武汉市2016学年度元月调考数学试卷有答案
武汉市武昌部分学校2016届九年级1月联考数学试题含答案

23、(本题 10分)已知,AB是⊙O 的直径,点 P 在弧 AB上(不含点 A、B),把△AOP 沿 OP对折,点 A 的对应点 C 恰好落在⊙O 上.
(1)当 P、C 都在 AB上方时(如图 1),判断 PO与 BC的位置关系; (2)当 P 在 AB上方而 C 在 AB下方时(如图 2),(1)中结论还成立吗?证明你的结论; (3)当 P、C 都在 AB上方时(如图 3),过 C 点作 CD⊥直线 AP于 D,且 CD是⊙O 的切线,证明: AB=4PD .
19、(本题 8 分)如图,已知⊙O 是△ABC的外接圆,AB是⊙O 的直径,D 是 AB延长线上的一点, AE⊥CD交 DC的延长线于 E,CF⊥AB于 F,且 CE=CF. (1)求证:DE是⊙O 的切线; (2)若 AB=6,BD=3,求 AE和 BC的长.
20、(本题 8 分)如图,在平面直角坐标系 xOy中,△AOB三个顶点的坐标分别为 O(0,0)、A(-2, 3)、B(-4,2),将△AOB绕点 O 顺时针旋转 90°后,点 A、O、B 分别落在点 A'、O'、B'处.
B.1
C.-9
D.9
10、如图,⊙A 与⊙B 外切于点 D,PC、PD、PE分别是圆的切线,C、D、E 是切点,若∠CDE=x°, ∠ECD=y°,⊙B 的半径为 R,则弧 DE的长度是( )
π(90 ‒ x)R π(90 ‒ y)R
A.
90
B.
90
.
π(180 ‒ x)R
B.C. 180
D.
π(180 ‒ y)R 180
16、如图,扇形 OAB中,∠AOB=60°,扇形半径为 4,点 C 在弧 AB上,CD⊥OA,垂足为 D,当△OCD 的面积最大时,图中阴影部分的面积为____________
元月调考专题——热值计算答案

热机效率公式100%⨯=放有Q W η (有W 表示用来做有用功的能量,放Q 表示燃料完全燃烧放出的能量) 热机效率公式拓展①W 表示有用功,FS W = (F 表示力,S 表示沿力方向移动的距离)Fvt Pt W ==(P 表示功率,t 表示时间)PSL W =(压力PS F =,S 表示面积,L 表示距离)②Q 表示热量,mq Q =放或qV Q =放加热效率公式100%⨯=放吸Q Q η(吸Q 表示水吸收的热量,放Q 表示燃料完全燃烧放出的能量) 加热效率公式拓展t cm Q ∆=吸mq Q =放或qV Q =放例题1: 小洋家煮饭、烧水使用的是管道天然气,已知天然气的热值为4.2×107J /m 3,放出的热量有50%被有效利用,现要将质量为4kg ,初温为25℃的水加热到100℃,需要完全燃烧多少立方米的天然气? 解:在一个标准大气压下,水吸收的热量)(0t t cm Q -=吸)25100(4)(/104.23C C kg C kg J ︒-︒⨯⨯︒⋅⨯=J 6101.26⨯=天然气放出的热量:J J Q Q 66102.5250%101.26⨯=⨯==η吸放 烧开这壶水需要天然气的体积:33766.0/102.41052.2m mJ J q Q V =⨯⨯==放 元调专题——热量计算知识导航例题讲解(2014武汉元调)如图所示的四冲程汽油机工作示意图中,汽油机正在进行的是做功冲程。
若该汽油机的效率是20%,已知汽油的热值为4.6×107J/kg,则完全燃烧100 g汽油放出的热量可以转化为9.2×105J 的有用功。
在设计制造时,汽缸外有一个“水套”,利用水吸热降低汽缸温度,这是利用了水的比热容大的性质。
(2016武汉元调)下图是神舟十一号飞船搭乘长征二号FY11运载火箭发射升空时的壮观情景。
该火箭使用的燃料是偏二甲肼,若火箭中加入质量为2t的偏二甲肼,则燃料完全燃烧放出的热量是8.5×1010J。
(完整word版)2017武汉元调数学试卷及答案(Word精校版)

第1页 / 共10页2016-2017学年度武汉市九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1. 在数1,2,3和4中,是方程2120x x +-=的根的为 A .1 B .2 C .3 D .42. 桌上倒扣着背面图案相同的15张扑克牌,其中9张黑桃、6张红桃,则 A .从中随机抽取1张,抽到黑桃的可能性更大 B .从中随机抽取1张,抽到黑桃和红桃的可能性一样大 C .从中随机抽取5张,必有2张红桃 D .从中随机抽取7张,可能都是红桃3. 抛物线()2235y x =++的顶点坐标是A .(3,5)B .(-3,5)C .(3,-5)D .(-3,-5) 4. 在O 中,弦AB 的长为6,圆心O 到AB 的距离为4,则O 的半径为A .10B .6C .5D .45. 在平面直角坐标系中,有A (2,-1),B (-1,-2),C (2,1),D (-2,1)四点,其中,关于原点对称的两点为 A .点A 和点B B .点B 和点C C .点C 和点D D .点D 和点A6.方程28170x x -+=的根的情况是( )A . 两实数根的和为8-B . 两实数根的积为17C . 有两个相等的实数根D . 没有实数根7.抛物线2(2)y x =--向右平移2个单位得到的抛物线的解析式为( )A . 2y x =- B . 2(4)y x =-- C . 2(2)2y x =--+ D . 2(2)2y x =---8.由所有到已知点O 的距离大于或等于3,并且小于等于5的点组成的图形的面积为( ) A .4π B .9π C .16π D .25π 9.在50包型号为L 的衬衫的包裹中混入了型号为M 的衬衫,每包20件衬衫.每包中混入的M 号衬衫数如下表:A. M 号衬衫一共有47件B. 从中随机取一包,包中L 号的衬衫数不低于9是随机事件C. 从中随机取一包,包中L 号衬衫不超过4的概率为0.26D. 将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M 号的概率是0.252第2页 / 共10页10.在抛物线223y ax ax a =--上有A (-0.5,1y ),B (2,2y )和C (3,3y )三点,若抛物线与y 轴的交点在正半轴上,则1y ,2y ,3y 的大小关系为( )A .312y y y <<B .321y y y <<C .213y y y <<D .123y y y <<二.填空题(共6小题,每小题3分,共18分) 11.掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为6点”出现的频率越来越稳定于0.4,那么,掷一次该骰子,“朝上一面为6点”的概率为12.如图,四边形ABCD 内接于○O ,E 为CD 延长线上一点,若∠B =110°,则∠ADE 的度数为 13.两年前生产1t 药品成本是6000元,现在生产1t 药品的成本是4860元,则药品成本的年平均下降率是第12题图第15题图14.圆心角为75°的扇形弧长是2.5π,则扇形的半径为15.如图,正三角形的边长为12cm ,剪去三个角后成为一个正六边形,则这个正六边形的内部任意一点到各边的距离和为 cm .16.在平面直角坐标系中,点C 沿着某条路径运动,以点C 为旋转中心,将点A (0,4)逆时针旋转90°到点B (m ,1),若-5≤m ≤5,则点C 运动的路径长为三.解答题(共8小题,共72分) 17.(本题8分)解方程2530x x -+=第3页 / 共10页18.(本题8分)如图,OA ,OB ,OC 都是☉O 的半径,∠AOB =2∠BO C . (1)求证:∠ACB =2∠BAC (2)若AC 平分∠OAB ,求∠AOC 的度数.19.(本题8分)如图,要设计一幅宽20cm ,长30cm 的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3,如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少cm ?第19题图20.(本题8分)阅读材料,回答问题.材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转;三辆汽车经过路口,相当于从三个这样的口袋中各随机摸一个球. 问题(1)事件“至少有两辆车向左转”相当于”袋中摸球”的试验中的什么事件? (2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案; (3)请直接写出题2的结果.第18题图第4页 / 共10页21.(本题8分) 如图,在Rt △ABC 中,∠BAC =90°,BD 是角平分线,以点D 为圆心,DA 为半径的圆D 与AC 相交于点E .(1)求证:BC 是圆D 的切线; (2)若AB =5,BC =13,求CE 的长.22.(本题10分)某公司产销一种商品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C 是商品件数x商品的销售价格(单位:元)为P =35—x 101.(每个周期的产销利润=P x C ⋅-) (1)直接写出产销成本C 与商品件数x 的函数关系式(不要求写出自变量的取值范围); (2)该公司每个周期产销多少件商品时,利润达到220元? (3)求该公司每个周期的产销利润的最大值.23.(本题10分)如图,在平面直角坐标系中,点A和点B的坐标分别为A(4,0),B(0,2),将△ABO绕点P(2,2)顺时针旋转得到△OCD,点A,B和O的对应点分别为O,C和D.(1)画出△OCD,并写出点C和点D的坐标;(2)连接AC,在直线AC的右侧取点M,使∠AMC=45°.①若点M在x轴上,则点M的坐标为___________;②若△ACM为直角三角形,求点M的坐标;(3)若点N满足∠ANC>45°,请确定点N的位置(不要求说明理由).第5页 / 共10页第6页 / 共10页24. (本题12分)已知抛物线y =221x +mx -2m -2(m ≥0)与x 轴交于A ,B 两点,点A 在点B 的左边,与y 轴交于点C . (1)当m =1时,求点A 和点B 的坐标; (2)抛物线上有一点D (—1,n ),若△ACD 的面积为5,求m 的值;(3)P 为抛物线上A ,B 之间一点(不包括A ,B ),PM ⊥x 轴于M ,求PMBMAM ·的值.第7页 / 共10页2016-2017学年度武汉市部分学校九年级元月调考数学试卷参考答案10. 又∵∴二.16.C 点的轨迹是点(-1,0)和点(4,5)之间的一条线段.所以C 点运动的路径长为三.解答题(共8小题,共72分) 17.解:a =1,b =﹣5,c =3, ∴b 2-4ac =13∴x =5±132∴x 1=5-132 ,x 2=5+13218.(1)证明:在⊙O 中,∵∠AOB =2∠ACB ,∠BOC =2∠BAC , ∵∠AOB =2∠BO C . ∴∠ACB =2∠BA C . (2)解:设∠BAC =x °.∵AC 平分∠OAB ,∴∠OAB =2∠BAC =2x °; ∵∠AOB =2∠ACB ,∠ACB =2∠BAC , ∴∠AOB =2∠ACB =4∠BAC =4x °; 在△OAB 中,∠AOB +∠OAB +∠OBA =180°, 所以,4x +2x +2x =180; x =22.5第18题图第8页 / 共10页所以∠AOC =6x =135°19.解:设横彩条的宽为2xcm ,竖彩条的宽为3xcm .依题意,得(20-2x )(30-3x )=81%×20×30. 解之,得x 1=1,x 2=19,当x =19时,2x =38>20,不符题意,舍去. 所以x =1.答:横彩条的宽为2 cm ,竖彩条的宽为3 cm .20.解:(1)至少摸出两个绿球; (2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率” ,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)1321.(1)证明:过点D 作DF ⊥BC 于点F . ∵∠BAD =90°,BD 平分∠ABC , ∴AD =DF . ∵AD 是⊙D 的半径,DF ⊥BC , ∴BC 是⊙D 的切线(2) 解:∵∠BAC =90°.∴AB 与⊙D 相切, ∵BC 是⊙D 的切线,∴AB =F B .∵AB =5,BC =13, ∴CF =8,AC =12. 在Rt △DFC 中, 设DF =DE =r ,则 r 2+64=(12-r )2,r =103 .∴CE =16322.解:(1)2138010C x x =++(2) 依题意,得(35-110x )·x -(110x 2+3x +80)=220;解之,得x 1=10,x 2=150, 因为每个周期产销商品件数控制在100以内, 所以x =10. 答:该公司每个周期产销10件商品时,利润达到220元 (3) 设每个周期的产销利润为y 元.则y =(35-110x )·x -(110 x 2+3x +80)=﹣15 x 2+32x -80=﹣15 (x -80)2+1200,C第9页 / 共10页因为﹣15<0,所以,当x =80时,函数有最大值1200.答:当每个周期产销80件商品时,产销利润最大,最大值为1200 元23. (1)C (2,4),D (0,4) (2)①M (6,0)②第1种情况:当∠CAM =90°,C (2,4),A (4,0) ∴△CAM 为等腰直角三角形过C 作CH ⊥x 轴于H ,过M 作MG ⊥x 轴于G , ∴△CHA ≌△AGM (AAS )、 ∴AG =CH =4,MG =AH =4-2=2 ∴M (8,2)第二种情况:当∠ACM =90°时,同理可得,M (6,6)(3)N 点在以(5,3)(1,1).(阴影部分)24. 解:(1)当1m =时,2142y x x =+-令0y =,21402x x +-= ∴124,2x x =-= ∴()4,0,(2,0)A B -(2)令212202x mx m +--=即222244x mx m m m ++=++()()()2212222,2022x m m x m x C m OA OC+=+∴=--=-∴=,-∴直线:22AC y x m =---第10页 / 共10页点()1,D n -在抛物线上,∴31,32D m ⎛⎫--- ⎪⎝⎭过点D 作DM ⊥x 轴于点M ,交AC 于点E过点C 作CN ⊥DE 点M .则点()1,21E m ---()()()2123121322112212112252223903;32ACD DE m m m S DE AM DE CNDE AOm m m x m m ⎛⎫∴=-----=+⎪⎝⎭=⋅+⋅=⋅⎛⎫=++= ⎪⎝⎭∴+-=∴==-舍 所以,满足题意m 的值为32(3)设P 点坐标21,222a a am m ⎛⎫+-- ⎪⎝⎭则AM =a +2m +2BM =2-aPM =21222a am m --++()()22222222122224242=122224412222a m a AM BM PM a am m a a m am a a am m a am m a am m ++-⋅=--++-+-+---++--++=--++=(。
2016-2017武汉元调数学试题含解答解析

2016-2017武汉元调数学试卷含答案解析考试时间120分钟,总分120分一、选择题1.从下列四张卡片中任取一张,卡片上的图形既是轴对称又是中心对称图形的概率是()A.B.C.D.12.方程(x﹣1)(x+2)=x﹣1的解是()A.﹣2 B.1,﹣2 C.﹣1,1 D.﹣1,33.由二次函数y=3(x﹣4)2﹣2,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣4C.其最小值为2 D.当x<3时,y随x的增大而减小4.二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c 在同一坐标系中的大致图象是()A.B.C.D.5.如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=30°,则∠CAB=()A.15°B.20°C.25°D.30°6.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC=9,则S△BCF=()A.6 B.8 C.10 D.127.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P 是直径MN上的一个动点,则PA+PB的最小值为()A.2 B.2 C.4 D.48.某市2015年国内生产总值(GDP)比2014年增长了10%,由于受到国际金融危机的影响,预计2016年比2015年增长6%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.10%+6%=x% B.(1+10%)(1+6%)=2(1+x%)C.(1+10%)(1+6%)=(1+x%)2D.10%+6%=2•x%9.二次函数y=x2+(2m﹣1)x+m2﹣1的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=33,则m的值为()A.5 B.﹣3 C.5或﹣3 D.以上都不对10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.11.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A.①③⑤B.②④⑤C.①②⑤D.①③④12.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(﹣2,y1),点B(,y2),点C(,y2)在该函数图象上,则y1<y3<y2;(5)若m≠2,则m(am+b)>2(2a+b),其中正确的结论有()A.2个 B.3个 C.4个 D.5个二、填空题(本大题共4个小题,每小题4分,共16分)13.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.14.PA,PB分别切⊙O于A,B两点,点C为⊙O上不同于AB的任意一点,已知∠P=40°,则∠ACB的度数是.15.如图,在Rt△ABC中,∠ACB=90°,AC=,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为.三、解答题(本大题共6小题,共64分)17.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.18.某中学举行演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.(1)请直接写出九年级同学获得第一名的概率是;(2)用列表法或是树状图计算九年级同学获得前两名的概率.19.某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?20.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边上一点,且△BCF∽△EBD,求直线FB的解析式.21.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.22.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A 和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC 的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.2016-2017学年山东省日照市五莲县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共40分)1.从下列四张卡片中任取一张,卡片上的图形既是轴对称又是中心对称图形的概率是()A.B.C.D.1【考点】概率公式;轴对称图形;中心对称图形.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵四张卡片中任取一张既是轴对称又是中心对称图形的有2张,∴卡片上的图形既是轴对称又是中心对称图形的概率是=,故选:B.2.方程(x﹣1)(x+2)=x﹣1的解是()A.﹣2 B.1,﹣2 C.﹣1,1 D.﹣1,3【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:移项得:(x﹣1)(x+2)﹣(x﹣1)=0,(x﹣1)[(x+2)﹣1]=0,x﹣1=0,x+2﹣1=0,x=1或﹣1,故选C.3.由二次函数y=3(x﹣4)2﹣2,可知()A.其图象的开口向下B.其图象的对称轴为直线x=﹣4C.其最小值为2 D.当x<3时,y随x的增大而减小【考点】二次函数的性质;二次函数的最值.【分析】由抛物线解析式可求得其开口方向、对称轴、最值及增减性,可求得答案.【解答】解:∵y=3(x﹣4)2﹣2,∴抛物线开口向上,故A不正确;对称轴为x=4,故B不正确;当x=4时,y有最小值﹣2,故C不正确;当x<3时,y随x的增大而减小,故D正确;故选D.4.二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c 在同一坐标系中的大致图象是()A.B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】先根据二次函数的图象开口向下可知a<0,再由函数图象经过原点可知c=0,利用排除法即可得出正确答案.【解答】解:∵二次函数的图象开口向下,∴反比例函数y=的图象必在二、四象限,故A、C错误;∵二次函数的图象经过原点,∴c=0,∴一次函数y=bx+c的图象必经过原点,故B错误.故选D.5.如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=30°,则∠CAB=()A.15°B.20°C.25°D.30°【考点】圆周角定理;等腰三角形的性质.【分析】根据等腰三角形的性质先求出∠CDA,根据∠CDA=∠CBA,再根据直径的性质得∠ACB=90°,由此即可解决问题.【解答】解:∵∠ACD=30°,CA=CD,∴∠CAD=∠CDA==75°,∴∠ABC=∠ADC=75°,∵AB是直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=15°,故选A.6.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线于点F,若S△DEC=9,则S△BCF=()A.6 B.8 C.10 D.12【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质得到AD∥BC和△DEF∽△BCF,由已知条件求出△DEF的面积,根据相似三角形的面积比是相似比的平方得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴=,=()2,∵E是边AD的中点,∴DE=AD=BC,∴=,=3,∴△DEF的面积=S△DEC=12;∴S△BCF故选D.7.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P 是直径MN上的一个动点,则PA+PB的最小值为()A.2 B.2 C.4 D.4【考点】圆周角定理;轴对称-最短路线问题.【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=30°,∴∠A′ON=60°,∠BON=30°,∴∠A′OB=90°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.故选B.8.某市2015年国内生产总值(GDP)比2014年增长了10%,由于受到国际金融危机的影响,预计2016年比2015年增长6%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.10%+6%=x% B.(1+10%)(1+6%)=2(1+x%)C.(1+10%)(1+6%)=(1+x%)2D.10%+6%=2•x%【考点】由实际问题抽象出一元二次方程.【分析】根据平均增长率:a(1+x)n,可得答案.【解答】解:由题意,得(1+10%)(1+6%)=(1+x%)2,故选:C.9.二次函数y=x2+(2m﹣1)x+m2﹣1的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=33,则m的值为()A.5 B.﹣3 C.5或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】二次函数解析式令y=0得到关于x的一元二次方程,利用根与系数关系表示出两根之和与两根之积,已知等式变形后代入求出m的值即可.【解答】解:令y=0,得到x2+(2m﹣1)x+m2﹣1=0,∵二次函数图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=33,∴x1+x2=﹣(2m﹣1),x1x2=m2﹣1,△=(2m﹣1)2﹣4(m2﹣1)≥0,∴(x1+x2)2﹣2x1x2=(2m﹣1)2﹣2(m2﹣1)=33,整理得:m2﹣2m﹣15=0,即(m﹣5)(m+3)=0,解得:m=5或m=﹣3,当m=5时,二次函数为y=x2+9x+24,此时△=81﹣96=﹣15<0,与x轴没有交点,舍去,则m的值为﹣3,故选B10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【考点】动点问题的函数图象.【分析】先利用线段垂直平分线的性质得到AD=CD=y,AH=CH=AC=2,∠CHD=90°,再证明△CDH∽△ACB,则利用相似比可得到y=(0<x<4),然后利用反比例函数的图象和自变量的取值范围对各选项进行判断.【解答】解:∵DH垂直平分AC,∴AD=CD=y,AH=CH=AC=2,∠CHD=90°,∵CD∥AB,∴∠DCH=∠BAC,∴△CDH∽△ACB,∴=,=,∴y=(0<x<4).故选B.11.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A.①③⑤B.②④⑤C.①②⑤D.①③④【考点】相似三角形的判定与性质;垂径定理;圆周角定理;射影定理.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,据此推理可得①正确,②错误;通过推理可得∠ACE=∠CAP,得出AP=CP,再根据∠PCQ=∠PQC,可得出PC=PQ,进而得到AP=PQ,即P为Rt△ACQ斜边AQ的中点,故P为Rt△ACQ 的外心,即可得出③正确;连接BD,则∠ADG=∠ABD,根据∠ADG≠∠BAC,∠BAC=∠BCE=∠PQC,可得出∠ADG≠∠PQC,进而得到CB与GD不平行,可得⑤错误.【解答】解:∵在⊙O中,点C是的中点,∴=,∴∠CAD=∠ABC,故①正确;∵≠,∴≠,∴AD≠BC,故②错误;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°,∴∠ACE=∠ABC,又∵C为的中点,∴=,∴∠CAP=∠ABC,∴∠ACE=∠CAP,∴AP=CP,∵∠ACQ=90°,∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC2=AE•AB,故④正确;如图,连接BD,则∠ADG=∠ABD,∵≠,∴≠,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC,又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC,∴CB与GD不平行,故⑤错误.故答案为:D.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)若点A(﹣2,y1),点B(,y2),点C(,y2)在该函数图象上,则y1<y3<y2;(5)若m≠2,则m(am+b)>2(2a+b),其中正确的结论有()A.2个 B.3个 C.4个 D.5个【考点】二次函数图象与系数的关系.【分析】根据对称轴可判断(1);根据当x=﹣2时y<0可判断(2);由图象过点(﹣1,0)知a﹣b+c=0,即c=﹣a+b=﹣a﹣4a=﹣5a,从而得5a+3c=5a﹣15a=﹣10a,再结合开口方向可判断(3);根据二次函数的增减性可判断(4);根据函数的最值可判断(5).【解答】解:∵抛物线的对称轴为x=﹣=2,∴b=﹣4a,即4a+b=0,故(1)正确;由图象知,当x=﹣2时,y=4a﹣2b+c<0,∴4a+c<2b,故(2)错误;∵图象过点(﹣1,0),∴a﹣b+c=0,即c=﹣a+b=﹣a﹣4a=﹣5a,∴5a+3c=5a﹣15a=﹣10a,∵抛物线的开口向下,∴a<0,则5a+3c=﹣10a>0,故(3)正确;由图象知抛物线的开口向下,对称轴为x=2,∴离对称轴水平距离越远,函数值越小,∴y1<y2<y3,故(4)错误;∵当x=2时函数取得最大值,且m≠2,∴am2+bm+c<4a+2b+c,即m(am+b)<2(2a+b),故(5)错误;故选:A.二、填空题(本大题共4个小题,每小题4分,共16分)13.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为5.【考点】相似三角形的判定与性质.【分析】易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD的值.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴=.∵AB=6,BD=4,∴=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.14.PA,PB分别切⊙O于A,B两点,点C为⊙O上不同于AB的任意一点,已知∠P=40°,则∠ACB的度数是70°或110°.【考点】切线的性质.【分析】连接OA、OB,可求得∠AOB,再分点C在上和上,可求得答案.【解答】解:如图,连接OA、OB,∵PA,PB分别切⊙O于A,B两点,∴∠PAO=∠PBO=90°,∴∠AOB=360°﹣90°﹣90°﹣40°=140°,当点C1在上时,则∠AC1B=∠AOB=70°,当点C2在上时,则∠AC2B+∠AC1B=180°,∴∠AC2B=110°,故答案为:70°或110°.15.如图,在Rt△ABC中,∠ACB=90°,AC=,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为﹣.【考点】扇形面积的计算;中心对称图形.【分析】阴影部分的面积=三角形的面积﹣扇形的面积,根据面积公式计算即可.【解答】解:由旋转可知AD=BD,∵∠ACB=90°,AC=,∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=1,∴阴影部分的面积=﹣,故答案为:﹣.16.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为2.【考点】反比例函数综合题.【分析】设M点坐标为(a,b),而M点在反比例函数图象上,则k=ab,即y=,由点M为矩形OABC对角线的交点,根据矩形的性质易得A(2a,0),C(0,2b),B(2a,2b),利用坐标的表示方法得到D点的横坐标为2a,E点的纵坐标为2b,而点D、点E在反比例函数y=的图象上(即它们的横纵坐标之积为ab),可得D点的纵坐标为b,E点的横坐标为a,利用S矩形OABC=S△OAD+S△OCE+S四边形ODBE,得到2a•2b=•2a•b+•2b•a+6,求出ab,即可得到k的值.【解答】解:设M点坐标为(a,b),则k=ab,即y=,∵点M为矩形OABC对角线的交点,∴A(2a,0),C(0,2b),B(2a,2b),∴D点的横坐标为2a,E点的纵坐标为2b,又∵点D、点E在反比例函数y=的图象上,∴D点的纵坐标为b,E点的横坐标为a,=S△OAD+S△OCE+S四边形ODBE,∵S矩形OABC∴2a•2b=•2a•b+•2b•a+6,∴ab=2,∴k=2.故答案为2.三、解答题(本大题共6小题,共64分)17.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.【考点】作图-位似变换;作图-平移变换.【分析】(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.【解答】解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.18.某中学举行演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.(1)请直接写出九年级同学获得第一名的概率是;(2)用列表法或是树状图计算九年级同学获得前两名的概率.【考点】列表法与树状图法.【分析】(1)根据概率公式可得;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)九年级同学获得第一名的概率是=,故答案为:;(2)画树状图如下:∴九年级同学获得前两名的概率为=.19.某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?【考点】二次函数的应用.【分析】(1)待定系数法求解可得;(2)根据总利润=单件利润×销售量列出函数解析式,再结合自变量的取值范围,依据二次函数的性质可得函数的最值情况.【解答】解:(1)根据题意得,解得:,∴一次函数的表达式为y=﹣x+110;(2)W=(x﹣50)(﹣x+100)=﹣x2+160x﹣5500,∵销售单价不低于成本单价,且获利不得高于40%,即50≤x≤50×(1+40%),∴50≤x≤70,∵当x=﹣=80时不在范围内,∴当x=70时,W最大=800元,答:销售单价定为70元时,商场可获得最大利润,最大利润是800元.20.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边上一点,且△BCF∽△EBD,求直线FB的解析式.【考点】反比例函数综合题.【分析】(1)由条件可先求得点D的坐标,代入反比例函数可求得k的值,又由点E的位置可求得E点的横坐标,代入可求得E点坐标;(2)由相似三角形的性质可求得CF的长,可求得OF,则可求得F点的坐标,利用待定系数法可求得直线FB的解析式.【解答】解:(1)在矩形OABC中,∵B(4,6),∴BC边中点D的坐标为(2,6),∵又曲线y=的图象经过点(2,6),∴k=12,∵E点在AB上,∴E点的横坐标为4,∵y=经过点E,∴E点纵坐标为3,∴E点坐标为(4,3);(2)由(1)得,BD=2,BE=3,BC=4,∵△FBC∽△DEB,∴=,即=,∴CF=,∴OF=,即点F的坐标为(0,),设直线FB的解析式为y=kx+b,而直线FB经过B(4,6),F(0,),∴,解得,∴直线BF的解析式为y=x+.21.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.【考点】圆的综合题.【分析】(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到=,然后解关于r的方程即可;(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE﹣HE=,再根据垂径定理得到BH=HG=,所以BG=1.【解答】(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.22.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A 和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC 的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.【考点】二次函数综合题;待定系数法求一次函数解析式;平行四边形的判定.【分析】方法一:(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由抛物线的对称轴x=﹣=1,得到b=﹣2a②,抛物线过点A(﹣2,0),得到0=4a﹣2b+c③,然后由①②③可解得,a=﹣,b=1,c=4,即可求出抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),则FH=﹣t2+t+4,FG=t,先=OB•FH=﹣t2+2t+8,S△OFC=OC•FG=2t,再由根据三角形的面积公式求出S△OBFS四边形ABFC=S△AOC+S△OBF+S△OFC,得到S四边形ABFC=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,由△=(﹣4)2﹣4×5=﹣4<0,得出方程t2﹣4t+5=0无解,即不存在满足条件的点F;(3)先运用待定系数法求出直线BC的解析式为y=﹣x+4,再求出抛物线y=﹣x2+x+4的顶点D(1,),由点E在直线BC上,得到点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).分两种情况进行讨论:①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,解方程﹣m2+2m=,求出m的值,得到P1(3,1);②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,解方程m2﹣2m=,求出m的值,得到P2(2+,2﹣),P3(2﹣,2+).方法二:(1)略.(2)利用水平底与铅垂高乘积的一半,可求出△BCF的面积函数,进而求出点F 坐标,因为,所以无解.(3)因为PQ∥DE,所以只需PQ=AC即可,求出PQ的参数长度便可列式求解.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x 轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,∴S△OBFS△OFC=OC•FG=×4×t=2t,=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.∴S四边形ABFC令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).方法二:(1)略.(2)∵B(4,0),C(0,4),∴l BC:y=﹣x+4,过F点作x轴垂线,交BC于H,设F(t,﹣t2+t+4),∴H(t,﹣t+4),=S△ABC+S△BCF=17,∵S四边形ABFC∴(4+2)×4+(﹣t2+t+4+t﹣4)×4=17,∴t2﹣4t+5=0,∴△=(﹣4)2﹣4×5<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F.(3)∵DE∥PQ,∴当DE=PQ时,以D、E、P、Q为顶点的四边形是平行四边形,∵y=﹣x2+x+4,∴D(1,),∵l BC:y=﹣x+4,∴E(1,3),∴DE=﹣3=,设点F的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4),∴|﹣m+4+m2﹣m﹣4|=,∴m2﹣2m=或m2﹣2m=﹣,∴m=1,m=3,m=2+,m=2﹣,经检验,当m=1时,线段PQ与DE重合,故舍去.∴P1(3,1),P2(2+,2﹣),P3(2﹣,2+).。
2016年武汉市元月调考九年级数学试卷(答案)

武汉市部分学校九年级元月调研测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.将方程x 2-8x =10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是( )A .-8、-10B .-8、10C .8、-10D .8、10 2.如图汽车标志中不是中心对称图形的是( )A .B .C .D .3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( ) A .这个球一定是黑球 B .摸到黑球、白球的可能性的大小一样 C .这个球可能是白球 D .事先能确定摸到什么颜色的球 4.抛物线y =-3(x -1)2-2的对称轴是( ) A .x =1 B .x =-1 C .x =2 D .x =-25.某十字路口的交通信号灯每分钟绿灯亮30秒,红灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率为( )A .121 B .61 C .125 D .21 6.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°, 则∠BCD 的度数为( ) A .50° B .80° C .100° D .130°7.圆的直径为10 cm ,如果点P 到圆心O 的距离是d ,则( ) A .当d =8 cm 时,点P 在⊙O 内 B .当d =10 cm 时,点P 在⊙O 上 C .当d =5 cm 时,点P 在⊙O 上 D .当d =6 cm 时,点P 在⊙O 内8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( ) A .2根小分支 B .3根小分支 C .4根小分支 D .5根小分支 9.关于x 的方程(m -2)x 2+2x +1=0有实数根,则m 的取值范围是( ) A .m ≤3 B .m ≥3 C .m ≤3且m ≠2 D .m <310.如图,扇形OAB 的圆心角的度数为120°,半径长为4,P 为弧AB 上的动点,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N ,D 是△PMN 的外心.当点P 运动的过程中,点M 、N 分别在半径上作相应运动,从点N 离开点O 时起,到点M 到达点O 时止,点D 运动的路径长为( ) A .π32B .πC .2D .32二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点A (-3,2)关于原点对称点的坐标为__________12.如图,转盘中8个扇形的面积都相等,任意转动转盘1次.当转盘停止转动时,指针指向大于5的数的概率为__________13.某村种的水稻前年平均每公顷产7 200 kg ,今年平均每公顷产8 450 kg .设这两年该村水稻每公顷产量的年平均增长率为x ,根据题意,所列方程为________________________14.在直角坐标系中,将抛物线y =-x 2-2x 先向下平移一个单位,再向右平移一个单位,所得新抛物线的解析式为____________________15.如图,要拧开一个边长为a =12 mm 的六角形螺帽,扳手张开的开口b 至少要________mm 16.我们把a 、b 、c 三个数的中位数记作Z |a ,b ,c |,直线y =kx +21(k >0)与函数y =Z |x 2-1,x +1,-x +1|的图象有且只有2个交点,则k 的取值为__________ 三、解答题(共8题,共72分)17.(本题8分)已知3是一元二次方程x 2-2x +a =0的一个根,求a 的值和方程的另一根18.(本题8分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1) 一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2) 随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率19.(本题8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E.(1) 求证:AC 平分∠DAB ;(2) 连接CE ,若CE =6,AC =8,直接写出⊙O 直径的长20.(本题8分)如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF (1) 在图中画出点O和△CDF,并简要说明作图过程。
武汉市2016届九年级数学1月联考试卷含答案新人教版

武汉市2016届九年级数学1月联考试卷(含答案新人教版)湖北省武汉市武昌部分学校2016届九年级数学1月联考试题命题人:审题人:一、选择题(每小题3分,共30分)1、方程2x2-3x+2=0的二次项系数和一次项系数分别为()A.3和-2B.2和-3C.2和3D.-3和22、一元二次方程总有实数根,则m应满足的条件是()A.B.mC.D.3、抛物线y=向右平移1个单位,再向上平移2个单位后所得到抛物线为()A.y=B.y=C.y=D.y=4、已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是()A.B.C.D.5、如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4则CD的长等于()A.2B.4C.4D.86、在平面直角坐标系中,点M(3,-5)关于原点对称的点的坐标是()A.(-3,-5)B.(3,5)C.(5,-3)D.(-3,5)7、如图,在Rt∆ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm长为半径作圆,⊙C与AB 的位置关系是()相离B.相切C.相交D.相交或相切8、用配方法解方程时,配方后得到的方程为()B.C.D.9、已知二次函数y=-(x+h)2,当x-3时,y随x增大而增大,当x0时,y随x增大而减小,且h满足h2-2h-3=0,则当x=0时,y的值为()A.-1B.1C.-9D.910、如图,⊙A与⊙B外切于点D,PC、PD、PE分别是圆的切线,C、D、E是切点,若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则弧DE的长度是()BC.D.填空题(每小题3分,共18分)方程x2-2x-=0的判别式的值等于抛物线y=的顶点坐标为13、把球放在长方体纸盒内,球的一部分露出盒外,从正面看如图所示,⊙O与矩形ABCD的边BD,AC分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为___________。
硚口区六年级元调数学模拟试卷(附答案)
一、计算。
1.直接写得数。
=⨯7542=⨯9483=÷21565=÷11811=÷%174.3=⨯6.5149=+÷%)211913(0=⨯÷1351352=⨯+30)15131(=⨯÷⨯10175101752.求未知数X 。
158125=÷χ351487=-χ3.脱式计算。
4516942÷-77461672311⨯⨯4.2)8332(⨯-13154611312÷-⨯1781795(2.5--÷⎥⎦⎤⎢⎣⎡⨯-÷762132(215二、填空1.看图写出算式,不计算。
算式:52100⨯算式:⎪⎭⎫ ⎝⎛-÷61125一、计算。
1.直接写得数。
=⨯754230=⨯948361=÷2156527=÷118118121=÷%174.3206.36.5149=⨯=+÷%)211913(00=⨯÷13513522=⨯+30)15131(12=⨯÷⨯10175101751002.求未知数X 。
158125=÷χ351487=-χ92=x 56=x 3.脱式计算。
4516942÷-77461672311⨯⨯4.2)8332(⨯-=43=81=7.013154611312÷-⨯1781795(2.5--÷⎥⎦⎤⎢⎣⎡⨯-÷762132(215=152=3.1=35二、填空1.看图写出算式,不计算。
算式:52100⨯算式:⎪⎭⎫ ⎝⎛-÷611252.在○里填上“>”“<”或“=”。
3.14>31.4%14.2%<717585÷=8725244.2÷>2.43.(21)÷28=0.75=12:(16)=(75)%=()()43(填最简分数)4.24时的83是(9)时;比(412)kg 多43kg 是3kg 。
武汉初三元月调考数学试卷及答案(图片版)
武汉初三元月调考数学试卷及答案(图片版)数学网编辑保举:
2019武汉初三元月调考语文试卷及答案(图片版)2019武汉初三元月调考数学试卷及答案(图片版)2019武汉初三元月调考英语试卷及答案(图片版)2019武汉初三元月调考化学试卷及答案(图片版)2019武汉初三元月调考物理试卷及答案(图片版)
数学网编辑保举:
2019年1月武汉初三元月调考试题:
2019武汉初三元月调考语文试卷及答案(word版)2019武汉初三元月调考数学试卷及答案(图片版)2019武汉初三元月调考英语试卷及答案(图片版)2019武汉初三元月调考化学试卷及答案(图片版)2019武汉初三元月调考物理试卷及答案(图片版)2019年1月武汉初三元月调考试题:
2019武汉初三元月调考语文试卷及答案(word版)2019武汉初三元月调考数学试卷及答案(图片版)2019武汉初三元月调考英语试卷及答案(图片版)
2019武汉初三元月调考化学试卷及答案(图片版)2019武汉初三元月调考物理试卷及答案(图片版)
第 1 页。
2016武汉市元调模拟试题(带答案)
2016年九年级元月调考数学试卷(试卷满分:120分 考试时间:120分钟)一、选择题(每小题3分,共30分)1.如图,所给图形中是中心对称图形,但不是轴对称图形的是 ( )A B C D2. 已知抛物线y=ax 2+bx+c经过(-1,3),(4,3),(-2,5)三点,如果A(2-,y 1),B(2,y 2),C(π,y 3)三点都在抛物线上,那么( )A.y 1<y 2<y 3B.y 2<y 3<y 1C.y 3<y 1<y 2D.y 1<y 3<y 23.已知2是关于x 的方程x 2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为( ) A.14B.10C.14或10D.8或104.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是( ) A.91021=+x B.101121=+x C.1011)1(2=+x D.910)1(2=+x 5.如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB , 则旋转角的度数为( )A.35°B.40°C.50°D.65°6.已知A 、B 、C 三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长, 则∠BAC 的度数为( )A.15°或1050B.750或150C.750D.105°7.已知一次函数y =3x +12的图象与x 轴、y 轴分别相交于A 、B 两点,将直线AB 绕点A 顺时针旋转900,则点B 的对应点B /的坐标为( )A.(8,-4)B.(-16,4)C. (12,8)D. (-12,16)8.已知直角三角形的外接圆半径为6,内切圆半径为2,那么这个三角形的面积是( )A.32B. 34 C .27 D .289.二次函数y =ax 2+bx +c 的图象如图所示,下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m(am +b)+b<a(m≠﹣1),其中正确结论的个数是( )A .1个B .2个C .3个D .4个第15题图第14题图E第5题图C10.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( ) A.(2014,0) B.(2015,-1) C .(2015,1) D .(2016,0)二、填空题(每小题3分,共18分) 11.若()0532=-+-mx xm m是关于x 的一元二次方程,则m 的值为_________12.将二次函数5422-+-=x x y 的图象向左平移3个单位后,再绕顶点旋转1800所得的图象的解析式为___________13.已知m ≠n ,且m 2-m =3,n 2=n +3,那么代数式2m 2-mn +2n +2005的值为___________ 14.如图,以矩形ABCD 的边AB 为直径作⊙O 与CD 相交于E 、F 两点,若CE =1,BC =2, 则⊙O 的半径为_________15.如图,已知在△ABC 中,AB =AC =6,∠BAC =300,将△ABC 绕点A 逆时针旋转,使点B 落在点C 处,此时点C 落在点D 处,延长AD 与BC 的延长线相交于点E ,则DE 的长为________16.如图,已知在直角坐标系中,点P 是直线4+-=x y 上的一个动点,⊙O 的半径为1,过点P 作⊙O 的切线,切点为A ,则PA 长度的最小值为_________三、解答题(17~20每题8分,21、22每题9分,23题10分,24题12分,共72分) 17.解下列方程:(1)()532=-x x ; (2)()()03125322=--+x x .18.已知a 是方程0232=-+x x 的一个根,求⎪⎭⎫ ⎝⎛--+÷--2523632a a a a a 的值.45°FED CBAEDB19.如图,△ABC 中,AB =AC =2,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE 、CF 相交于点D. (1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.20.如图,已知△ABC 内接于⊙O ,△ABC 的外角∠BAE 平分线与⊙O 相交于点D , 连接BD 、CD .求证:BD =CD.21.已知关于x 的一元二次方程01)21(22=+-+x k x k.(1)若此方程有两个不相等的实数根,求k 的取值范围;(2)设方程的两根分别为,,21x x 且322121-=-+x x x x ,求k 的值.22.如图,已知以Rt △ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF. (1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为3,∠EAC=600,求AD 的长23.某商品的进价为每件40元.当售价为每件60元时,每月可卖出100件;如果每件商品的售价每上涨1元,则每月少卖2件.设每件商品的售价为x元,每月的销售利润为y元.(1)求y与x的函数关系式;(2)每件商品的售价定为多少元时,每月可获得最大利润?最大的月利润是多少元?(3)规定每件商品的利润率不超过80%,每月的利润不低于2250元,求售价x的取值范围?24.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴的交点C,且A(1,0),C(0,3),OB=OC.(1)求此抛物线的解析式;(2)若点E是第二象限抛物线上的一个动点,连接BE、CE,求四边形ABEC面积的最大值,并写出此时点E的坐标;(3)点P在抛物线的对称轴上,将线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好落在此抛物线上,求点P的坐标.一、选择题(每小题3分,共30分) 1~5. CBADC ; 6~10. BADCB. 二、填空题(每小题3分,共18分)11.-2; 12.y =-2x 2-8x -11; 13.2016; 14.25; 15.333-; 16.7. 三、解答题(17~20每题8分,21,22每题9分,23题10分,24题12分,共72分)17.(1)2193,219321-=+=x x ; (2)31,1121==x x . 18. 原式619312-=+-=aa . 19.(1)证明△ABE ≌△ACF ; (2)222-=BD . 20.∵∠DBC =∠DAE ,∠DCB =∠BAD ;∠DAE =∠BAD , ∴∠DBC =∠DCB , ∴BD =CD.21.(1)041≠k k 且<; (2)()舍去,13121=-=k k .22.(1)连接CE ,∵AC 是⊙O 的直径,∴∠AEC =900,∵Rt △BCE 中,F 是BC 的中点,∴EF =CF ,∴∠CEF =∠ECF ,∵OE =OC ,∴∠OEC =∠OCE ,∴∠OEF =∠OCF =900; (2)73=AD .23.(1)880030022-+-=x x y ;(2)()24507528800300222+--=-+-=x x x y∴ 当75=x 时,2450=最大y .(3)()225024507522=+--=x y , 解得:85,6521==x x ,∵%80≤,解得:x ≤72, ∴72. 24.(1)322+--=x x y ;(2)设E 点坐标为()32,2+--x x x ,629232+--=x x S ABEC 四边形, 时,当23-=x 四边形ABEC 面积最大值为875,此时点E 的坐标为⎪⎭⎫ ⎝⎛-415,23; (3)设点P 的坐标为()a ,1-,那么A /的坐标为()2,1++-a a ,代入抛物线的解析式可求得2,121-==a a ; ∴点P 的坐标为(-1,1)或(-1,-2).。
2016年湖北省武汉市元月调考九年级数学模拟试卷
九年级数学复习训练试卷一、选择题26.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()B C8.已知x1,x2是方程的两根,则的值为()的长为()10.已知二次函数y=ax+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:211.在⊙O中,半径R=1,弦AB=,弦AC=,则∠BAC的度数为.12.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.13.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是.14.已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3x+8=0,则△ABC的周长是.15.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.第15题第16题16.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是.三、解答题(共72分)17.解方程:x2﹣5x+2=0.18.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1 + x2|=x1x2﹣1,求k的值.19.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A、B、O都在格点上.(1)画出△ABO绕点O逆时针旋转90°后得到的△A1B1O三角形;(2)点B的运动路径的长;(3)求△ABO在上述旋转过程中所扫过的面积.20.如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别于EF,GF交于I,H两点.(1)求∠FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时①求证:FD=FI;②设AC=2m,BD=2n,求S⊙O:S菱形ABCD.20.箱子里有3个红球和2个黄球,从箱子中一次拿两个球出来.(1)请你用列举法(树形图或列表)求一次拿出的两个球中时一红一黄的概率;(2)往箱子中再加入x个白球,从箱子里一次拿出的两个球,多次实验统计如下请你估计至少有一个球是白球的概率是多少?(3)在(2)的条件下求x的值.(=0.7222222…)21.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?22.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润为26元①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?23.已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.24.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.九年级数学复习训练试卷答案一、选择题(每小题3分,共30分)1.D 2.D 3.B 4.C 5.C 6.B 7.C 8.A 9.B 10.D二、填空题(每小题3分,共18分)11.75°或15° 12.150 13.14.6或12或10 15.(7,3) 16.4.8三、解答题(共72分)20.解:(1)∵EF是⊙O的直径,∴∠FDE=90°;(2)四边形FACD是平行四边形.理理由如下:∵四边形ABCD是菱形,AB∥CD,AC⊥BD,∠AEB=90°.又∵∠FDE=90°,∠AEB=∠FDE,AC∥DF,∴四边形FACD是平行四边形; =GE,∴∠1=∠2.∵∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∴FD=FI;②∵AC∥DF,∴∠3=∠6.∵∠4=∠5,∠3=∠4,∴∠5=∠6,∴EI=EA.∵四边形ABCD是菱形,四边形FACD是平行四边形,∴DE=12BD=n,AE=12A(3)①连接GE,如图.∵四边形ABCD是菱形,∴点E为AC中点.∵G为线段DC的中点,∴GE∥DA,∴∠FHI=∠FGE.∵EF是⊙O的直径,∴∠FGE=90°,∴∠FHI=90°.∵∠DEC=∠AEB=90°,G为线段DC的中点,∴DG=GE,∴DG=m,FD=AC=2m,∴EF=FI+IE=FD+AE=3m.在Rt△EDF中,根据勾股定理可得:n2+(2m)2=(3m)2,即n=5m,∴S⊙O=π(3m2)2=94πm2,S菱形ABCD=12•2m•2n=2mn=25m2,∴S⊙O:S菱形ABCD=95π40.21.22.试题解析:⑴设一张薄板的边长为x cm,它的出厂价为y元,基础价为n元,浮动价为kx元,则y=kx+n由表格中数据得解得∴y=2x+10⑵①设一张薄板的利润为P元,它的成本价为mx2元,由题意得P=y-mx2=2x+10-mx2将x=40,P=26代入P=2x+10-mx2中,得26=2×40+10-m×402解得m=∴P=-x2+2x+10 (3分②∵a=-0 ∴当(在5~50之间时,即出厂一张边长为25cm的薄板,所获得的利润最大,最大利润为35元23. 答:(1)AD=A′D.证明:如图1,∵Rt△A′BC′≌Rt△ABC,∴BC=BC′,BA=BA′.∵∠A′BC′=∠ABC=60°,∴△BCC′和△BAA′都是等边三角形.∴∠BAA′=∠BC′C=60°.∵∠A′C′B=90°,∴∠DC′A′=30°.∵∠AC′D=∠BC′C=60°,∴∠ADC′=60°.∴∠DA′C′=30°.∴∠DAC′=∠DC′A,∠DC′A′=∠DA′C′.∴AD=DC′,DC′=DA′.∴AD=A′D.(2)AD=A′D证明:连接BD,如图2,由旋转可得:BC=BC′,BA=BA′,∠CBC′=∠ABA′.∴BCBC′=BABA′.∴△BCC′∽△BAA′.∴∠BCC′=∠BAA′.∵∠BOC=∠DOA,∴△BOC∽△DOA.∴∠ADO=∠OBC,OBOD=OCOA.∵∠BOD=∠COA,∴△BOD∽△COA.∴∠BDO=∠CAO.∵∠ACB=90°,∴∠CAB+∠ABC=90°.∴∠BDO+∠ADO=90°,即∠ADB=90°.∵BA=BA′,∠ADB=90°,∴AD=A′D.(3)当A、C′、A′三点在一条直线上时,如图3,则有∠AC′B=180°-∠A′C′B=90°.在Rt△ACB和Rt△AC′B中,BC=BC′AB=AB.∴Rt△ACB≌Rt△AC′B (HL).∴∠ABC=∠ABC′=60°.∴当A、C′、A′三点在一条直线上时,旋转角α的度数为60°.24.(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P 作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.解:(1)将B、C两点的坐标代入得解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(2)存在点P,使四边形POPC为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;连接PP′,则PE⊥CO于E,∴OE=EC=∴y=;∴x2﹣2x﹣3=解得x1=,x2=(不合题意,舍去)∴P点的坐标为(,);(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),易得,直线BC的解析式为y=x﹣3则Q点的坐标为(x,x﹣3);S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•OF+QP•BF==当时,四边形ABPC的面积最大.此时P点的坐标为,四边形ABPC的面积的最大值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016学年度武汉市部分学校九年级元月调研测试数学试卷考试时间:2016年1月21日一、选择题(共10小题,每小题3分,共30分)1.将方程x 2-8x =10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是( ) A .-8、-10B .-8、10C .8、-10D .8、102.如图汽车标志中不是中心对称图形的是( )A .B .C .D .3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( ) A .这个球一定是黑球 B .摸到黑球、白球的可能性的大小一样 C .这个球可能是白球D .事先能确定摸到什么颜色的球 4.抛物线y =-3(x -1)2-2的对称轴是( )A .x =1B .x =-1C .x =2D .x =-25.某十字路口的交通信号灯每分钟绿灯亮30秒,红灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率为( ) A .121B .61 C .125 D .21 6.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为( ) A .50° B .80° C .100°D .130°7.圆的直径为10 cm ,如果点P 到圆心O 的距离是d ,则( ) A .当d =8 cm 时,点P 在⊙O 内 B .当d =10 cm 时,点P 在⊙O 上 C .当d =5 cm 时,点P 在⊙O 上D .当d =6 cm 时,点P 在⊙O 内8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( ) A .2根小分支 B .3根小分支 C .4根小分支D .5根小分支 9.关于x 的方程(m -2)x 2+2x +1=0有实数根,则m 的取值范围是( )A .m ≤3B .m ≥3C .m ≤3且m ≠2D .m <310.如图,扇形OAB 的圆心角的度数为120°,半径长为4,P 为弧AB 上的动点,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N ,D 是△PMN 的外心.当点P 运动的过程中,点M 、N 分别在半径上作相应运动,从点N 离开点O 时起,到点M 到达点O 时止,点D 运动的路径长为( )A .π32B .πC .2D .32二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点A (-3,2)关于原点对称点的坐标为__________12.如图,转盘中8个扇形的面积都相等,任意转动转盘1次.当转盘停止转动时,指针指向大于5的数的概率为__________13.某村种的水稻前年平均每公顷产7 200 kg ,今年平均每公顷产8 450 kg .设这两年该村水稻每公顷产量的年平均增长率为x ,根据题意,所列方程为________________________14.在直角坐标系中,将抛物线y =-x 2-2x 先向下平移一个单位,再向右平移一个单位,所得新抛物线的解析式为____________________15.如图,要拧开一个边长为a =12 mm 的六角形螺帽,扳手张开的开口b 至少要________mm 16.我们把a 、b 、c 三个数的中位数记作Z |a ,b ,c |,直线y =kx +21(k >0)与函数y =Z |x 2-1,x +1,-x +1|的图象有且只有2个交点,则k 的取值为__________ 三、解答题(共8题,共72分)17.(本题8分)已知3是一元二次方程x 2-2x +a =0的一个根,求a 的值和方程的另一根18.(本题8分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1) 一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2) 随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率19.(本题8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E.(1) 求证:AC 平分∠DAB ;(2) 连接CE ,若CE =6,AC =8,直接写出⊙O 直径的长20.(本题8分)如图,正方形ABCD 和直角△ABE ,∠AEB =90°,将△ABE 绕点O 旋转180°得到△CDF (1) 在图中画出点O 和△CDF ,并简要说明作图过程。
(2) 若AE =12,AB =13,求EF 的长21.(本题8分)如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m(1) 建立如图所示的平面直角坐标系,求抛物线的解析式(2) 如果水面下降1 m,则水面宽是多少米?22.(本题10分)用一段长32 m的篱笆和长8 m的墙,围成一个矩形的菜园(1) 如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成①设DE等于x m,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围②菜园的面积能不能等于110 m2,若能,求出此时x的值;若不能,请说明理由(2) 如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,求菜园面积的最大值23.(本题10分)如图,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点(1) 如图1,若A、C、D三点共线,求∠P AC的度数(2) 如图2,若A、C、D三点不共线,求证:AP⊥DP(3) 如图3,若点C线段BE上,AB=1,CD=2,请直接写出PD的长度24.(本题12分)问题探究:在直线321+=x y 上取点A (2,4)、B ,使∠AOB =90°,求点B 的坐标小明同学是这样思考的,请你和他一起完成如下解答:将线段OA 绕点O 逆时针旋转90°得到OC , 则点C 的坐标为:___________所以,直线OC 的解析式为:____________________点B 为直线AB 与直线OC 的交点,所以,点B 的坐标为:___________。
问题应用:已知抛物线353191929122++-+-=m m mx x y 的顶点P 在一条定直线l 上运动。
(1) 求直线l 的解析式;(2) 抛物线与直线l 的另一个交点为Q ,当∠POQ =90°时,求m 的值2016学年度武汉市部分学校九年级调研测试数学参考答案11.(3,-2); 12.83; 13. 7 200(1+x)2=8 450; 14.2x y -=; 15.12 3 ; 16.k =54 或12 <k ≤1.三、解答题:17.解:方法1:将3代入022=+-a x x 中,得23-6+a =0,……1分 解得a =-3. ………… ……4分 将a =-3代入022=+-a x x 中,得:0322=--x x ……5分解得:1,321-==x x 所以a=-3,方程的另一根为-1. ………… ……8分 方法2:设方程的另一根为2x ,由根与系数关系得3+2x =2,32x =a ………… ……4分 解得a =-3,12-=x 所以a =-3,方程的另一根为-1. ………… ……8分18.解:(1………… ……2分由上表可知,随机抽取2张卡片可能出现的结果有30个,它们出现的可能性相等,其中“两张卡片上的数都是偶数”的结果有6个, ………… ……5分所以P (两张卡片上的数都是偶数)=15;………… ……6分 (2)512. ………… ……8分19.解: (1)连接OC , ∵CD 是⊙O 的切线,∴CD ⊥OC ………… ……2分又∵CD ⊥AD ,∴AD ∥OC ,∴∠CAD =∠ACO ………… ……3分 ∵OA =OC ,∴∠CAO =∠ACO ,∴∠CAD =∠CAO ,即AC 平分∠DAB ………… ……5分 (2)10 ………… ……8分20.解:(1)连接AC ,BD ,交于点O .连接EO 并延长到点F ,使OF =OE ,连接DF ,CF . ………… ……2分 画图如下:………… ……4分 (2方法1: 过点O 作OG ⊥OE 与EB 的延长线交于点G ,∵四边形ABCD 为正方形∴OA =OB ,∠AOB =∠EOG=90°∴∠AOE =∠BOG在四边形AEBO 中 ∠AEB =∠AOB=90° ∴∠EAO +∠EBO=180°=∠EBO +∠GBO ∴∠GBO=∠EAO ………… ……5分 ∴在△EAO 和△GBO 中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠BOG AOE OB OA GBO EAO ∴△EAO ≌△GBO ………… ……6分 ∴AE =BG ,OE =OG .∴△GEO 为等腰直角三角形………… ……7分∴OE =)(2222BG EB EG += =)(22AE EB +=2217 ∴EF =217………… ……8分方法2:提示:延长EA 、FD 交于点N ,连接EF ,可证△NEF 为等腰直角三角形.可求得: EF =17 2 .21.(1)解:因为抛物线的顶点的坐标为(2,2),可设抛物线的解析式为y =a (x -2)2+2, ………… ……2分 点(4,0)在抛物线上,可得,0=a (4-2)2+2, 解得,a =﹣12.因此,y =﹣12 (x -2)2+2. ………… ……5分(2)当y =﹣1时,﹣12 (x -2)2+2=﹣1,x =2± 6 ,………… ……7分而2+ 6 -(2- 6 )=2 6答:此时水面宽为2 6 m . ………… ……8分FEFE22.解:(1)①y=﹣12x2+16x,0<x≤8;………………3分②若菜园的面积等于110 m2,则﹣12x2+16x=110.解之,得x1=10,x2=22.………………5分因为0<x≤8,所以不能围成面积为110 m2的菜园.………………6分(2)设DE等于x m,则菜园面积y=12x(32+8-2x)=﹣x2+20x ……8分=﹣(x-10)2+100,当x=10时,函数有最大值100.答:当DE长为10 m时,菜园的面积最大,最大值为100 m2.…………10分23.(1)解:延长AP,DE,相交于点F.∵∠BAC=60°,∠CDE=120°,∴∠BAC+∠CDE=180°,∵A,C,D三点共线,∴AB∥DE.………1分∴∠B=∠PEF,∠BAP=∠EFP.∵BP=PE,∴△ABP≌△FEP.∴AB=FE.∵AB=AC,DC=DE,∴AD=DF.………2分∴∠P AC=∠PFE.∵∠CDE=120°,∴∠P AC=30°.………3分FF(2)证明:延长AP到点F,使PF=AP,连接DF,EF,AD.∵BP=EP,∠BP A=∠EPF,∴△BP A≌△EPF .………4分∴AB=FE,∠PBA=∠PEF.∵AC=BC,∴AC=FE.………5分在四边形BADE中,∵∠BAD+∠ADE+∠DEB+∠EBA=360°,∵∠BAC=60°,∠CDE=120°,∴∠CAD+∠ADC+∠DEB+∠EBA=180°.∵∠CAD+∠ADC+∠ACD=180°,∴∠ACD=∠DEB+∠EBA.∴∠ACD=∠FED,………6分∵CD=DE,∴△ACD≌△FED.∴AD=FD.∵AP=FP,∴AP⊥DP.………7分(3)52.………10分(提示:连接AP,AD,易知∠ACD=90°,所以AD= 5 ,在Rt△APD中,∠P AD=30°,所以,PD=5 2)E24.点C 的坐标为:( -4 , 2 ); ………… ……2分 直线OC 的解析式为: y =-12 x ; ………… ……3分点B 的坐标为:( -3,23). ………… ……4分 (1)解:∵抛物线y =﹣19 x 2+29 mx -19 m 2+13 m +53=﹣19 (x 2-2mx +m 2)+13 m +53=﹣19 (x -m ) 2+13 m +53.所以,顶点P 的坐标为(m ,13 m +53 ),∴点P 在直线y =13 x +53上运动.即直线l 的解析式为:y =13 x +53 ①.………… ……7分(2)方法1:因为,点P ,Q 为直线l 与抛物线的交点, 所以,13 x +53 =﹣19 (x -m ) 2+13 m +53 .解之,得,x 1=m ,x 2=m -3.所以,P 的坐标为(m ,13 m +53 ),Q 的坐标为(m -3 ,32 m ).… ……9分将线段OP 绕点O 逆时针旋转90°得到OK ,则点K 的坐标为:(-13 m -53 ,m );所以,直线OK 的解析式为:y =﹣3mm +5x ②; ………… ……10分 因为当∠POQ =90°时,点Q 在直线OK 上. 所以,13 (m +2)=﹣3m m +5(m -3).解之,得m =1. ………… ……12分方法2:将线段OP 绕点O 逆时针旋转90°得到OK ,则点K 的坐标为:(-13 m -53 ,m );所以,直线OK 的解析式为:y =﹣3mm +5x ②;………… ……8分 点Q 为直线l 与直线OK 的交点,由①、② 得,﹣3m m +5 x =13 x +53 ,所以,x =﹣m +52m +1 ,y =﹣3m m +5 x =3m 2m +1 ,即点Q 的坐标为:(﹣m +52m +1 ,3m2m +1). ……10分因为抛物线与直线l 的另一个交点为Q ,所以点Q 在抛物线上, ∴3m 2m +1 =﹣19 (﹣m +52m +1-m) 2+13 m +53 .19 (﹣m +52m +1 -m ) 2=13 m +53 -3m2m +1 , 19 (2m 2+2m +52m +1 ) 2=2m 2+2m +53(2m +1) , ∵2m 2+2m +5≠0,∴2m 2+2m +52m +1=3,∴ 2m 2-4m +2=0,∴ m =1. ………… ……12分。