)d 2-[a 1+(k -1)d 1]n=b 1-a 1n +(d 2-nd 1)(k -1).所以c n =⎩⎪⎨⎪⎧b 1-a 1n + n -1 d 2-nd 1 ,d 2>nd 1,b 1-a 1n ,d 2≤nd 1.①当d 1>0时,取正整数m >d 2d 1,则当n ≥m 时,nd 1>d 2, 因此c n =b 1-a 1n .此时,c m ,c m +1,c m +2,…是等差数列. ②当d 1=0时,对任意n ≥1,c n =b 1-a 1n +(n -1)max{d 2,0}=b 1-a 1+(n -1)(max{d 2,0}-a 1). 此时,c 1,c 2,c 3,…,c n ,…是等差数列. ③当d 1<0时, 当n >d 2d 1时,有nd 1<d 2. 所以c n n =b 1-a 1n + n -1 d 2-nd 1n=n (-d 1)+d 1-a 1+d 2+b 1-d 2n≥n (-d 1)+d 1-a 1+d 2-|b 1-d 2|. 对任意正数M ,取正整数m >max ⎩⎨⎧⎭⎬⎫M +|b 1-d 2|+a 1-d 1-d 2-d 1,d 2d 1, 故当n ≥m 时,c nn>M .2.(2018·江苏名校联考)如果一个数列从第2项起,每一项与它前一项的差都大于3,则称这个数列为“S 型数列”.(1)已知数列{a n }满足a 1=4,a 2=8,a n +a n -1=8n -4(n ≥2,n ∈N *),求证:数列{a n }是“S 型数列”;(2)已知等比数列{a n }的首项a 1与公比q 均为正整数,且{a n }为“S 型数列”,记b n =34a n ,当数列{b n }不是“S 型数列”时,求数列{a n }的通项公式;(3)是否存在一个正项数列{c n }是“S 型数列”,当c 2=9,且对任意大于等于2的自然数n 都满足1n -1n +1·⎝ ⎛⎭⎪⎫2+1c n ≤1c n -1+1c n ≤⎝ ⎛⎭⎪⎫1n -1n +1⎝ ⎛⎭⎪⎫2+1c n -1?如果存在,给出数列{c n }的一个通项公式(不必证明);如果不存在,请说明理由.解:(1)a n +1+a n =8n +4,①a n +a n -1=8n -4.②②-①,得a n +1-a n -1=8. 所以a 2n =8n ,a 2n -1=8n -4. 因此a n =4n ,从而a n -a n -1=4>3. 所以数列{a n }是“S 型数列”.(2)由题意可知a 1≥1,且a n -a n -1>3,因此{a n }单调递增且q ≥2.而(a n -a n -1)-(a n -1-a n -2)=a n -1(q -1)-a n -2(q -1)=(q -1)(a n -1-a n -2)>0, 所以{a n -a n -1}单调递增.又b n =34a n ,因此{b n -b n -1}单调递增,又{b n }不是“S 型数列”,所以存在n 0,使得bn 0-bn 0-1≤3, 所以b 2-b 1≤bn 0-bn 0-1≤3, 即a 1(q -1)≤4.又因为a 2-a 1>3,即a 1(q -1)>3且a 1·q ∈N *. 所以a 1(q -1)=4,从而a 1=4,q =2或a 1=2,q =3或a 1=1,q =5. ∴a n =2n +1或a n =2·3n -1或a n =5n -1.(3)可取c n =(n +1)2可验证符合⎝ ⎛⎭⎪⎫1n -1n +1⎝ ⎛⎭⎪⎫2+1c n ≤1c n -1+1c n ≤⎝ ⎛⎭⎪⎫2+1c n -1⎝ ⎛⎭⎪⎫1n -1n +1条件,而且c n -c n -1=(n +1)2-n 2=2n +1>3.三、冲刺满分题1.(2018·如皋月考)已知数列{a n },{b n }中,a 1=1,b n =⎝ ⎛⎭⎪⎫1-a 2n a 2n +1·1a n +1,n ∈N *,数列{b n }的前n 项和为S n .(1)若a n =2n -1,求S n ;(2)是否存在等比数列{a n },使b n +2=S n 对任意n ∈N *恒成立?若存在,求出所有满足条件的数列{a n }的通项公式;若不存在,说明理由;(3)若a 1≤a 2≤…≤a n ≤…,求证:0≤S n <2. 解:(1)当a n =2n -1时,b n =⎝ ⎛⎭⎪⎫1-14·12n =32n +2.所以,S n =38⎝⎛⎭⎪⎫1+12+…+12n -1=34-32n +2.(2)满足条件的数列{a n }存在且只有两个,其通项公式为a n =1和a n =(-1)n -1.证明:在b n +2=S n 中,令n =1,得b 3=b 1.设a n =qn -1,则b n =⎝⎛⎭⎪⎫1-1q 21qn .由b 3=b 1,得⎝⎛⎭⎪⎫1-1q 21q3=⎝⎛⎭⎪⎫1-1q21q.若q =±1,则b n =0,满足题设条件. 此时a n =1和a n =(-1)n -1.若q ≠±1,则1q 3=1q,即q 2=1,矛盾.综上,满足条件的数列{a n }存在,且只有两个,一个是a n =1,另一个是a n =(-1)n -1.(3)因1=a 1≤a 2≤…≤a n ≤…, 故a n >0,0<a na n +1≤1, 于是0<a 2na 2n +1≤1.所以b n =⎝ ⎛⎭⎪⎫1-a 2n a 2n +1·1a n +1≥0,n =1,2,3,…, 所以S n =b 1+b 2+…+b n ≥0.又b n =⎝ ⎛⎭⎪⎫1-a 2n a 2n +1·1a n +1=⎝ ⎛⎭⎪⎫1+a n a n +1⎝ ⎛⎭⎪⎫1-a n a n +1·1a n +1=⎝⎛⎭⎪⎫1+a n a n +1⎝ ⎛⎭⎪⎫1a n -1a n +1·a n a n +1≤2⎝ ⎛⎭⎪⎫1a n -1a n +1. 故S n =b 1+b 2+…+b n ≤2⎝ ⎛⎭⎪⎫1a 1-1a 2+2⎝ ⎛⎭⎪⎫1a 2-1a 3+…+2⎝ ⎛⎭⎪⎫1a n -1a n +1=2⎝ ⎛⎭⎪⎫1a 1-1a n +1=2⎝⎛⎭⎪⎫1-1a n +1<2.所以0≤S n <2.2.(2018·扬州中学模拟)若数列{a n }和{b n }的项数均为n ,则将∑i =1n|a i -b i |定义为数列{a n }和{b n }的距离.(1)已知a n =2n,b n =2n +1,n ∈N *,求数列{a n }和{b n }的距离d n .(2)记A 为满足递推关系a n +1=1+a n 1-a n的所有数列{a n }的集合,数列{b n }和{c n }为A 中的两个元素,且项数均为n .若b 1=2,c 1=3,数列{b n }和{c n }的距离大于2 017,求n 的最小值.(3)若存在常数M >0,对任意的n ∈N *,恒有∑i =1n|a i -b i |≤M 则称数列{a n }和{b n }的距离是有界的.若{a n }与{a n +1}的距离是有界的,求证:{a 2n }与{a 2n +1}的距离是有界的.解:(1)d n =⎩⎪⎨⎪⎧1,n =1,2n +1-n 2-2n +2,n ≥2.(2)设a 1=p ,其中p ≠0且p ≠±1. 由a n +1=1+a n1-a n,得a 2=1+p 1-p ,a 3=-1p ,a 4=p -1p +1,a 5=p .所以a 1=a 5,a 2=a 6,…,因此集合A 中的所有数列都具有周期性,且周期为4.数列{b n }中,b 4k -3=2,b 4k -2=-3,b 4k -1=-12,b 4k =13(k ∈N *),数列{c n }中,c 4k -3=3,c 4k -2=-2,c 4k -1=-13,c 4k =12(k ∈N *),因为∑i =1k +1|b i -c i |≥∑i =1k|b i -c i |,所以项数n 越大,数列{b n }和{c n }的距离越大. 因为∑i =14|b i -c i |=73,而∑i =13 456|b i -c i |=∑i =14×864|b i -c i |=73×864=2 016,|c 1-b 1|=1,|c 2-b 2|=1,因此,当n =3 457时,∑i =13 457|b i -c i |=2 017,当n =3 458时,∑i =13 458|b i -c i |=2 018,故n 的最小值为3 458.(3)因为{a n }与{a n +1}的距离是有界的,所以存在正数M ,对任意的n ∈N *,有 |a n +1-a n |+|a n -a n -1|+…+|a 2-a 1|≤M . |a n |=|a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1| ≤|a n -a n -1|+|a n -1-a n -2|+…+|a 2-a 1|+|a 1| ≤M +|a 1|.记K =M +|a 1|,则有|a 2n +1-a 2n |=|(a n +1+a n )(a n +1-a n )| ≤(|a n +1|+|a n |)|a n -1-a n |≤2K |a n +1-a n |.因此|a2n+1-a2n|+|a2n-a2n-1|+…+|a22-a21|≤2KM. 故{a2n}与{a2n+1}的距离是有界的.。

相关文档
最新文档