统计学
统计学的三种含义

统计学的三种含义
统计学是一门涉及收集、分析、解释和展示数据的学科,旨在探索现象的本质和规律,帮助人们做出决策和预测。
统计学包括三个主要含义:统计工作、统计资料和统计科学。
1. 统计工作是指为收集、整理和分析数据而进行的一系列实践活动,包括统计设计、统计调查、统计整理和统计分析等。
统计工作是统计学的基础,是探索和分析数据的必要步骤。
2. 统计资料是指通过统计工作收集、整理和分析的数据,包括统计表、统计图、统计手册、统计年鉴、统计资料汇编和统计分析报告等形式。
统计资料是统计学研究的重要成果,是人们对社会经济现象认识的具体体现。
3. 统计科学是统计学的一个分支,是对统计工作的总结和理论概括,包括研究如何收集、整理和分析数据的理论和方法,以及如何运用这些理论和方法解决实际问题。
统计科学强调以概率论为基础,通过对数据的分析和推断,来探索数据的本质和规律。
这三个含义之间有着密切的联系和相互依赖关系。
统计工作是统计科学的基础和前提,为统计科学的研究提供了可靠的数据支持。
统计科学则是统计工作的总结和理论概括,为统计工作的进一步开展提供了理论指导。
统计工作、统计资料和统计科学三者相互联系、相互促进,共同构成了统计学的完整体系。
什么是统计学?

什么是统计学?作为一门综合性学科,统计学在现代社会中发挥着越来越重要的作用。
那么,在具体了解它的实际应用之前,让我们先来探讨一下,什么是统计学?1. 统计学的定义统计学是研究如何收集、分析、解释和展示数据的学科。
简单来说,它是一种用于从数据中提取有关事物的定量信息的方法。
统计学从根本上来说就是一种科学,其研究对象是数据,它应用数学、概率论、逻辑学等多种工具,旨在通过分析数据来分析现象、发现规律。
2. 统计学的应用领域统计学作为一门应用型学科,广泛应用于众多领域。
2.1 生物学在生物学中,统计学被用于解释生命现象,如遗传和进化的机制、药物治疗的有效性等等。
例如,在生物医学研究中,统计学的应用包括临床试验、药物疗效研究等等。
2.2 经济学统计学在经济学中也有重要的应用,可以用来衡量经济上的数据,如国民生产总值、物价指数、就业率等。
它可以分析消费者的购买习惯、市场需求及供应情况,从而为经济决策提供参考意见。
此外,公司能够使用统计学来进行预测和财务计划。
2.3 市场营销在市场营销中,统计学可用于分析消费者行为和市场趋势,帮助企业制定营销战略,提高广告效益等等。
3. 统计学方法了解了统计学的定义和应用领域之后,接下来就是探讨统计学的方法。
3.1 描述性统计学描述性统计学是一种可以帮助我们理解数据的方法,它涵盖了我们可以从数据中获取的所有信息,包括中心趋势、变异程度和分布形状等指标。
3.2 推断性统计学推断性统计学是一种可以通过采样同一群体的某些因素来了解整体群体的方法。
它涉及到估计、假设检验和置信度间隔等内容。
4. 统计学的局限性统计学虽然可以用于对数据进行分析和解释,但是它并不是万能的。
它受到所使用数据的质量和数量限制,也受到分析人员的限制。
另外,一个很重要的问题是统计学并不能直接证明因果关系,它只能通过相关性来证明两个变量之间的关系。
综上所述,统计学是一门关于数据管理和分析的学科,它以数据为基础,运用多种工具和方法帮助人们解答各种问题。
统计学的分类

统计学的分类统计学是一门研究数据收集、整理、分析和解释的学科。
它广泛应用于各个领域,包括社会科学、自然科学、商业和医学等。
统计学根据研究对象和方法的不同,可分为描述统计学和推断统计学。
描述统计学是统计学的基础,它主要关注对数据的概括和总结。
描述统计学的目标是通过收集数据并使用统计方法,将数据转化为可视化的形式,以便更好地理解和解释数据的特征和趋势。
常用的描述统计学方法包括频数分布、直方图、散点图和平均数等。
频数分布是描述统计学最基础的方法之一。
它通过统计数据中各个值的出现次数,并将其制成一个表格或图表,以便观察数据的分布情况。
通过频数分布,可以了解数据的集中趋势、离散程度和偏态程度等重要信息。
直方图是一种常用的频数分布图形表示方法。
它将数据分成若干个区间,并统计每个区间内数据的频数。
通过直方图,可以直观地看出数据的分布形态,如是否对称、是否存在峰态等。
直方图还可以帮助识别异常值和离群点,从而有助于数据的清洗和分析。
散点图是描述统计学中用于观察两个变量之间关系的图表。
它将每个观测值表示为图上的一个点,并以横轴和纵轴分别表示两个变量。
通过观察散点图的形态,可以初步判断两个变量之间是否存在相关关系,以及相关关系的强度和方向。
平均数是描述统计学中最常用的集中趋势测度之一。
平均数可以用来代表一组数据的典型值。
常见的平均数有算术平均数、加权平均数和中位数等。
算术平均数是将所有观测值相加后除以观测值的个数,它能够反映数据的集中程度。
中位数是将一组数据按照大小顺序排列后的中间值,它不受极端值的影响,更能反映数据的典型水平。
推断统计学是在描述统计学的基础上,通过对样本数据的分析和推断,对总体进行推断的学科。
推断统计学的目标是通过样本数据推断出总体的特征和参数,以便进行决策和预测。
常用的推断统计学方法包括假设检验、置信区间和回归分析等。
假设检验是推断统计学中用于检验假设的方法。
它通过对样本数据进行分析,判断总体参数是否满足某个假设。
统计学的用途

统计学的用途统计学是一门研究如何收集、整理、分析和解释数据的学科。
它在各种领域都有着广泛的应用,包括经济学、社会学、生物学、医学、工程学等。
统计学的用途可以总结为以下几个方面:1. 描述和总结数据:统计学可以帮助我们对收集到的数据进行描述和总结,从而更好地理解数据的特征和规律。
例如,通过计算均值、中位数、众数、标准差等统计指标,我们可以得出数据的集中趋势、离散程度等信息。
2. 推断统计:统计学可以通过对样本数据的分析,从而对总体数据进行推断。
这种推断可以帮助我们在没有完整数据的情况下,对总体数据的特征和规律进行合理的推测。
3. 预测和决策:统计学可以通过对历史数据和趋势的分析,帮助我们预测未来的发展趋势。
这对于企业的市场预测、政府的政策制定等方面都具有很大的意义。
4. 质量控制和改进:统计学在生产制造和服务行业中有着广泛的应用。
通过对生产过程和产品质量的统计分析,可以帮助企业进行质量控制和改进,提高产品质量和生产效率。
5. 经济学和金融:统计学在经济学和金融领域有着重要的应用。
它可以帮助经济学家和金融专家对宏观经济和金融市场进行分析和预测,从而指导政府和企业的决策。
6. 医学和健康:统计学在医学和健康领域也发挥着重要作用。
它可以帮助医生和研究人员对疾病的发病率、死亡率、治疗效果等进行统计分析,从而指导医疗决策和政策制定。
7. 社会学和人口学:统计学在社会学和人口学领域可以帮助研究人员对人口结构、社会现象、社会问题等进行统计分析,从而更好地理解和解决社会问题。
8. 环境保护和气候变化:统计学可以帮助科学家和政府对环境数据和气候数据进行分析和预测,从而指导环境保护和气候变化应对措施的制定。
9. 教育和心理学:统计学在教育和心理学领域也有着广泛的应用。
它可以帮助教育学家和心理学家对学生和被试者的数据进行分析和解释,从而更好地指导教学和研究工作。
总的来说,统计学是一门非常重要的学科,它在各个领域都有着广泛的应用。
统计学

统计学一、定义:统计学是一门对群体现象数量特征进行计量、描述、分析和推论的科学。
二、:一)统计的含义1、统计工作:资料的搜集、整理和分析这一系列的工作。
2、统计资料:统计工作的成果。
3、统计学:统计工作的理论概括。
二)统计的性质1、统计是调查研究社会的方法之一2、统计是核算的工具之一(会计核算、统计核算、业务核算)3、统计是国家或企业管理、监督的工具三、统计的特点四、统计学的理论基础五、统计学的研究方法(一)数量性(一)历史唯物论(一)大量观察法(二)工具性(二)辨证唯物主义(二)综合指标法(三)广泛性(三)政治经济学(三)归纳推断法(四)总体性(四)数学和计算机(四)大数定律(五)社会性总体:统计总体就是根据一定的目的和要求所确定的研究事物的全体,它是由客观存在的、具有某种相同性质的许多单位组成的集体。
总体单位:总体单位是指构成总体的每一个单位。
关系:统计总体和总体单位并不是固定不变的。
两者可以相互转换。
标志:标志是说明总体单位的属性和特征的名称。
品质标志(用文字表示),如中的性别、籍贯、政治面貌等;数量标志(用数字表示)。
数量标志的具体数值表现称为标志值,如某同学年龄为21岁,21岁就是标志值。
指标:是说明总体的属性和特征的。
任何一个统计指标必须用数字说明。
(标志和指标也是可以相互转换的。
)统计总体中各单位之间的差异称为变异。
正由于总体中各单位之间存在差异,才需要进行统计,也才有各种各样的统计方法。
如果总体各单位之间没有差异,也就没有统计。
在数量标志中,不变的数量标志称为常量或参数。
可变的数量标志称为变量。
变量取值又称为变量值,也就是标志值。
变量按其取值的连续性又分为离散变量和连续变量两种。
统计调查是根据统计的研究目的和任务,有组织、有计划地向客观实际搜集资料的工作过程。
统计调查是搜集资料获得感性认识的阶段,它既是对现象总体认识的开始,也是进行资料整理和分析的基础环节。
搜集统计资料的方式:一种是对原始资料的搜集。
统计学的含义、研究对象、特点和基本方法

统计学的含义、研究对象、特点以及基本方法一、统计学的含义统计学是一门通过搜集、整理、分析数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。
它是应用数学的一个分支,其研究领域包括数据的收集、分析、解释和呈现,以及通过这些数据来做出决策和预测。
统计学的核心在于收集和分析数据,从而提取出有用的信息,为决策提供科学依据。
二、统计学的研究对象统计学的研究对象十分广泛,包括社会、经济、自然现象等各个领域的数量关系。
其主要研究对象可以概括为以下几个方面:社会经济统计:研究社会经济现象的数量方面,如人口、就业、收入、消费等。
通过对这些数据的收集和分析,可以了解社会经济的运行状态和发展趋势,为政府和企业提供决策支持。
自然科学统计:研究自然现象的数量规律,如物理、化学、生物等领域的实验数据。
通过对这些数据的统计分析,可以发现自然现象的内在规律,推动科学研究的进步。
工程统计:研究工程技术的数量问题,如产品质量控制、可靠性分析、优化设计等。
工程统计可以帮助提高产品质量、降低生产成本,推动工程技术的发展。
医学统计:研究人体健康与疾病的数量关系,如疾病发病率、药物疗效等。
医学统计可以为医学研究提供科学依据,推动医学事业的进步。
三、统计学的特点数量性:统计学是通过数据来揭示事物本质和规律的,因此具有数量性的特点。
它通过对数据的收集、整理和分析,提取出有用的数量信息,为决策提供科学依据。
总体性:统计学研究的是总体而非个体,它通过对总体数据的分析来推断总体的特征。
这种总体性的特点使得统计学能够更全面地反映事物的本质和规律。
具体性:统计学研究的是具体事物的数量关系,而不是抽象的概念。
它通过对具体事物的数据分析,揭示事物的内在规律和联系。
社会性:统计学研究的对象广泛涉及社会、经济、自然现象等各个领域,因此具有社会性的特点。
它通过对这些领域的数据分析,为政府、企业和社会提供决策支持。
四、统计学的基本方法描述性统计:描述性统计是通过对数据进行整理和描述,以揭示数据的分布特征、集中趋势和离散程度等。
统计学的基本概念和含义
统计学是一门研究收集、分析、解释和展示数据的学科。
它涵盖了数据收集、数据处理、数据分析和数据解释等方面的知识和方法。
以下是统计学中的一些基本概念和含义:1. 总体与样本:在统计学中,总体(population)指的是我们感兴趣的全体个体或对象的集合。
样本(sample)则是从总体中选取出来的一部分个体或对象的集合。
通过对样本进行观察和分析,可以推断出关于总体的特征。
2. 参数与统计量:参数(parameter)是描述总体特征的数值指标,例如总体的平均值、标准差等。
统计量(statistic)是从样本中计算得到的数值指标,用于估计总体参数。
3. 数据类型:统计学中的数据可以分为两种主要类型:定性数据(qualitative data)和定量数据(quantitative data)。
定性数据是以分类或描述性方式呈现的数据,如性别、颜色等。
定量数据是以数值形式呈现的数据,如身高、年龄等。
4. 描述统计学与推论统计学:描述统计学(descriptive statistics)是通过对数据进行整理、概括和可视化,来描述和总结数据的特征。
推论统计学(inferential statistics)则是基于样本数据,通过推断和估计总体特征,以及进行假设检验和置信区间的建立。
5. 数据收集与抽样:数据收集是指获取数据的过程,可以通过实地调查、问卷调查、实验等方法进行。
抽样是从总体中选择出样本的过程,以确保样本代表总体,并使统计推断成为可能。
6. 统计分析方法:统计学提供了一系列分析方法,如描述性统计、频率分布、概率论、假设检验、回归分析、方差分析等。
这些方法用于处理和分析数据,从中得出结论或作出决策。
统计学在各个领域中具有广泛的应用,包括科学研究、经济学、社会学、医学、市场营销等。
通过统计学的方法和技术,我们能够更好地理解和利用数据,从中发现规律、做出预测,并支持决策和问题解决。
统计学概述
(一)统计学按统计方法的构成分为描述统计学和推断统计学
描述统计学主要是对现象的某一特征的变化加以记录、整理 和反映,统计数据是对总体的描述和观测结果的表现。
推断统计学主要是研究随机现象数量特征的,即从现象总体 中随机抽取一部分个体构成样本,并根据样本数据对现象总体作 出估计。
(二)统计学按研究领域分为理论统计学和应用统计学
根据样本来推断总体数量特征的方法称为统计推断法。
1 -8
第三节 统计学中的几个基本概念
一、统计总体与总体单位 1、什么是统计总体(简称总体)
凡是客观存在的,在同一性质基础上由许许多多个别事物构 成的整体,称为统计总体。 2、什么是总体单位
构成总体的每一个个别事物,称为总体单位。 3、统计总体的分类
按照某种标志把总体划分为若干性质不同的组成部分的一 种统1计-方7 法。
第二节 统计的工作过程及研究方法
(三)综合指标法 运用各种统计指标来反映总体的一般数量特征和数量关系的
研究方法。 (四)统计模型法
用适当的数学模型去拟合现实经济现象相互关系的一种研究 方法,借以反映社会经济现象之间的数量关系和数量特征,从而 揭示其发展变化规律。 (五)归纳推断法
离散型变量是指其变量值在变动过程中呈跳跃式变化,用整 数表示而不能以带小数表示的变量。
连续型变量是指其变量值在变动过程中呈连续不断地变化, 在任意小的两个数值之间可以作无限次分割,能以带小数表示的 变量1 。- 12
第三节 统计学中的几个基本概念
四、统计指标与统计指标体系 (一)统计指标的分类
1.根据统计指标的表现形式不同,可以分为总量指标、相对 指标与平均指标
联系: (1)在统计中有许多统计指标的数值是由单位标志值直接汇 总而1 来- 11;
统计学有哪些统计方法
统计学有哪些统计方法
统计学有以下几种常用的统计方法:
1. 描述统计:包括均值、中位数、众数、方差、标准差等,用于描述样本或总体的特征和变异程度。
2. 推断统计:通过样本推断总体的参数或进行假设检验,常用方法包括置信区间估计、假设检验、相关分析、回归分析等。
3. 抽样技术:用于从总体中选取样本的方法,如简单随机抽样、分层抽样、整群抽样等。
4. 因子分析:用于研究多个变量之间的相关关系,通过将变量进行综合,得到相对独立的因子。
5. 非参数统计:不依赖于总体分布的假设,常用方法包括秩和检验、符号检验、K-S检验等。
6. 时间序列分析:研究时间序列数据的分析方法,包括平稳时间序列建模、ARIMA模型、指数平滑法等。
7. 生存分析:用于分析生物、医学等领域中的事件发生时间或生存时间,包括
生存曲线、危险比、Kaplan-Meier估计等。
8. 实验设计:研究如何设计并进行实验以获取有效的数据,例如完全随机设计、随机区组设计、拉丁方设计等。
9. 多元分析:用于研究多个变量之间的关系,常用方法有主成分分析、聚类分析、判别分析等。
10. 电脑模拟:利用计算机进行随机事件模拟,通过模拟大量的随机事件来估计概率、评估决策等。
统计学的方法
统计学的方法当提到统计学的方法时,有许多不同的技术和工具可供选择。
以下是50条关于统计学方法的示例,并附有详细描述:1. 描述性统计:描述性统计是一种用于总结和描述数据集的方法。
它包括平均数、中位数、众数、标准差等指标。
2. 推论统计:推论统计是一种从样本数据中得出总体结论的方法。
通过采样方法和假设检验来进行推论。
3. 参数估计:使用统计方法估计总体参数的值,如总体均值、总体比例等。
4. 假设检验:用于检验总体参数假设的统计方法,包括单样本、双样本和多样本假设检验。
5. 方差分析:用于比较三个或三个以上组别的均值是否有显著差异的统计方法。
6. 相关分析:检验两个或多个变量之间关系的统计方法,包括皮尔逊相关系数、斯皮尔曼相关系数等。
7. 回归分析:用于探索和建立变量之间关系的统计方法,包括线性回归、逻辑回归、多元回归等。
8. 生存分析:用于分析时间至事件发生的统计方法,包括生存曲线、生存函数、危险比等。
9. 聚类分析:将数据集中的观测分为不同的群组的统计方法,如K均值聚类、层次聚类等。
10. 因子分析:用于识别数据集中潜在变量和构建变量之间关系的统计方法。
11. 主成分分析:用于减少数据维度和识别主要变量的统计方法。
12. 时间序列分析:用于分析时间序列数据的统计方法,如季节性调整、趋势分析等。
13. 贝叶斯统计:一种基于贝叶斯定理的统计推断方法,通过先验概率和样本信息来获得后验概率。
14. 非参数统计:一种不依赖于总体概率分布的统计方法,适用于数据分布未知或不满足正态分布假设的情况。
15. 实证贝叶斯方法:一种结合贝叶斯统计和计算机模拟的方法,用于复杂模型的推断。
16. Bootstrap方法:通过重复抽样构建总体的分布,从而进行参数估计和假设检验。
17. 蒙特卡洛模拟:一种使用随机抽样技术进行数值模拟的方法,通常用于计算复杂的积分或求解概率分布。
18. 马尔可夫链蒙特卡洛:一种用于从复杂分布中抽样的随机模拟方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
126页的第3题:(小题/填空)
要求:
1.试分析计算甲、乙两个村的平均亩产;
解:
2.根据表格资料及1 的计算结果,比较分析哪个村的生产经营管理工作做得好,并简述做出这一结论的
理由。
在相同的耕地自然条件下,乙村的单产均高于甲村,故乙村的生产经营管理工作做得好。
但由于甲村的平原地所占比重大,山地所占比重小,乙村则相反,由于权数的作用,使得甲村的总平均单产高于乙村。
甲乙两组,甲组工人的零件平均日产量为81件,标准差为9.9件,乙组资料如下
求:1.计算乙组工人零件的平均日产量和标准差。
(加权平均)
2.比较哪组的平均日产量更具代表性。
(10)蔬菜,早市每元买2千克,午市每元买2.5元千克,晚市每元买5千克。
若早中晚的购买量相同,平均每元买了多少千克蔬菜?若早中晚的购买额相同,平均每元买了多少千克蔬菜?--小题
解:
(11)某工厂生产某种零件,要经过前后衔接的三道工序,各道工序的合格率分别为95.74%,92.22%,96.3%。
试求该零件的平均合格率。
解:
(12).兹有某地区水稻收获量分组资料如下:
要求:(1)计算中位数及众数;
(2)计算算术平均数;
(3)计算全距、平均差和标准差;
(4)比较算术平均数、中位数、众数的大小,说明本资料分布的偏斜特征。
178页
(1)某工厂工人职工人数4月份增减变动如下:1日职工总数500人,其中非直接生产人员100人;
15日职工10人离厂,其中有5人为企业管理人员;22日新来厂报到工人5人。
试分别计算本月该厂非直接生产人员及全部职工的平均人数。
(4)某企业2006年第一季度职工人数及产值资料如下:
要求:(1)编制第一季度各月劳动生产率的动态数列。
(2)计算第一季度的月平均劳动生产率。
(3)计算第一季度的劳动生产率。
(5)某炼钢厂连续5年钢产量资料如下:
要求:(1)试编制一统计表,列出下列各种分析指标:发展水平与平均发展水平;增减量(逐期,累计)与平均增减量;发展速度(定基,环比)与平均发展速度;增减速度(环比,定基)与平均增减速度;增长1%绝对值(环比,定基)。
(2)就表中数字说明下列各种关系:
①发展速度和增减速度的关系;
可见增减速度等于发展速度减1。
当报告期水平高于基期水平时,发展速度大于1或100%,增减速度为正值,表示现象增长的程度,亦称增长率;当计算期水平低于基期水平时,发展速度小于1或100%,增减速度为负值,表示现象降低的程度,亦称降低率。
②定基发展速度和环比发展速度的关系;
定基发展速度与环比发展速度之间的数量关系
不难看出,定基发展速度与环比发展速度存在一定的数量关系:
(1)相邻若干个环比发展速度的连乘积等于相应的定基发展速度
(2)相邻两个定基发展速度之商等于相应的环比发展速度。
③增长1%的绝对值与基期发展水平的关系;
增长1%绝对值是指报告期在基期水平基础上每增长1%时增长的绝对量,它表明增长速度所包含的实际内容, 增长速度指标的基期水平越高,增长速度提高1%所包含的增长量就越多.
④增减量,增减速度与增长1%绝对值的关系;
一个时间数列中报告期水平与基期水平之差称为增减量。
用来反映现象在一定时期内发展水平的提高或降低的绝对数量。
增减速度也称增减率,是增减量与基期水平之比,用于说明报告期水平较基期水平的相对增减程度。
增长速度是相对数指标,它抽象了现象数量对比的绝对差异,同样是增长1%,它所代表的绝对量由于对比的基数不同而不同。
因此,在运用增长速度进行动态分析时,通常要与绝对增长量结合起来,计算增长1%的绝对值。
⑤逐期增减量与累计增减量的关系;
逐期增减量与累积增减量之间存在一定的关系:各逐期增减量的和等于相应时期的累积增减量;两相邻时期累积增减量之差等于相应时期的逐期增减量。
⑥平均发展速度与环比发展速度的关系;
平均发展速度指标是对各环比发展速度的抽象化,在它的背后隐藏着各环比发展速度增减变化的具体事实。
⑦平均发展速度与平均增减速度的关系。
平均增减速度(Average rate of increase or decrease)说明现象逐期增减的平均程度。
平均增减速度(G )与平均发展速度仅相差一个基数,即:
1G R =-
第235页 1.
某市几种主要副食品调整价格前后资料如下:
试计算:
(1)各商品零售物价和销售量的个体指数; (2)四种商品物价和销售量的总指数;
(3)由于商品价格变动使该市居民增加支出的金额。
解:(1)各商品零售物价个体指数:
各商品销售量个体指数:
%76.1116
.132.15%67.10620
.768.7%91.1100
.224.24%33.13300
.300
.4014013012011===
=========p p K p p K p p K p p K p p p p %04.11315
.130.1%83.9520
.115.1%77.12346.452.5%10400
.520.5014013012011===
=========q q K q q K q q K q q K q q q q
(2) (3) 即:由于商品价格变动使该市居民增加支出21.08元。
(11)某地区,甲,乙,丙,丁四种产品的个体零售价格指数分别为:110%,104%,108.5%,118%,它们的固定权数分别为11%,29%,35%,25%,试计算这四类商品的零售物价指数。
解:%74.109=⨯
=∑∑W
W
K K
p p
第322页
(1)1、某灯泡厂某月生产5 000 000个灯泡,在进行质量检查中,随机抽取500个进行检验,这500个灯泡的耐用时间见下表:
耐用时间(小时) 灯泡数 耐用时间(小时) 灯泡数 800~850 35 950~1000 103 850~900 127 1000~1050 42 900~950 185 1050~1100 8
试求:
(1)该厂全部灯泡平均耐用时间的取值范围(概率保证程度0.9973)。
(2)检查500个灯泡中不合格产品占0.4%,试在0.6827概率保证下,估计全部产品中不合格率的取值范围。
3.160.1315.120.752.500.2220.500.33.12.1515.168.752.540.242.500.41
011⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯=
=
∑∑q
p q p K p %
93.112=15.16.1320.120.746.400.2200.500.33.16.1315.120.752.500.2220.500.30
10⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯=
=
∑∑q
p q p K q
%
63.118=08
.211
01
1=-∑∑q
p q p
4、某砖瓦厂对所生产的砖的质量进行抽样检查,要求概率保证程度为0.6827,抽样误差范围不超过0.015。
并知过去进行几次同样调查,产品的不合格率分别为1.25%,1.83%,2%。
要求:(1)计算必要的抽样单位数目。
(2)假定其他条件不变,现在要求抽样误差范围不超过0.03,即比原来的范围扩大1倍,则必要的抽样单位数应该是多少?
公式:n=t^2*δ^2 /Δx^2
第367页
(2)根据50个学生的中文成绩和英文成绩进行计算,中文成绩的标准差为9.75,英文成绩的标准差为7.9分,两种成绩的协方差为72分,由上述资料计算相关系数,并对中文成绩和英文成绩的相关方向和相关程度作出说明。
(9)某工业企业某种产量与单位成本资料如下:
要求:
(1)根据上述资料,绘制相关图,版别该数列相关与回归的种类;
(2)配合适当的回归方程;
(3)根据回归方程,指出每当产品产量增加1万件时,单位成本的变化情况;
(4)计算相关系数和估计标准误差。