备战中考数学二轮专题归纳提升真题几何模型—半角模型(解析版)

合集下载

2025年九年级中考数学二轮复习难点题型突破课件:半角模型

2025年九年级中考数学二轮复习难点题型突破课件:半角模型
半角模型
共顶点的直角与其内含的45度角;共顶点的60度角与其内含
模型特点 的30度角;共顶点的120度角与其内含的60度角等,共顶点
的角与其半角组成的图形
模型展示
满分技巧 通常将半角两边的三角形绕顶点旋转合并成一个三角形
例 (2024·宜宾)如图,正方形 ABCD 的边长为1, M , N 是边 BC ,
BE = DF ′,∠ BAE =∠ DAF ′.
由题意,得 EF + EC + FC = DC + BC =
DF + FC + EC + BE .
∴ EF = DF + BE = DF + DF ′= F ′ F .
在△ AEF 和△ AF ′ F 中,
AE = AF ′, EF = F ′ F , AF = AF ,

题3



DF = HD + FH = x + y , FE ′= HG ′= HB - BG ′=4- x -









=1- x + y .


在Rt△ E ′ FD 中, FE ′2+ DF2= DE ′2.
∴ −



+






+





2
=(5- x - y ) .∴ y =
题3
由旋转的特征,得 BE = BE ′,∠ CBE =∠ C ′ BE ′,
EG = E ′ G ′, BG = BG ′.∵∠ ABC =90°,∠ DBE =45°,
∴∠ CBE +∠ DBA =45°.
∴∠ C ′ BE ′+∠ DBA =45°,即∠ DBE ′=45°.

【中考数学29个几何模型】模型06 半角模型(后附解题思路分析与小结)

【中考数学29个几何模型】模型06 半角模型(后附解题思路分析与小结)

专题06半角模型一、单选题1.如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有()A.①②③④B.②③C.②③④D.③④二、解答题2.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,求MN的长.3.在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC =120°,∠EDF =60°,猜想EF ,BE ,CF 具有的数量关系,并说明你的结论成立的理由.4.如图,AB AD BC DC ===,90C D ABE BAD ∠=∠=∠=∠=︒,点E 、F 分别在边BC 、CD 上,45EAF ∠=︒,过点A 作GAB FAD ∠=∠,且点G 在CB 的延长线上.(1)GAB ∆与FAD ∆全等吗?为什么?(2)若2DF =,3BE =,求EF 的长.5.如图,在四边形ABCD 中,90B D ∠=∠=︒,E ,F 分别是BC ,CD 上的点,连接AE ,AF ,EF .(1)如图①,AB AD =,120BAD ∠=︒,60EAF ∠=︒.求证:EF BE DF =+;(2)如图②,120BAD ∠=︒,当AEF 周长最小时,求AEF AFE +∠∠的度数;(3)如图③,若四边形ABCD 为正方形,点E 、F 分别在边BC 、CD 上,且45EAF ∠=︒,若3BE =,2DF =,请求出线段EF 的长度.6.如图,ABC 是边长为2的等边三角形,BDC 是顶角为120°的等腰三角形,以点D 为顶点作60MDN ∠=︒,点M 、N 分别在AB 、AC 上.(1)如图①,当//MN BC 时,则AMN 的周长为______;(2)如图②,求证:BM NC MN +=.7.问题背景如图①,在四边形ABCD 中,AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,点E ,F 分别是BC ,CD 上的点,且60EAF ∠=︒,连接EF ,探究线段BE ,EF ,DF 之间的数量关系.探究发现(1)小明同学的方法是将ABE △绕点A 逆时针旋转120︒至ADG 的位置,使得AB 与AD 重合,然后再证明AFE AFG △≌△,从而得出结论:______;拓展延伸(2)如图②,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别是边BC ,CD 上的点,且12EAF BAD ∠=∠,连接EF .(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图③,在正方形ABCD 中,点E ,F 分别是边BC ,CD 上的点,且45EAF ∠=︒,连接EF ,已知3BE =,2DF =,求正方形ABCD 的边长.8.如图,ABC 是边长为3的等边三角形,BDC 是等腰三角形,且120BDC ∠=︒,以D 为顶点作一个60︒角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN 的周长.9.如图,已知:正方形ABCD ,点E ,F 分别是BC ,DC 上的点,连接AE ,AF ,EF ,且45EAF ∠=︒,求证:BE DF EF +=.10.如图,正方形ABCD中,E、F分别在边BC、CD上,且∠EAF=45°,连接EF,这种模型属于“半角模型”中的一类,在解决“半角模型”问题时,旋转是一种常用的分析思路.例如图中△ADF与△ABG可以看作绕点A旋转90°的关系.这可以证明结论“EF=BE+DF”,请补充辅助线的作法,并写出证明过程.(1)延长CB到点G,使BG=,连接AG;(2)证明:EF=BE+DF11.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是BC,CD 上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且2∠EAF =∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.12.如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.(1)求证:四边形BFGH是正方形;(2)求证:ED平分∠CEI;(3)连接IE,若正方形ABCD的边长为,则△BEI的周长为.13.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.14.(2020•锦州模拟)问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之间的数量关系.方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明.15.(2019秋•东台市期末)在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M 、N 边AB 、AC 上,且DM =DN 时,BM 、NC 、MN 之间的数量关系是;此时Q L =;(2)如图2,点M 、N 在边AB 、AC 上,且当DM ≠DN 时,猜想(I )问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M 、N 分别在边AB 、CA 的延长线上时,探索BM 、NC 、MN 之间的数量关系如何?并给出证明.16.(2019秋•九龙坡区校级月考)如图.在四边形ABCD 中,∠B +∠ADC =180°,AB =AD ,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF 12=∠BAD ,求证:EF =BE ﹣FD .17.如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,将ADF 绕点A 顺时针旋转90︒后,得到ABM ,连接EM ,AE ,且使得45∠=︒MAE .(1)求证:=ME EF ;(2)求证:222EF BE DF =+.18.(1)如图1,正方形ABCD 中,点E ,F 分别在边BC ,CD 上,∠EAF=45°,延长CD 到点G ,使DG=BE ,连结EF ,AG .求证:①∠BEA =∠G ,②EF=FG .(2)如图2,等腰直角三角形ABC 中,∠BAC=90°,AB=AC ,点M ,N 在边BC 上,且∠MAN=45°,若BM=1,CN=3,求MN 的长.19.如图所示,在ABC ∆中,30A B ∠=∠=︒,60MCN ∠=︒,MCN ∠的两边交AB 边于E ,F 两点,将MCN ∠绕C 点旋转(1)画出BCF ∆绕点C 顺时针旋转120︒后的ACK ∆;(2)在(1)中,若222AE EF BF +=,求证:BF =;(3)在(2)的条件下,若1AC =,直接写出EF 的长.20.已知,如图所示,正方形ABCD 中,E ,F 分别在边BC ,CD 上,且45EAF ∠=︒,AE ,AF 分别交BD 于H ,G ,连EF ,求证:①DF BE EF +=②222DG BH HG +=.三、填空题21.如图,在Rt △ABC 和Rt △BCD 中,∠BAC =∠BDC =90°,BC =4,AB =AC ,∠CBD =30°,M ,N 分别在BD ,CD 上,∠MAN =45°,则△DMN 的周长为_____.22.如图,在Rt △ABC 和Rt △BCD 中,∠BAC =∠BDC =90°,BC =8,AB =AC ,∠CBD =30°,BD =4 ,M ,N 分别在BD ,CD 上,∠MAN =45°,则△DMN 的周长为_____.专题06半角模型(解析版)一、单选题1.如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有()A.①②③④B.②③C.②③④D.③④【答案】C【分析】利用旋转性质可得△ABF≌△ACD,根据全等三角形的性质一一判断即可.【详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正确,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正确无法判断BE=CD,故①错误,故选:C.【点睛】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型.二、解答题2.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,求MN的长.【分析】过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.【详解】解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中AB ACB ACE BM CE⎧∠⎪∠⎪⎨⎩===,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中AM AEMAN EAN AN AN⎪∠⎪⎩∠⎧⎨===,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN.【点睛】本题主要考查全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理的综合应用,掌握三角形的全等的判定定理是解题关键.3.在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.(1)说明见解析;(2)EF=FC+BE.理由见解析.【分析】(1)根据题目中的条件和∠BED=∠CFD,可以证明△BDE≌△CDF,从而可以得到DE=DF;(2)作辅助线,过点D作∠CDG=∠BDE,交AN于点G,从而可以得到△BDE≌△CDG,然后即可得到DE=DG,BE=CG,再根据题目中的条件可以得到△EDF≌△GDF,即可得到EF=GF,然后即可得到EF,BE,CF具有的数量关系.【详解】(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°.在△BDE和△CDF中,∵,,, BED CFD DBE DCF BD CD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CDF(AAS).∴DE=DF.(2)过点D作∠CDG=∠BDE,交AN于点G.在△BDE和△CDG中,∵,,, EBD GCD BD CD BDE CDG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BDE≌△CDG(ASA)∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°.∴∠EDF=∠GDF.在△EDF和△GDF中,,,,DE DG EDF GDF DF DF =⎧⎪∠=∠⎨⎪=⎩∴△EDF ≌△GDF (SAS ).∴EF =FG .∴EF =FC +CG =FC +BE .【点睛】本题考查全等三角形的判定、解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,AB AD BC DC ===,90C D ABE BAD ∠=∠=∠=∠=︒,点E 、F 分别在边BC 、CD 上,45EAF ∠=︒,过点A 作GAB FAD ∠=∠,且点G 在CB的延长线上.(1)GAB ∆与FAD ∆全等吗?为什么?(2)若2DF =,3BE =,求EF 的长.(1)△GAB ≌△FAD ,理由见解析;(2)EF =5【分析】(1)由题意可得∠ABG =∠D =90°,进一步即可根据ASA 证得△GAB ≌△FAD ;(2)由(1)的结论可得AG =AF ,GB =DF ,易得∠BAE +∠DAF =45°,进而可推出∠GAE =∠EAF ,然后利用SAS 即可证明△GAE ≌△FAE ,可得GE =EF ,进一步即可求出结果.【详解】解:(1)∵90D ABE ∠=∠=︒,点G 在CB 的延长线上,∴∠ABG =∠D =90°,在△GAB 和△FAD 中,∵GAB FAD ∠=∠,AB =AD ,∠ABG =∠D ,∴△GAB ≌△FAD (ASA );(2)∵△GAB ≌△FAD ,∴AG =AF ,GB =DF ,∵90BAD ∠=︒,45EAF ∠=︒,∴∠BAE +∠DAF =45°,∴∠BAE +∠GAB =45°,即∠GAE =45°,∴∠GAE =∠EAF ,在△GAE 和△FAE 中,∵AG =AF ,∠GAE =∠EAF ,AE =AE ,∴△GAE ≌△FAE (SAS ),∴GE =EF ,∵GE =GB +BE =DF +BE =2+3=5,∴EF =5.【点睛】本题主要考查了全等三角形的判定和性质,属于常考题型,熟练掌握全等三角形的判定和性质是解题的关键.5.如图,在四边形ABCD 中,90B D ∠=∠=︒,E ,F 分别是BC ,CD 上的点,连接AE ,AF ,EF .(1)如图①,AB AD =,120BAD ∠=︒,60EAF ∠=︒.求证:EF BE DF =+;(2)如图②,120BAD ∠=︒,当AEF 周长最小时,求AEF AFE +∠∠的度数;(3)如图③,若四边形ABCD 为正方形,点E 、F 分别在边BC 、CD 上,且45EAF ∠=︒,若3BE =,2DF =,请求出线段EF 的长度.【答案】(1)见解析;(2)AEF AFE +∠∠120=︒;(3)5EF =.【分析】(1)延长FD 到点G,使DG BE =,连接AG ,首先证明ABE ADG ≌,则有AE AG =,BAE DAG ∠=∠,然后利用角度之间的关系得出60EAF FAG ∠=∠=︒,进而可证明EAF GAF △≌△,则EF FG DG DF ==+,则结论可证;(2)分别作点A 关于BC 和CD 的对称点A ',A '',连接A A ''',交BC 于点E ,交CD 于点F ,根据轴对称的性质有A E AE '=,A F AF ''=,当点A '、E 、F 、A ''在同一条直线上时,A A '''即为AEF 周长的最小值,然后利用AEF AFE EA A EAA FAD A ''''∠+∠=∠+∠+∠+∠求解即可;(3)旋转ABE △至ADP △的位置,首先证明PAF EAF ≌△△,则有EF FP =,最后利用EF PF PD DF BE DF ==+=+求解即可.【详解】(1)证明:如解图①,延长FD 到点G ,使DG BE =,连接AG,在ABE △和ADG 中,,,,AB AD ABE ADG BE DG =⎧⎪∠=∠⎨⎪=⎩()ABE ADG SAS ∴ ≌.AE AG ∴=,BAE DAG ∠=∠,120BAD ∠=︒ ,60EAF ∠=︒,60BAE FAD DAG FAD ∴∠+∠=∠+∠=︒.60EAF FAG ∴∠=∠=︒,在EAF △和GAF 中,,,,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩()EAF GAF SAS ∴ ≌.EF FG DG DF ∴==+,EF BE DF ∴=+;(2)解:如解图,分别作点A 关于BC 和CD 的对称点A ',A '',连接A A ''',交BC 于点E ,交CD 于点F .由对称的性质可得A E AE '=,A F AF ''=,∴此时AEF 的周长为AE EF AF A E EF A F A A '''''++=++=.∴当点A '、E 、F 、A ''在同一条直线上时,A A '''即为AEF周长的最小值.120DAB ∠=︒ ,18012060AA E A ''∴∠'︒︒+∠=-=︒.,EA A EAA FAD A ''''∠=∠∠=∠ ,,EA A EAA AEF FAD A AFE ''''∠+∠=∠∠+∠=∠,AEF AFE EA A EAA FAD A ''''∴∠+∠=∠+∠+∠+∠=()2260120AA E A '''∠+∠=⨯︒=︒;(3)解:如解图,旋转ABE △至ADP △的位置,90PAE DAE PAD DAE EAB ∴∠=∠+∠=∠+∠=︒,AP AE =,PAF PAE EAF ∠=∠-∠904545EAF =︒-︒=︒=∠.在PAF △和EAF △中,,,,AP AE PAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩()PAF EAF SAS ∴≌△△.EF FP ∴=.325EF PF PD DF BE DF ∴==+=+=+=.【点睛】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键.6.如图,ABC 是边长为2的等边三角形,BDC 是顶角为120°的等腰三角形,以点D 为顶点作60MDN ∠=︒,点M 、N 分别在AB 、AC 上.(1)如图①,当//MN BC 时,则AMN 的周长为______;(2)如图②,求证:BM NC MN +=.(1)4;(2)见解析【分析】(1)首先证明△BDM ≌△CDN ,进而得出△DMN 是等边三角形,∠BDM=∠CDN=30°,NC=BM=12DM=12MN ,即可解决问题;(2)延长AC 至点E ,使得CE BM =,连接DE ,首先证明BDM CDE △≌△,再证明MDN EDN △≌△,得出MN NE =,进而得出结果即可.【详解】解:(1)∵ABC 是等边三角形,//MN BC ,60AMN ABC ∴∠=∠=︒,60ANM ACB ∠=∠=︒∴AMN 是等边三角形,AM AN ∴=,则BM NC =,∵BDC 是顶角120BDC ∠=︒的等腰三角形,30DBC DCB ∴∠=∠=︒,90DBM DCN ∴∠=∠=︒,在BDM 和CDN △中,,,,BM CN MBD DCN BD CD =⎧⎪∠=∠⎨⎪=⎩()BDM CDN SAS ∴△≌△,DM DN ∴=,BDM CDN ∠=∠,∵60MDN ∠=︒,∴DMN 是等边三角形,30BDM CDN ∠=∠=︒,1122NC BM DM MN ∴===,MN MB NC ∴=+,∴AMN 的周长4AB AC =+=.(2)如图,延长AC 至点E ,使得CE BM =,连接DE ,∵ABC 是等边三角形,BDC 是顶角120BDC ∠=︒的等腰三角形,60ABC ACB ∴∠=∠=︒,30DBC DCB ∠=∠=︒,90ABD ACD ∠∴∠==︒,90DCE ∴∠=︒,在BDM 和CDE △中,,,,BD CD MBD ECD BM CE =⎧⎪∠=∠⎨⎪=⎩()BDM CDE SAS ∴△≌△,MD ED ∴=,MDB EDC ∠=∠,120120MDE MDB EDC ∴∠=︒-∠+∠=︒,∵60MDN ∠=︒,60NDE ∴∠=︒,在MDN △和EDN △中,,60,,MD ED MDN NDE DN DN =⎧⎪∠=∠=︒⎨⎪=⎩()MDN EDN SAS ∴△≌△.MN NE ∴=,又∵NE NC CE NC BM =+=+,BM NC MN ∴+=.【点睛】本题考查了全等三角形的判定与性质及等边三角形的性质及等腰三角形的性质,掌握全等三角形的性质与判定,等边三角形及等腰三角形的性质是解题的关键.7.问题背景如图①,在四边形ABCD 中,AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,点E ,F 分别是BC ,CD 上的点,且60EAF ∠=︒,连接EF ,探究线段BE ,EF ,DF 之间的数量关系.探究发现(1)小明同学的方法是将ABE △绕点A 逆时针旋转120︒至ADG 的位置,使得AB 与AD 重合,然后再证明AFE AFG △≌△,从而得出结论:______;拓展延伸(2)如图②,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别是边BC ,CD 上的点,且12EAF BAD ∠=∠,连接EF .(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图③,在正方形ABCD 中,点E ,F 分别是边BC ,CD 上的点,且45EAF ∠=︒,连接EF ,已知3BE =,2DF =,求正方形ABCD 的边长.(1)EF BE DF =+;(2)(1)中的结论EF BE DF =+仍然成立.证明见解析;(3)正方形ABCD 的边长为6.【分析】(1)证明AEF AGF ≌,可得EF FG =,即可得出结论;(2)要探究BE ,EF ,DF 之间的数量关系,方法同(1)即可得出结论;(3)根据(1)(2)的结论和勾股定理,即可求出正方形ABCD 的边长.【详解】(1)解:由旋转得:AE=AG ,∠BAE=∠DAG ,BE=DG ,∵120BAD ∠=︒,∴∠EAG=120°,∵60EAF ∠=︒,∴∠GAF=60EAF ∠=︒,又∵AF=AF ,∴AFE AFG △≌△,∴EF=GF ,∵GF=DG+DF ,∴EF BE DF =+,故答案为:EF BE DF =+;(2)解:(1)中的结论EF BE DF =+仍然成立.证明:如解图,将ABE △绕点A 逆时针旋转至ADG 的位置,使AB 与AD 重合.则ADG B ∠=∠,DG BE =,AG AE =,BAE DAG ∠=∠,又∵180B ADC ∠+∠=︒,∴180ADG ADC ∠+∠=︒,∴C ,D ,G 三点共线.∵12FAD DAG FAD BAE BAD EAF BAD ∠+∠=∠+∠=∠-∠=∠,∴FAG EAF ∠=∠,又∵AF AF =,∴AEF AGF ≌,∴EF FG =,又∵FG DG DF BE DF =+=+,∴EF BE DF =+;(3)解:由(1)(2)可知325EF BE DF =+=+=.设正方形ABCD 的边长为x ,则3CE x =-,2CF x =-,在Rt CEF 中,222EF CE CF =+,∴()()222532x x =-+-,解得16x =,21x =-(不合题意,舍去),故正方形ABCD 的边长为6.【点睛】此题考查了旋转的性质,全等三角形的判定及性质,勾股定理的运用,正方形的性质,解题中注意类比方法的运用,同样的类型题可以运用同样的思路及方法进行证明.8.如图,ABC 是边长为3的等边三角形,BDC 是等腰三角形,且120BDC ∠=︒,以D 为顶点作一个60︒角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN 的周长.的周长为6.AMN【分析】要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CDN,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.此题主要利用等边三角形和等腰三角形的性质来证明三角形全等,构造另一个三角形是解题的关键.9.如图,已知:正方形ABCD ,点E ,F 分别是BC ,DC 上的点,连接AE ,AF ,EF ,且45EAF ∠=︒,求证:BE DF EF +=.见解析.【分析】将△ABE 绕点A 逆时针旋转90°得到△ADG ,根据旋转的性质可得GD=BE ,AG=AE ,∠DAG=∠BAE ,然后求出∠FAG=∠EAF ,再利用“边角边”证明△AEF 和△AGF 全等,根据全等三角形对应边相等可得EF=FG ,即可得出结论.【详解】如解图,将ABE △绕点A 逆时针旋转90︒至ADG 的位置,使AB 与AD 重合.∴AG AE =,,DAG BAE DG BE ∠=∠=.∵45EAF ∠=︒.∴904545GAF DAG DAF BAE DAF BAD EAF ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒,∴EAF GAF ∠=∠.在AGF 和AEF 中,,AG AE GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()AGF AEF SAS △≌△.∴EF GF =.∵GF DG DF BE DF =+=+,∴BE DF EF +=.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,难点在于利用旋转变换作出全等三角形.10.如图,正方形ABCD 中,E 、F 分别在边BC 、CD 上,且∠EAF =45°,连接EF ,这种模型属于“半角模型”中的一类,在解决“半角模型”问题时,旋转是一种常用的分析思路.例如图中△ADF 与△ABG 可以看作绕点A 旋转90°的关系.这可以证明结论“EF =BE +DF ”,请补充辅助线的作法,并写出证明过程.(1)延长CB 到点G ,使BG =,连接AG ;(2)证明:EF =BE +DF【答案】见解析.【分析】将△ABE 绕点A 逆时针旋转90°得到△ADG ,根据旋转的性质可得GD=BE ,AG=AE ,∠DAG=∠BAE ,然后求出∠FAG=∠EAF ,再利用“边角边”证明△AEF 和△AGF 全等,根据全等三角形对应边相等可得EF=FG ,即可得出结论.【详解】如解图,将ABE △绕点A 逆时针旋转90︒至ADG 的位置,使AB 与AD重合.∴AG AE =,,DAG BAE DG BE ∠=∠=.∵45EAF ∠=︒.∴904545GAF DAG DAF BAE DAF BAD EAF ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒,∴EAF GAF ∠=∠.在AGF 和AEF 中,,AG AE GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()AGF AEF SAS △≌△.∴EF GF =.∵GF DG DF BE DF =+=+,∴BE DF EF +=.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,难点在于利用旋转变换作出全等三角形.11.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是BC,CD 上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且2∠EAF =∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.【答案】(1)DF;(2)见解析【分析】(1)由于△ADF与△ABG可以看作绕点A旋转90°的关系,根据旋转的性质知BG=DF,从而得到辅助线的做法;(2)先证明△ADF≌△ABG,得到AG=AF,∠GAB=∠DAF,结合∠EAF=45°,易知∠GAE=45°,再证明△AGE≌△AFE即可得到EF=GE=BE+GB=BE+DF【详解】解:(1)根据旋转的性质知BG=DF,从而得到辅助线的做法:延长CB到点G,使BG=DF,连接AG;(2)∵四边形ABCD为正方形,∴AB=AD ,∠ADF=∠ABE=∠ABG=90°,在△ADF 和△ABG 中AD AB ADF ABG DF BG =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABG (SAS ),∴AF=AG ,∠DAF=∠GAB ,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠GAB+∠EAB=45°,∴∠GAE=∠EAF =45°,在△AGE 和△AFE 中0AG AF GAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABG (SAS ),∴GE=EF ,∴EF =GE=BE+GB=BE +DF【点睛】本题属于四边形综合题,主要考查正方形的性质及全等三角形的判定和性质等知识,解题的关键是学会利用旋转方法提示构造全等三角形,属于中考常考题型.12.如图,点E 是正方形ABCD 的边BC 上一点,连接DE ,将DE 绕着点E 逆时针旋转90°,得到EG ,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.(1)求证:四边形BFGH是正方形;(2)求证:ED平分∠CEI;(3)连接IE,若正方形ABCD的边长为,则△BEI的周长为.【答案】(1)见解析;(2)见解析;(3)【分析】(1)先证根据∠F=∠GHB=∠ABF=90°证得四边形BFGH为矩形,再证明△DCE≌△EFG进而可证得BF=FG,根据有一组邻边相等的矩形是正方形即可得证;(2)延长EC到点M,使得CM=AI,连接DM,先证△ADI≌△CDM可得DI=DM,∠ADI=∠CDM,进而可证△EDM≌△EDI得∠DEI=∠DEC,即可得证;(3)由(2)可知IE=EM=EC+CM=EC+AI,则△BEI的周长为BI+BE+IE=BI+BE+EC+AI=AB +BC,由此可求得答案.【详解】(1)证明:∵将DE绕着点E逆时针旋转90°得到EG,∴DE=EG,∠DEG=90°,∴∠DEC+∠GEF=90°,∵在正方形ABCD中∴∠C=∠ABC=∠ABF=90°,BC=CD,∴∠DEC +∠CDE =90°,∴∠CDE =∠GEF ,∵GF ⊥CB ,GH ⊥AB ,∴∠F =∠GHB =90°,∴∠F =∠GHB =∠ABF =90°,∴四边形BFGH 为矩形,在△DCE 与△EFG 中,F C CDE GEF GE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCE ≌△EFG (AAS )∴EF =CD ,FG =CE ,∴EF =BC ,∴EF -BE =BC -BE ,即BF =CE ,∴BF =FG ,∴矩形BFGH 为正方形;(2)证明:如图,延长EC 到点M ,使得CM =AI ,连接DM ,∵在正方形ABCD 中∴∠ADC =∠A =∠DCE =∠DCM =90°,AD =CD ,在△ADI 与△CDM 中,AD CD A DCM AI CM =⎧⎪∠=∠⎨⎪=⎩∴△ADI ≌△CDM (SAS )∴DI =DM ,∠ADI =∠CDM ,∵DE =EG ,∠DEG =90°,∴∠EDG =∠EGD =45°,又∵∠ADC =90°,∴∠ADI +∠CDE =45°,∴∠EDM =∠CDM +∠CDE =45°,∴∠EDM =∠EDG ,在△EDM 与△EDI 中,ED ED EDM EDI DM DI =⎧⎪∠=∠⎨⎪=⎩∴△EDM ≌△EDI (SAS )∴∠DEI =∠DEC ,∴DE 平分∠IEC ;(3)解:由(2)可知△EDM ≌△EDI ,∴IE =EM =EC +CM ,又∵CM =AI ,∴IE =EC +CM =EC +AI ,∴△BEI的周长为BI+BE+IE=BI+BE+EC+AI=AB+BC,∵正方形ABCD的边长为,∴△BEI的周长为AB+BC=,故答案为:.【点睛】本题考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形的判定及性质,熟练掌握相关图形的判定及性质以及作出正确的辅助线是解决本题的关键.13.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【答案】(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立,详见解析;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.【分析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,得到△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD+∠AFE=45°+45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.【详解】解:(1)DE2=BD2+EC2;证明:如图,将△ADB沿直线AD对折,得△AFD,连FE,∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,∵∠BAC=90°,∠DAE=45°∴∠BAD+∠CAE=45°,∠FAD+∠FAE=45°,∴∠CAE=∠FAE又AE=AE,AF=AB=AC∴△AFE≌△ACE,∴∠DFE=∠AFD+∠AFE=45°+45°=90°,∴DE2=FD2+EF2∴DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.【点睛】此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.14.(2020•锦州模拟)问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之间的数量关系.方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明.【答案】(1)CM=AN+MN,详见解析;(2)CM=MN﹣AN,详见解析【分析】(1)在AC上截取CD=AN,连接OD,证明△CDO≌△ANO,根据全等三角形的性质得到OD=ON,∠COD =∠AON,证明△DMO≌△NMO,得到DM=MN,结合图形证明结论;(2)在AC延长线上截取CD=AN,连接OD,仿照(1)的方法解答.【详解】解:(1)CM=AN+MN,理由如下:在AC上截取CD=AN,连接OD,∵△ABC 为等边三角形,∠BAC 与∠ACB 的角平分线交于点O ,∴∠OAC =∠OCA =30°,∴OA =OC ,在△CDO 和△ANO 中,OC OA OCD OAN CD AN =⎧⎪∠=∠⎨⎪=⎩,∴△CDO ≌△ANO (SAS )∴OD =ON ,∠COD =∠AON ,∵∠MON =60°,∴∠COD +∠AOM =60°,∵∠AOC =120°,∴∠DOM =60°,在△DMO 和△NMO 中,OD ON DOM NOM OM OM =⎧⎪∠=∠⎨⎪=⎩,∴△DMO ≌△NMO ,∴CM =CD +DM =AN +MN ;(2)补全图形如图2所示:CM =MN ﹣AN ,理由如下:在AC 延长线上截取CD =AN ,连接OD ,在△CDO 和△ANO 中,150CD AN OCD OAN OC OA =⎧⎪∠=∠=︒⎨⎪=⎩,∴△CDO ≌△ANO (SAS )∴OD =ON ,∠COD =∠AON ,∴∠DOM =∠NOM ,在△DMO 和△NMO 中,OD ON DOM NOM OM OM =⎧⎪∠=∠⎨⎪=⎩,∴△DMO ≌△NMO (SAS )∴CM=DM﹣CD=MN﹣AN.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知等边三角形的性质及全等三角形的判定定理.15.(2019秋•东台市期末)在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时QL ;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.【答案】(1)BM+NC=MN,23;(2)结论仍然成立,详见解析;(3)NC﹣BM=MN,详见解析【分析】(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系BM+NC=MN,此时23 QL=;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN =∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN =∠MDN=60°,易证得△MDN≌△M1DN,则可得NC﹣BM=MN.【详解】(1)如图1,BM、NC、MN之间的数量关系BM+NC=MN.此时23 QL=.理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴23 QL=;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴23 QL=;(3)证明:在CN上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N.∴NC﹣BM=MN.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知等边三角形的性质及全等三角形的判定定理.16.(2019秋•九龙坡区校级月考)如图.在四边形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分别是边BC、CD延长线上的点,且∠EAF12∠BAD,求证:EF=BE﹣FD.【答案】详见解析【分析】在BE上截取BG,使BG=DF,连接AG.根据SAS证明△ABG≌△ADF得到AG=AF,∠BAG=∠DAF,根据∠EAF12∠BAD,可知∠GAE=∠EAF,可证明△AEG≌△AEF,EG=EF,那么EF=GE=BE﹣BG=BE﹣DF.【详解】证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.在△ABG和△ADF中,AB AD B ADF BG DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△ADF (SAS ),∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF 12=∠BAD .∴∠GAE =∠EAF .在△AEG 和△AEF 中,AG AF GAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△AEG ≌△AEF (SAS ).∴EG =EF ,∵EG =BE ﹣BG∴EF =BE ﹣FD .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据已知条件作出辅助线求解.17.如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,将ADF 绕点A 顺时针旋转90︒后,得到ABM ,连接EM ,AE ,且使得45∠=︒MAE .。

专题02 全等模型-半角模型(解析版)

专题02 全等模型-半角模型(解析版)

专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。

模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D Ð+Ð=°,点E ,F 分别在BC ,CD 上,若2BAD EAF ÐÐ=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D Ð=°,120ABC Ð=°,150BCD Ð=°,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =-,若在M ,N 之间修一条直路,则路线M N ®的长比路线M A N ®®的长少_________m 1.7»).【答案】370【分析】延长,AB DC 交于点E ,根据已知条件求得90E Ð=°,进而根据含30度角的直角三角形的性质,求得,EC EB ,,AE AD ,从而求得AN AM +的长,根据材料可得MN DM BN =+,即可求解.【详解】解:如图,延长,AB DC 交于点E ,连接,CM CN ,Q 60D Ð=°,120ABC Ð=°,150BCD Ð=°,30A \Ð=°,90E Ð=°,100DC DM ==Q DCM \V 是等边三角形,60DCM \Ð=°,90BCM \Ð=°,在Rt BCE V 中,100BC =,18030ECB BCD Ð=°-Ð=°,1502EB BC ==,EC ==100DE DC EC \=+=+Rt ADE △中,2200AD DE ==+150AE ==+,\200100100AM AD DM =-=+=+()AN AB BN AE EB BN =-=--())15050501=--150=,100150250AM AN \+=++=+Rt CMB △中,BM ==Q )50501EN EB BN EC =+=+==ECN \V 是等腰直角三角形()1752NCM BCM NCB BCM NCE BCE DCB \Ð=Ð-Ð=Ð-Ð-Ð=°=Ð由阅读材料可得))100501501MN DM BN =+=+-=,\路线M N ®的长比路线M A N ®®的长少)250501200370+-+=+»m .答案:370.【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键.2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到ADE ¢△的位置,然后证明AFE AFE ¢≌△△,从而可得=EF E F ¢.E F E D DF BE DF ¢¢=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD Ð=Ð,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD Ð=Ð,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O e 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.由旋转可知ABE ADE ¢≌△△,∴BE ∵∠B +∠ADC =180°,∴ADC ADE Ð+Ð∵12EAF BAD Ð=Ð,∴BAE DAF Ð+Ð∴12DAE DAF BAD ¢Ð+Ð=,∴FAE Ð∵AF =AF ,∴FAE FAE ¢≌△△,∴FE 由圆内接四边形性质得:∠AC P 即P ,C ,P ¢在同一直线上.∴∵BC 为直径,∴∠BAC =90°=∠BAP ∴△PAP ¢为等腰直角三角形,∴【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF Ð=°,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG V ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF Ð=°,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明)②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF Ð=°,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =AF 的长.BAE DAG \Ð=Ð,AE AG =,90B ADG Ð=Ð=°,180ADF ADG \Ð+Ð=°,F \,D ,G 三点共线,45EAF Ð=°Q ,45BAE FAD \Ð+Ð=°,45DAG FAD \Ð+Ð=°,EAF FAG \Ð=Ð,AF AF =Q ,()EAF GAF SAS \D @D ,EF FG DF DG \==+,EF DF BE \=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE D 绕点A 顺时针旋转90°至ADM D ,EAB MAD \Ð=Ð,AE AM =,90EAM =°∠,BE DM =,45FAM EAF \Ð=°=Ð,AF AF =Q ,()EAF MAF SAS \D @D ,EF FM DF DM DF BE \==-=-;②如图3,将ADF D 绕点A 逆时针旋转90°至ABN D ,4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12=∠BAD.当BC=4,DC=7,CF=1时,V CEF的周长等于.(4)如图4,正方形ABCD中,V AMN的顶点M、N分别在BC、CD边上,AH⊥MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=,求EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.(5)将△ADF 绕A 顺时针旋转120°,AD与AB 重合,F 转到G ,在AG 上取AH =AN ,连接BH 、MH ,利用△ABH ≌△ADN 和△AMH ≌△AMN ,证明MN =MH ,DN =BH ,再证明△BMH 为直角三角形即可.【详解】(1)EF =FC +AE ,理由如下:证明:将△DAE 绕点D 逆时针旋转90°,得到△DCM ,∴△DAE ≌△DCM ,∴DE =DM ,AE =CM ,∠ADE =∠CDM ,B 、C 、M 三点共线,∵∠EDF =45°,∴∠ADE +∠FDC =∠CDM +∠FDC =∠MDF =45°,在△DEF 和△DMF 中,45DE DM EDF MDF DF DF =ìïÐ=Ð=°íï=î,∴△DEF ≌△DMF (SAS ),∴EF =FM ∴EF =FM =FC +CM =FC +AE ;(2)解:如图,在DC 上取一点G ,使得DG =BE ,∵∠BAD =∠BCD =90°,∴∠ABC +∠D =180°,∠ABE +∠ABC =180°,∴∠ABE =∠D ,∵AB =AD ,BE =DG ,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =45°,∴∠EAB +∠BAF =∠DAG +∠BAF =45°,∵∠BAD =90°,∴∠FAG =∠FAE =45°,∵AE =AG ,AF =AF ,∴△AFE ≌△AFG (SAS ),∴EF =FG ,设BE =x ,则EC =EB +BC =x +7,EF =FG =18-x ,在Rt △ECF 中,∵EF 2=EC 2+CF 2,∴52+(7+x )2=(18-x )2,∴x =5,∴BE =5;(3)解:在DF 上截取DM =BE ,课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.(2)仍成立,理由:如图2,延长FD 到点G ,使DG =BE ,连接AG ,∵∠B +∠ADF =180°,∠ADG +∠ADF =180°,∴∠B =∠ADG ,又∵AB =AD ,∴△ABE ≌△ADG (SAS ),∴∠BAE =∠DAG ,AE =AG ,∵EF =BE +FD =DG +FD =GF ,AF =AF ,∴△AEF ≌△AGF (SSS ),∴∠EAF =∠GAF =∠DAG +∠DAF =∠BAE +∠DAF ;1∠DAB .证明:如图3,在DC 延长线上取一点G ,使得2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D Ð+Ð=°,AB AD =,以点A 为顶点作EAF Ð,且12EAF BAD Ð=Ð,连接EF .(1)观察猜想 如图(2),当90BAD B D Ð=Ð=Ð=°时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC V 中,90BAC Ð=°,4AB AC ==,点D ,E 均在边BC 上,且45DAE Ð=°,若BD =,求DE 的长.(2)如下图,延长CD 至点H ,使得DH=BE ,∵B ADF Ð+а,∴B ADH Ð=Ð,同(1)②的证明方法得ABE ADH ≌△△,同理证AEF ≌△△,从而得BE FD EF +=.(3)如图过点C 作CM BC ⊥,且CM BD =,3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF Ð=°,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD Ð=°,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B Ð、D Ð都不是直角,则当B Ð与D Ð满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在△ABC 中,90BAC Ð=°,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.【详解】()1证明:如图1中,AB AD=Q,\把△ABE绕点A逆时针旋转90°至△ADG,AB与AD重合.∠ADC=∠B=90°∠FDG=180°,点F、D、G三点共线,则DAG BAEÐÐ=,AE AG=,∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°-45°=45°=∠EAF即∠EAF=∠FAG,在△EAF和△GAF中,AF AFEAF GAFAE AG=ìïÐ=Ðíï=î,∴△AFG≌△()AFE SAS,∴EF=FG=BE+DF;()2当180B DÐ+Ð=°,仍有EF BE DF=+.理由:AB AD=Q,\把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图2,BAE DAG\Ð=Ð,∠B=∠ADG90BADÐ=°Q,45EAFÐ=°,∴∠BAE+∠DAF=45°,∴∠FAG=45°∴∠EAF=∠FAG,180ADC BÐ+Ð=°Q,∴∠ADC+∠ADG=180°∴∠FDG=180°,点F、D、G共线.在△AFE和△AFG中,AE AGFAE FAGAF AF=ìïÐ=Ðíï=î∴△AFE≌△AFG(SAS).EF FG\=,即:EF BE DF=+.故答案为:180B DÐ+Ð=°.()3将△ACE绕点A旋转到△ABF的位置,连接DF,则∠FAB=∠CAE90BACÐ=°Q,45DAEÐ=°,∴∠BAD+∠CAE=45°.又∵∠FAB=∠CAE,∴∠FAB+∠BAD=45°,∴∠FAD=∠DAE=45°.4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM =DN 时,(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.【答案】(1)BM DN MN +=,理由见解析;(2)DN BM MN -=,理由见解析【分析】(1)把ADN D 绕点A 顺时针旋转90°,得到ABE D ,然后证明得到AEM ANM D D ≌,从而证得ME MN =,可得结论;(2)首先证明ADQ ABM D D ≌,得DQ BM =,再证明AMN AQN D D ≌,得MN QN =,可得结论;(1)解:BM DN MN +=.理由如下:如图2,把ADN D 绕点A 顺时针旋转90°,得到ABE D ,90ABE ADN \Ð=Ð=°,AE AN =,BE DN =,180ABE ABC \Ð+Ð=°,\点E ,点B ,点C 三点共线,90904545EAM NAM \Ð=°-Ð=°-°=°,又45NAM Ð=°Q ,在AEM D 与ANM D 中,AE AN EAM NAM AM AM =ìïÐ=Ðíï=î,AEM ANM \D D ≌(SAS ),ME MN \=,ME BE BM DN BM =+=+Q ,DN BM MN \+=;(2)解:DN BM MN -=.理由如下:在线段DN 上截取DQ BM =,在ADQ D 与ABM D 中,AD AB ADQ ABM DQ BM =ìïÐ=Ðíï=î,ADQ ABM \D D ≌(SAS ),DAQ BAM \Ð=Ð,QAN MAN \Ð=Ð.在AMN D 和AQN D 中,AQ AM QAN MAN AN AN =ìïÐ=Ðíï=î,AMN AQN \D D ≌(SAS ),MN QN \=,DN BM MN \-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN Ð=°,MAN Ð绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN Ð绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ¹时(如图2),求证:MN BM DN =+;(3)当MAN Ð绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.【答案】(1)见解析(2)见解析(3)DN BM MN -=,见解析【分析】(1)把ADN △绕点A 顺时针旋转90°,得到ABE △,证得B 、E 、M 三点共线,即可得到AEM △≌ANM V ,从而证得ME MN =;(2)证明方法与(1)类似;(3)在线段DN 上截取DQ BM =,判断出ADQ △≌ABM V,同(2)的方法,即可得出结论.(1)证明:如图1,∵把ADN △绕点A 顺时针旋转90°,得到ABE △,ABE \V ≌ADN △,AE ANM \=,ABE D Ð=Ð,Q 四边形ABCD 是正方形,90ABC D \Ð=Ð=°,90ABE ABC \Ð=Ð=°,\点E 、B 、M 三点共线.90904545EAM NAM \Ð=°-Ð=°-°=°,又45NAM Ð=°Q ,在AEM △与ANM V 中,AE AN EAM NAM AM AM =ìïÐ=Ðíï=î,AEM \△≌()ANM SAS V ,ME MN \=,ME BE BM DN BM =+=+Q ,DN BM MN \+=,BM DN =Q ,2MN BM \=.(2)证明:如图2,把ADN △绕点A 顺时针旋转90°,得到ABE △,ABE \V ≌ADN △,AE ANM \=,ABE D Ð=Ð,Q 四边形ABCD 是正方形,90ABC D \Ð=Ð=°,90ABE ABC \Ð=Ð=°,\点E 、B 、M三点共线.90904545EAM NAM \Ð=°-Ð=°-°=°,又45NAM Ð=°Q ,在AEM △与ANM V 中,AE AN EAM NAM AM AM =ìïÐ=Ðíï=î,AEM \△≌()ANM SAS V ,ME MN \=,ME BE BM DN BM =+=+Q ,DN BM MN \+=.(3)解:DN BM MN -= 理由如下:如图3,在线段DN 上截取DQ BM =,连接AQ ,在ADQ △与ABMV 中,AD AB ADQ ABM DQ BM =ìïÐ=Ðíï=î,ADQ \V ≌()ABM SAS V ,DAQ BAM \Ð=Ð,QAN MAN \Ð=Ð.在AMN V 和AQN △中,AQ AM QAN MAN AN AN =ìïÐ=Ðíï=î,AMN\V ≌()AQN SAS V ,MN QN \=,DN BM MN \-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,学会利用旋转法添加辅助线,构造全等三角形是解题的关键.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC Ð=Ð=°,100BAD Ð=°,50EAF Ð=°,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC Ð+Ð=°,2BAD EAF ÐÐ=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.【答案】(1)EF =BE +DF ,理由见解析;(2)EF =BE +DF ,理由见解析;(3)85海里【分析】(1)延长CD 至点G ,使DG =BE ,连接AG ,可证得△ABE ≌△ADG ,可得到AE =AG ,∠BAE =∠DAG ,再由100BAD Ð=°,50EAF Ð=°,可证得△AEF ≌△AGF ,从而得到EF =FG ,即可求解;(2)延长CD 至点H ,使DH =BE ,连接AH ,可证得△ABE ≌△ADH ,可得到AE =AH ,∠BAE =∠DAH ,再由2BAD EAF ÐÐ=,可证得△AEF ≌△AHF ,从而得到EF =FH ,即可求解;(3)连接CD ,延长AC 、BD 交于点M ,根据题意可得∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,再由(2)【迁移推广】得:CD =AC +BD ,即可求解.【详解】解:(1)EF =BE +DF ,理由如下:如图,延长CD 至点G ,使DG =BE ,连接AG ,∵90ABC ADC Ð=Ð=°,∴∠ADG =∠ABC =90°,∵AB =AD ,∴△ABE ≌△ADG ,∴AE =AG ,∠BAE =∠DAG ,∵100BAD Ð=°,50EAF Ð=°,∴∠BAE +∠DAF =50°,∴∠FAG =∠EAF =50°,∵AF =AF ,∴△AEF ≌△AGF ,∴EF =FG ,∵FG =DG +DF ,∴EF =DG +DF =BE +DF ;(2)EF =BE +DF ,理由如下:如图,延长CD 至点H ,使DH =BE ,连接AH ,∵180ABC ADC Ð+Ð=°,∠ADC +∠ADH =180°,∴∠ADH =∠ABC ,∵AB =AD ,∴△ABE ≌△ADH ,∴AE =AH ,∠BAE =∠DAH ,∵2BAD EAF ÐÐ=∴∠EAF =∠BAE +∠DAF =∠DAF +∠DAH ,∴∠EAF =∠HAF ,∵AF =AF ,∴△AEF ≌△AHF ,∴EF =FH ,∵FH =DH +DF ,∴EF =DH +DF =BE +DF ;(3)如图,连接CD ,延长AC 、BD 交于点M ,根据题意得: ∠AOB =20°+90°+40°=150°,∠OBD =60°+50°=110°,∠COD =75°,∠OAM =90°-20°=70°,OA =OB ,∴∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,∵OA=OB,∴由(2)【迁移推广】得:CD=AC+BD,∵AC=80×0.5=40,BD=90×0.5=45,∴CD=40+45=85海里.即此时两舰艇之间的距离85海里.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将△ABD绕点A按逆时针方向旋转90º,得到△ACF,联结EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△FAE≌△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.(1)请回答:在图2中,∠FCE的度数是,DE的长为.参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=12∠BAD.猜想线段BE,EF,FD之间的数量关系并说明理由.∴BE =DG ,AE =AG ,∵∠B +∠ADC =180°,∠∴∠ADG +∠ADC =180°∵∠EAF =12∠BAD ,∴∠8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【分析】(1)延长CB 到G 使BG DN =,连接AG ,先证明AGB AND @△△,由此得到AG AN =,GAB DAN Ð=Ð,再根据45MAN Ð=°,90BAD Ð=°,可以得到45GAM NAM Ð=Ð=°,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND @△△,由此得到AG AN =,GAB DAN Ð=Ð,由此可得90GAN BAD Ð=Ð=°,再根据45MAN Ð=°可以得到45GAM NAM Ð=Ð=°,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN -=;(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG V V ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD Ð=Ð=Ð=°,在ABG V 与ADN △中,AB AD ABG ADN BG DN =ìïÐ=Ðíï=î, ()AGB AND SAS \△≌△,AG AN \=,GAB DAN Ð=Ð,45MAN Ð=°Q ,90BAD Ð=°,∴45DAN BAM BAD MAN Ð+Ð=Ð-Ð=°,45GAM GAB BAM DAN BAM \Ð=Ð+Ð=Ð+Ð=°,GAM NAM \Ð=Ð,在AMN V 与AMG V 中,AM AM GAM NAM AN AG =ìïÐ=Ðíï=î, ()AMN AMG SAS \△≌△,MN GM \=,又∵BM GB GM +=,BG DN =,BM DN MN \+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD Ð=Ð=Ð=°,在ABG V 与ADN△中,AB AD ABG ADN GB DN =ìïÐ=Ðíï=î,()AGB AND SAS \△≌△,AG AN \=,GAB DAN Ð=Ð,∴GAB GAD DAN GAD Ð+Ð=Ð+Ð,∴90GAN BAD Ð=Ð=°,又45MAN Ð=°Q ,45GAM GAN MAN MAN \Ð=Ð-Ð=°=Ð,在AMN V 与AMG V 中,AM AM GAM NAM AN AG =ìïÐ=Ðíï=î,()AMN AMG SAS \△≌△,MN GM \=,又∵BM BG GM -=,BG DN =,∴BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∵四边形ABCD 是正方形,∴AB AD BC CD ===,90ABM ADG BAD Ð=Ð=Ð=°,//AB CD ,9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A 重合,将此三角板绕点A 旋转,使三角板中该锐角的两条边分别交正方形的两边BC ,DC 于点E ,F ,连接EF .(1)猜想BE 、EF 、DF 三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A 作AM ⊥EF 于点M ,请直接写出AM 和AB 的数量关系;(3)如图2,将Rt △ABC 沿斜边AC 翻折得到Rt △ADC ,E ,F 分别是BC ,CD 边上的点,∠EAF =12∠BAD ,连接EF ,过点A 作AM ⊥EF 于点M ,试猜想AM 与AB 之间的数量关系.并证明你的猜想.【答案】(1)EF =BE +DF .证明见解析;(2)AM =AB ;(3)AM =AB .证明见解析10.(2022·北京四中九年级期中)如图,在△ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP(0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD⊥CP于点D,交CQ 于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.【答案】(1)作图见解析.(2)结论:AD+BE=DE.证明见解析.【分析】(1)根据要求作出图形即可.(2)结论:AD+BE=DE.延长DA至F,使DF=DE,连接CF.利用全等三角形的性质解决问题即可.(1)解:如图所示:(2)结论:AD+BE=DE.理由:延长DA至F,使DF=DE,连接CF.∵AD⊥CP,DF=DE,∴CE=CF,∴∠DCF =∠DCE =45°,∵∠ACB =90°,∴∠ACD +∠ECB =45°,∵∠DCA +∠ACF =∠DCF =45°,∴∠FCA =∠ECB ,在△ACF 和△BCE 中,CA CB ACF BCE CF CE =ìïÐ=Ðíï=î,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =DE .【点睛】本题考查作图-旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

中考数学二轮专题复习 半角旋转模型 课件

中考数学二轮专题复习  半角旋转模型 课件
中考二轮专题复习 课件:
半角旋转模型
一阶 认识模型
模型分析 1. 正方形含半角模型 特点:如图,在正方形ABCD中,E,F 分别为BC,CD上的点,连接AE,AF, EF,若∠EAF=45°.
辅助线作法: 作法一:将△ADF绕点A顺时针旋转到△ABG,使得AD与AB重合,连接 FG; 作法二:延长线段CB到点G,使得BG= DF,连接AG,FG. 结论:(1)△AEF与△AEG的关系是 __△__A_E_F__≌__△__A_E_G___; (2)△AGF为__等__腰__直__角__三__角__形___; (3)BE+DF=___E__F___.
②△AFE≌__△__A_D_E__; 【解法提示】由旋转的性质,得∠ACF=∠ABD,CF=BD,AF=AD, 由①得∠EAF=∠EAD且AE=AE, ∴△AFE≌△ADE(SAS).
③若BD=2,CE=4,则DE=___2__5___;
【解法提示】由(2)②得△AFE≌△ADE,∴FE=DE, ∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°, ∴∠ECF=∠ECA+∠ACF=∠ECA+∠B= 45°+45°=90°, ∵BD=2,∴CF=2,∴EF= CE2+CF2=2 5, ∴DE=2 5.
2. 如图,在四边形ABCD中,点E是直线BC上一点,将射线AE绕点A逆 时针旋转α交直线CD于点F. (1)如图①,若四边形ABCD为菱形,∠B=60°,α=60°,则AE与AF之 间的数量关系是________;
【解法提示】如图①,连接AC, ∵四边形ABCD是菱形, ∴AB=BC=CD=AD,AB∥CD,∴∠ACD=∠BAC. ∵∠B=60°,∴△ABC是等边三角形, ∴AB=AC,∠ACD=∠BAC=60°. ∵∠EAF=60°, ∴∠BAE+∠EAC=∠EAC+∠CAF=60°, ∴∠BAE=∠CAF,∴△ABE≌△ACF,∴AE=AF. 【答案】(1)AE=AF;

2025年中考数学总复习第二部分重难专题突破专题5“倍半角”模型解决旋转变换问题

2025年中考数学总复习第二部分重难专题突破专题5“倍半角”模型解决旋转变换问题

∠BAD=∠EAF.∴ ∠EAG=∠EAF.又∵ AE=AE,∴

△AEG≌△AEF.∴ EG=EF.∵ EG=BE+BG,∴ EF
=BE+DF.
(3) 如图③,在四边形ABCD中,AD=AB,∠ABC与∠D互补,点E,
1
F分别在射线CB,DC上,且∠EAF= ∠BAD.当BC=4,CD=7,CF=1
的半角模型是90°含45°,120°含60°.
(1) 如图①,在正方形ABCD中,E,F分别是边AB,BC上的点,且
∠EDF=45°,探究线段EF,AE,FC之间的数量关系.
小明的探究思路如下:如图①,延长BC到点M,使CM=AE,连接
DM,先证明△ADE≌△CDM,再证明△DEF≌△DMF.小亮发现
2
时,△CEF的周长为 13 .
解:(3)解析:如图②,在DF上截取DM=BE,连接AM.
∵ ∠ABC与∠D互补,
∴ ∠D+∠ABC=∠ABE+∠ABC=180°.
∴ ∠D=∠ABE.∵ AD=AB,∴ △ADM≌△ABE.
∴ AM=AE,∠DAM=∠BAE.

∵ ∠EAF=∠BAE+∠BAF=∠DAM+∠BAF= ∠BAD,

∵ ∠EAF= ∠BAD,∴ ∠GAF=∠DAG+∠DAF=∠BAE+∠DAF

=∠BAD-∠EAF=∠EAF.∴ ∠EAF=∠GAF.
=,
在△AEF和△AGF中,ቐ∠=∠,
=,
∴ △AEF≌△AGF.∴ EF=GF.
∵ GF=DG+DF=BE+DF,∴ EF=BE+DF.
解:(2) EF=BE+DF.如图①,延长EB到点G,使
BG=DF,连接AG.∵ ∠ABC+∠D=180°,∠ABG+

初中数学突破中考压轴题几何模型之正方形的半角模型教案有答案

初中数学突破中考压轴题几何模型之正方形的半角模型教案有答案

初中数学突破中考压轴题几何模型之正方形的半角模型教案有答案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2.掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题。

4.通过四边形的从属关系渗透集合思想。

5.通过理解四种四边形内在联系,培养学生辩证观点。

正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结)。

正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行。

②正方形四边相等。

③正方形四个角都是直角。

④正方形对角线相等,互相垂直平分,每条对角线平分一组对角。

例1.如图,折叠正方形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD 重合,得折痕DG,使2AD=,求AG.【解析】:作GM⊥BD,垂足为M.由题意可知∠ADG=GDM,则△ADG≌△MDG.∴DM=DA=2. AC=GM又易知:GM=BM.而BM=BD-DM=22-2=2(2-1),∴AG=BM=2(2-1).例2 .如图,P为正方形ABCD内一点,10==,并且P点到CD边的距离也PA PB等于10,求正方形ABCD的面积?【解析】:过P作EF AB⊥于F交DC于E.设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+.可得:222110(10)4x x =++.故6x =.216256ABCD S ==.例3. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 上的一点,AM EF ⊥,•垂足为M ,AM AB =,则有EF BE DF =+,为什么? 【解析】:要说明EF=BE+DF ,只需说明BE=EM ,DF=FM 即可,而连结AE 、AF .只要能说明△ABE ≌△AME ,△ADF ≌△AMF 即可.理由:连结AE 、AF .由AB=AM ,AB ⊥BC ,AM ⊥EF ,AE 公用, ∴△ABE ≌△AME . ∴BE=ME .同理可得,△ADF ≌△AMF . ∴DF=MF .∴EF=ME+MF=BE+DF .例4.如下图E 、F 分别在正方形ABCD 的边BC 、CD 上,且45EAF ︒∠=,试说明EF BE DF =+。

专题20 角含半角模型问题(解析版)-2021年中考数学二轮复习经典问题专题训练

专题20  角含半角模型问题(解析版)-2021年中考数学二轮复习经典问题专题训练

专题20 角含半角模型问题【规律总结】角含半角模型,顾名思义即一个角包含着它的一半大小的角。

它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。

解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。

【典例分析】例1.(2020·广西南宁市·九年级期中)(探索发现)如图①,四边形ABCD 是正方形,M ,N 分别在边CD 、BC 上,且45MAN=∠︒,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图①,将ADM ∆绕点A 顺时针旋转90︒,点D 与点B 重合,得到ABE ∆,连接AM 、AN 、MN .(1)试判断DM ,BN ,MN 之间的数量关系,并写出证明过程.(2)如图②,点M 、N 分别在正方形ABCD 的边BC 、CD 的延长线上,45MAN=∠︒,连接MN ,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB=AD ,120BAD=∠︒,180B+D=∠∠︒,点N ,M 分别在边BC ,CD 上,60MAN=∠︒,请直接写出线段BN ,DM ,MN 之间的数量关系.【答案】(1)MN DM BN =+,证明见解析;(2)MN BN DM =-,证明见解析;(3)MN DM BN =+.【分析】(1)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN DM BN =+;(2)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN BN DM =-;(3)根据正方形的性质和旋转的性质可证ADM ≌ABE ,利用SAS 可证AMN AEN ≌,则可得:MN DM BN =+;【详解】证明:(1)如图①,≌四边形ABCD 是正方形≌AB=AD ,ABC ADC BAD =90将ADM 绕点A 顺时针旋转90︒,得到ABE≌ADM ≌ABE≌AM AE,DM BE,MAD EABMAE BAD 90 ≌MAN 45EAN MAN 45在AMN 和AEN 中AMAE MANEAN AN ANAMN AEN SAS≌MN EN=+=+,≌EN EB BN DM BN=+≌MN BN DM(2)如图②,将ADM绕点A顺时针旋转90,得到ABE≌四边形ABCD是正方形≌AB=AD,ABC ADC BAD=90≌ADM绕点A顺时针旋转90,得到ABE≌ADM≌ABE≌AM AE,DM BE,MAD EABMAE BAD90,≌MAN45EAN MAN45在AMN和AEN中MANEANAN ANAMN AEN SAS ≌MN EN≌BNEB EN DM MN , 即:MN BN DM =-;(3)如图,≌AB AD =,BAD 120∠=,B D 180,将ADM 绕点A 顺时针旋转120,得到ABE≌ADM ≌ABE≌AM AE,DM BE,MAD EABMAEBAD 120 MAN 60 EAN MAN 60在AMN 和AEN 中MANEANAN ANAMN AEN SAS ≌MN EN ENBE BN MN DM BN ;【点睛】本题主要考查正方形的性质及全等三角形的判定和性质等知识,利用旋转法构造全等三角形是解题的关键是学会.例2.(2020·四川成都市·八年级期末)已知,90POQ ∠=,分别在边OP ,OQ 上取点A ,B ,使OA OB =,过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C .点E ,F 分别是射线OP ,OQ 上动点,连接CE ,CF ,EF .(1)求证:OA OB AC BC ===;(2)如图1,当点E ,F 分别在线段AO ,BO 上,且45ECF ∠=时,请求出线段EF ,AE ,BF 之间的等量关系式;(3)如图2,当点E ,F 分别在AO ,BO 的延长线上,且135ECF ∠=时,延长AC 交EF 于点M ,延长BC 交EF 于点N .请猜想线段EN ,NM ,FM 之间的等量关系,并证明你的结论.【答案】(1)见解析;(2)EF AE BF =+;(3)222MN EN FM =+,见解析【分析】(1)连接AB ,通过90POQ ∠=,OA OB =得到AOB 为等腰直角三角形,进而得到45OAB OBA ∠=∠=,根据过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C ,可推出45CBA ∠=,45BAC ∠=,最后通过证明AOB ≌ACB △,可以得出结论;(2)在射线AP 上取点D ,使AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合45ECF ∠=,90ACB ∠=推导证明ECD ≌ECF △,得到ED EF =,最后等量代换线段即可求解;(3)延长AO 到点D ,使得AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合135ECF ∠=,推导证明ECD ≌ECF △,得到D CFM ∠=∠,根据D CFB ∠=∠,等量代换可知CFM CFB ∠=∠,又因为//AC OQ ,推出MCF CFB ∠=∠,进而得到MC MF =,同理可证CN EN =,最后根据勾股定理即可求解.【详解】解:(1)证明:连接AB .90POQ ∠=,OA OB =,∴AOB 为等腰直角三角形,∴45OAB OBA ∠=∠=, 又//BC OP ,且90POQ ∠=,∴BC OQ ⊥,∴90CBF ∠=,∴45CBA ∠=,同理,45BAC ∠=,在AOB 与ACB △中OAB CAB AB ABOBA CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOB ≌ACB △()ASA ,∴90AOB ACB ∠=∠=,OA OB AC BC ===;(2)如图1,在射线AP 上取点D ,使AD BF =,连接CD .在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,45ECF ∠=,90ACB ∠=,∴45ACE BCF ∠+∠=,∴45ACE ACD ECD ∠+∠=∠=,∴ECD ECF ∠=∠,在ECD 与ECF △中CD CF ECD ECF CE CE =⎧⎪∠=∠⎨⎪=⎩∴ECD ≌ECF △()SAS ,∴ED EF =,又ED AD AE BF AE =+=+,∴EF AE BF =+.(3)222MN EN FM =+.证明如下:如图2,延长AO 到点D ,使得AD BF =,连接CD .∴90CAD CBF ∠=∠=,在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,90ACD DCB ∠+∠=,∴90BCF DCB DCF ∠+∠==∠,∴90FCD BCA ∠=∠=,135ECF ∠=,∴36090135135ECD ∠=--=,∴ECF ECD ∠=∠,在ECD 与ECF △中EC EC ECD ECF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴ECD ≌ECF △()SAS ,∴D CFM ∠=∠,CAD ≌CBF ,∴D CFB ∠=∠,∴CFM CFB ∠=∠,//AC OQ ,∴MCF CFB∠=∠,∴CFM MCF∠=∠,∴MC MF=,=,同理可证:CN EN∴在Rt MCN△中,由勾股定理得:22222=+=+.MN CN CM EN FM【点睛】本题综合考查了全等三角形的性质和判定,勾股定理以及正方形的有关知识,通过添加辅助线构造全等三角形,通过证明全等三角形得到线段之间的关系是解题的关键.【好题演练】一、单选题1.(2021·上海九年级专题练习)如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且△DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②△BAF=△DAC;③△FAE=△DAE;④BF=DC.其中正确的有()A.①②③④B.②③C.②③④D.③④【答案】C【分析】利用旋转性质可得≌ABF≌≌ACD,根据全等三角形的性质一一判断即可.【详解】解:≌≌ADC绕A顺时针旋转90°后得到≌AFB,≌≌ABF≌≌ACD,≌≌BAF=≌CAD,AF=AD,BF=CD,故②④正确,≌≌EAF=≌BAF+≌BAE=≌CAD+≌BAE=≌BAC﹣≌DAE=90°﹣45°=45°=≌DAE故③正确无法判断BE=CD,故①错误,故选:C.【点睛】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题2.(2021·上海九年级专题练习)如图,在Rt△ABC和Rt△BCD中,△BAC=△BDC=90°,BC=4,AB=AC,△CBD=30°,M,N分别在BD,CD上,△MAN=45°,则△DMN的周长为_____.【答案】【分析】将≌ACN绕点A逆时针旋转,得到≌ABE,由旋转得出≌NAE=90°,AN=AE,≌ABE=≌ACD,≌EAB=≌CAN ,求出≌EAM =≌MAN ,根据SAS 推出≌AEM≌≌ANM ,根据全等得出MN =ME ,求出MN =CN +BM ,解直角三角形求出DC ,即可求出≌DMN 的周长=BD +DC ,代入求出答案即可.【详解】将≌ACN 绕点A 逆时针旋转,得到≌ABE ,如图:由旋转得:≌NAE =90°,AN =AE ,≌ABE =≌ACD ,≌EAB =≌CAN ,≌≌BAC =≌D =90°,≌≌ABD +≌ACD =360°﹣90°﹣90°=180°,≌≌ABD +≌ABE =180°,≌E ,B ,M 三点共线,≌≌MAN =45°,≌BAC =90°,≌≌EAM =≌EAB +≌BAM =≌CAN +≌BAM =≌BAC ﹣≌MAN =90°﹣45°=45°,≌≌EAM =≌MAN ,在≌AEM 和≌ANM 中,AE AN EAM NAM AM AM ⎧⎪∠∠⎨⎪⎩===,≌≌AEM ≌≌ANM (SAS ),≌MN =ME ,≌MN =CN +BM ,≌在Rt≌BCD 中,≌BDC =90°,≌CBD =30°,BC =4,≌CD =12BC =2,BD≌≌DMN 的周长为DM +DN +MN =DM +DN +BM +CN =BD +DC =,故答案为:.【点睛】本题考查直角三角形、全等三角形的性质和判定、旋转的性质的应用,能正确作出辅助线是解此题的关键.三、解答题3.(2020·黑龙江哈尔滨市·九年级月考)矩形ABCD 中,M 、N 为边AD 上两点,连接BM 、CN ,MN=BM=CN ,△BMD=120°.(1)如图1,求证:AM=DN ;(2)如图2,点E 、F 分别在NC 、BC 上,△FME=60°,求证:EF= BF+NE ;(3)如图3,在(2)的条件下,过E 作EP△BC 交MF 于P ,2MN=3BF ,EP=7,求CE 的长.【答案】(1)见解析;(2)见解析;(3)3【分析】(1)由题意易得AB=CD ,≌A=≌D=90°,进而可证Rt≌ABM≌Rt≌DCN ,最后得证;(2)延长CB 至G ,使BG=NE ,连接MG ,易得≌MBG=≌BMD=≌MNE=120°,进而可证MG=ME ,≌GMB=≌EMN ,≌GMF=≌FME ,MF=MF ,≌GMF≌≌EMF ,然后根据线段的数量关系可求解; (3)设BF=2a ,MN=BM=CN=3a ,则有≌A=≌D=≌DCB=90°,AD=BC ,由(1)可得AM=12BM=32a ,由(2)问可知:EF=BF+NE ,≌GMF≌≌EMF ,≌MFB=≌MFE ,可得CE=CN -EN=3a -(7-2a)=5a -7,过点E 作ER≌BC 于R ,≌ERF=≌ERC=≌DCB=90°,ER≌DC ,然后根据勾股定理进行求解即可.【详解】(1)证明:≌四边形ABCD是矩形,≌AB=CD,≌A=≌D=90°,≌BM=CN,≌Rt≌ABM≌Rt≌DCN(HL),≌AM=DM(2)解:延长CB至G,使BG=NE,连接MG,≌四边形ABCD是矩形,≌AD≌BC,≌≌MBG=≌BMD=≌MNE=120°,≌BM=MN,≌≌GBM≌≌ENM(SAS),≌MG=ME,≌GMB=≌EMN,≌≌BMD=120°,≌FME=60° ,≌≌GMF=≌GMB+≌BMF=≌EMN+≌BMF =≌BMD-≌FME=120°-60° =60°,≌≌GMF=≌FME,MF=MF,≌GMF≌≌EMF(SAS),≌GF=EF,≌GF=BF+GB=BF+NE,即EF=BF+NE;(3)解:≌2MN=3BF,≌设BF=2a,MN=BM=CN=3a,≌四边形ABCD是矩形,≌≌A=≌D=≌DCB=90°,AD=BC,由(1)问可知:Rt≌ABM≌Rt≌DCN,≌≌AMB=≌CND=180°-≌BMD=180°-120° =60° ,≌ABM=≌DCN=90°-60°=30°,在Rt≌ABM中,≌AM=12BM=32a,同理DN=32a,≌AD=BC=AM+MN+DN= 32a+3a+32a=6a,≌FC=BC-BF=6a-2a=4a,由(2)问可知:EF=BF+NE,≌GMF≌≌EMF,≌MFB=≌MFE,≌EP≌BC,≌≌EPF=≌MFB=≌MFE,≌EF=EP=7,≌NE=EF-BF=7-2a,≌CE=CN-EN=3a-(7-2a)=5a-7过点E作ER≌BC于R,≌≌ERF=≌ERC=≌DCB=90°,ER≌DC,≌≌CER=≌DCN=30° ,在Rt≌ERC中,RC=12CE=572a-,≌FR=FC-RC=4a-572a-=372a+,在Rt≌ERC中,ER2=EC2-CR2,在Rt≌ERF中,ER2=EF2-FR2,≌EC2-CR2=EF2-FR2,≌(5a-7)2-(572a-)2=72-(372a+)2解得a1=0 (不符合题意,舍去),a2=2,≌CE=5a-7=3.【点睛】本题主要考查矩形的性质与判定、全等三角形的性质与判定及勾股定理,熟练掌握矩形的性质与判定、全等三角形的性质与判定及勾股定理是解题的关键.4.(2020·山东滨州市·八年级期中)在△MAN内有一点D,过点D分别作DB△AM,DC△AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若△BED=△CFD,请说明DE=DF;(2)如图2,若△BDC=120°,△EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.【答案】(1)说明见解析;(2)EF= FC+BE.理由见解析.【分析】(1)根据题目中的条件和≌BED=≌CFD,可以证明≌BDE≌≌CDF,从而可以得到DE=DF;(2)作辅助线,过点D作≌CDG=≌BDE,交AN于点G,从而可以得到≌BDE≌≌CDG,然后即可得到DE=DG,BE=CG,再根据题目中的条件可以得到≌EDF≌≌GDF,即可得到EF=GF,然后即可得到EF,BE,CF具有的数量关系.【详解】(1)≌ DB≌AM,DC≌AN,≌ ≌DBE=≌DCF=90°.在≌BDE和≌CDF中,≌,,,BED CFDDBE DCF BD CD∠=∠⎧⎪∠=∠⎨⎪=⎩≌ ≌BDE≌≌CDF(AAS).≌ DE=DF.(2)过点D作≌CDG=≌BDE,交AN于点G.在≌BDE和≌CDG中,≌ ,,,EBD GCD BD CD BDE CDG ∠=∠⎧⎪=⎨⎪∠=∠⎩≌ ≌BDE ≌≌CDG (ASA )≌DE =DG ,BE =CG .≌≌BDC =120°,≌EDF =60°,≌ ≌BDE+≌CDF =60°.≌ ≌FDG =≌CDG +≌CDF =60°.≌ ≌EDF =≌GDF .在≌EDF 和≌GDF 中,,,,DE DG EDF GDF DF DF =⎧⎪∠=∠⎨⎪=⎩≌ ≌EDF ≌≌GDF (SAS ).≌ EF =FG .≌ EF =FC +CG =FC +BE .【点睛】本题考查全等三角形的判定、解答本题的关键是明确题意,利用数形结合的思想解答. 5.(2020·陕西西安市·七年级期末)(2020•锦州模拟)问题情境:已知,在等边△ABC 中,△BAC 与△ACB 的角平分线交于点O ,点M 、N 分别在直线AC ,AB 上,且△MON =60°,猜想CM 、MN 、AN 三者之间的数量关系.方法感悟:小芳的思考过程是在CM 上取一点,构造全等三角形,从而解决问题;小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明.【答案】(1)CM=AN+MN,详见解析;(2)CM=MN﹣AN,详见解析【分析】(1)在AC上截取CD=AN,连接OD,证明≌CDO≌≌ANO,根据全等三角形的性质得到OD =ON,≌COD=≌AON,证明≌DMO≌≌NMO,得到DM=MN,结合图形证明结论;(2)在AC延长线上截取CD=AN,连接OD,仿照(1)的方法解答.【详解】解:(1)CM=AN+MN,理由如下:在AC上截取CD=AN,连接OD,≌≌ABC为等边三角形,≌BAC与≌ACB的角平分线交于点O,≌≌OAC =≌OCA =30°,≌OA =OC ,在≌CDO 和≌ANO 中,OC OA OCD OAN CD AN =⎧⎪∠=∠⎨⎪=⎩,≌≌CDO ≌≌ANO (SAS )≌OD =ON ,≌COD =≌AON ,≌≌MON =60°,≌≌COD +≌AOM =60°,≌≌AOC =120°,≌≌DOM =60°,在≌DMO 和≌NMO 中,OD ON DOM NOM OM OM =⎧⎪∠=∠⎨⎪=⎩,≌≌DMO ≌≌NMO ,≌DM =MN ,≌CM =CD +DM =AN +MN ;(2)补全图形如图2所示:CM =MN ﹣AN ,理由如下:在AC 延长线上截取CD =AN ,连接OD ,在≌CDO 和≌ANO 中,150CD AN OCD OAN OC OA =⎧⎪∠=∠=︒⎨⎪=⎩,≌≌CDO ≌≌ANO (SAS )≌OD =ON ,≌COD =≌AON ,≌≌DOM =≌NOM ,在≌DMO 和≌NMO 中,OD ON DOM NOM OM OM =⎧⎪∠=∠⎨⎪=⎩,≌≌DMO ≌≌NMO (SAS )≌MN =DM ,≌CM =DM ﹣CD =MN ﹣AN .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知等边三角形的性质及全等三角形的判定定理.6.(2019·全国九年级专题练习)如图所示,在ABC ∆中,30A B ∠=∠=︒,60MCN ∠=︒,MCN ∠的两边交AB 边于E ,F 两点,将MCN ∠绕C 点旋转(1)画出BCF ∆绕点C 顺时针旋转120︒后的ACK ∆;(2)在(1)中,若222AE EF BF +=,求证:BF =;(3)在(2)的条件下,若1AC =,直接写出EF 的长.【答案】(1)见解析;(2)见解析;(3【解析】【分析】(1)旋转后CB 与CA 重合,作≌KCA=≌FCB ,截取KC=FC 即可;(2)连结KE ,作KH≌AC 于H ,先得到≌ACE+≌BCF=60°,再根据旋转的性质得BF=AK ,≌KCA=≌FCB ,CK=CF ,≌KAC=≌B=30°,则≌KCE=≌FCE ,可根据“SAS”判断≌CKE≌≌CFE ,所以KE=EF ,由于AE 2+EF 2=BF 2,则AE 2+KE 2=AK 2,根据勾股定理的逆定理得≌AEK=90°,且≌KEC=≌FEC=45°,可计算≌BCF=45°,设KH=a ,在Rt≌KHC 中可得;在Rt≌KHA 中得AK=2a ,所以AK :KC=2a :,则BF :,(3)设KH=a ,在Rt≌KHC 中得HC=a ;在Rt≌KHA 中得,则+1,解得a=1,则AK=2,在Rt≌AEK 中,计算出≌KAE=60°,≌AKE=30°,所以AE=12AK=1,KE=.(1)作图如图所示(2)证明:连结KE ,作KH≌AC 于H ,如图,≌≌A=≌B=30°,≌MCN=60°,≌≌ACB=120°,≌≌ACE+≌BCF=60°,≌≌BCF 绕点C 顺时针旋转120゜后的≌ACK ,≌BF=AK ,≌KCA=≌FCB ,CK=CF ,≌KAC=≌B=30°,≌≌KCE=≌KCA+≌ACE=≌FCB+≌ACE=60°,≌≌KCE=≌FCE ,在≌CKE 和≌CFE 中CK CF KCE FCE CE CE ⎧⎪∠∠⎨⎪⎩===,≌≌CKE≌≌CFE ,≌AE2+EF2=BF2,≌AE2+KE2=AK2,≌≌AEK为直角三角形,≌≌AEK=90°,≌≌KEC=≌FEC=45°,≌≌BCF=180°-45°-60°-30°=45°,≌≌KCA=45°,设KH=a,在Rt≌KHC中,a;在Rt≌KHA中,AK=2a,≌AK:KC=2a,≌BF:,即;(3)设KH=a,在Rt≌KHC中,HC=a;在Rt≌KHA中,,,解得a=1,≌AK=2a=2,在Rt≌AEK中,≌KAE=≌KAC+≌CAE=60°,≌≌AKE=30°,≌AE=12AK=1,【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了勾股定理的逆定理、全等三角形的判定与性质以及含30度的直角三角形三边的关系.。

专题3.1 半角模型-2021年中考数学第二轮总复习课件(全国通用)

专题3.1 半角模型-2021年中考数学第二轮总复习课件(全国通用)

∴DE=GF=b-3,CE=7-b.
4.在Rt△BCE中求出b=25/7
E
DБайду номын сангаас
拓展提高
2.如图,在△ABC中,AB=BC,∠ABC=90º,D是AB上一动点,连接CD,以
CD为直径的⊙M交AC于点E,连接BM并延长交AC于点F,交⊙M于点
G,连接BE.
(1)求证:点B在⊙M上;
(2)当点D移动到使CD⊥BE时,求BC:BD的值; 2 +1
A
【思路点拨】
D
先将△ADF绕点A旋转得△ABF´
再证△AEF≌△AEF´
F
结论:EF=BE+DF

BE C
半角信息——带形旋转——轴对称的全等三角形.
当堂训练一
2.如图,已知△ABC是等腰直角三角形,
A
点D,E在BC上,且满足∠DAE=45º. E´
求证:DE2=BD2+CE2
【思路点拨】
【一】将△ACE绕点A旋转到△ADE´,连

EB
C
半角信息——带形旋转——轴对称的全等三角形.
F
类型2 小角不全在大角内部
1.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180º,E,F分别是BC,
CD上的点,且∠EAF=0.5∠BAD,BE,DF,EF三条线段之间的数量关系
是否仍然成立,若不成立,写出它们之间的数量关系并证明.
C
=AB+AC=2
D
E
基础训练
4.如图,在正方形ABCD内作∠EAF=45º,AE交BC于点E,AF交CD于点F,连接EF,
过点A作AH⊥EF,垂足为H.
(1)将△ADF绕点A顺时针旋转90º得到△ABG. 求证:△AGE≌△AFE;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题12 几何模型(2)—半角模型【模型介绍】半角模型是指:共顶点的两个一大一小的角,其中小角是大角的一半。

如下图中:若小角∠EAD等于大角∠BAC的一半,我们习惯上称之为“半角模型”。

【解题关键】旋转目标三角形法和翻折目标三角形法【典型例题】【题型一:等边直角三角形中的半角模型】【模型】如图,△BDC为等腰三角形且∠BDC=120°,M和N分别是AB和AC上的两个点,且∠MDN=60°,△ABC为等边三角形。

【结论】结论①:MN=BM+CN;证明:如下图1,延长AB到H点,并使得BH=CN,连接DH,∵△BCD为等腰三角形,且∠BDC=120°,∴∠DBC=∠DCB=30°,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∴∠ABD=∠ABC+∠DBC=60°+30°=90°=∠ACD,即∠HBD=∠NCD=90°,在△HBD和△NC D中:{BH=CN∠HBD=∠NCD=90∘DB=DC∴△HBD≌△NCD(SAS),∴DH=DN,∠HDB=∠CDN,又∠BDC=120°,∠MDN=60°,∴∠BDM+∠CDN=60°,即∠BDM+∠HDB=60°,∴∠HDM=∠NDM=60°,在△HDM和△NDM中:{HD=DN∠HDM=∠NDM=60∘MD=MD∴△HDM≌△NDM(SAS),∴MN=MH=MB+BH=MB+CN。

证明完毕!结论②:如上图1中:△AMN的周长=2倍等边△ABC的边长;或者说成:3倍△AMN的周长=2倍等边三角形的周长。

证明:由结论①知:MN=MB+CN,CΔAMN=AM+AN+MN=AM+AN+(MB+CN)=(AM+MB)+(AN+NC)=AB+AC=2AB【例】如图,△ABC是边长为2的等边三角形,△BDC是顶角为120°的等腰三角形,以点D 为顶点作∠MDN=60°,点M、N分别在AB、AC上.(1)如图①,当MN//BC时,则△AMN的周长为______;(2)如图②,求证:BM+NC=MN.【答案】(1)4;(2)证明见解析【解析】解:(1)∵△ABC 是等边三角形,MN //BC ,∴∠AMN =∠ABC =60°,∠ANM =∠ACB =60°∴△AMN 是等边三角形,∴AM =AN ,则BM =NC ,∵△BDC 是顶角∠BDC =120°的等腰三角形,∴∠DBC =∠DCB =30°,∴∠DBM =∠DCN =90°在△BDM 和△CDN 中,{BM =CN,∠MBD =∠DCN,BD =CD,∴△BDM ≌△CDN (SAS )∴DM =DN ,∠BDM =∠CDN ,∵∠MDN =60°,∴△DMN 是等边三角形,∠BDM ∠CDN =30°,∴NC =BM =12DM =12MN∴MN =MB +NC ,∴△AMN 的周长=AB +AC =4.(2)如图,延长AC 至点E ,使得CE =BM ,连接DE ,∵△ABC 是等边三角形,△BDC 是顶角∠BDC =120°的等腰三角形,∴∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠ABD =∠ACD =90°,∴∠DCE =90°,在△BDM 和△CDE 中,{BD =CD,∠MBD =∠ECD,BM =CE,∴△BDM ≌△CDE (SAS ),∴MD =ED ,∠MDB =∠EDC∴∠MDE=120°-∠MDB+∠EDC=120°,∵∠MDN=60°,∴∠EDN=60°,在△MDN和△EDN中,{MD=ED,∠MDN=∠NDE=60°,DN=DN,∴△NDM≌△NDE(SAS),∴MN=NE,又∵NE=NC+CE=NC+BM,∴BM+NC=MN.【练1】如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.【答案】△AMN的周长为6.【解析】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CN D中,BF=CN,DB=DC∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.【练2】在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=D C.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系=;是;此时QL(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.【答案】(1)BM+NC=MN,2;3(2)结论仍然成立,详见解析;(3)NC﹣BM=MN,详见解析【解析】(1)如图1,BM、NC、MN之间的数量关系BM+NC=MN.此时QL =23.理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴QL =23;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴QL =23;(3)证明:在CN上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N.∴NC﹣BM=MN.【题型二:等腰直角三角形中的半角模型】【模型】:如图,在△AB C中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE【结论】BD 2+CE 2=DE 2(证明与正方形中的半角模型类似)【例】如图,等腰直角三角形AB C 中,∠BAC = 90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°.若BM = 1,CN =3,求MN 的长.【答案】√10【解析】解:如图,过点C 作CE ⊥BC ,垂足为点C ,截取CE ,使CE =BM .连接AE 、EN .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°.∵CE ⊥BC ,∴∠ACE =∠B =45°.在△ABM 和△ACE 中{AB =AC∠B =∠ACE BM =CE,∴△ABM ≌△ACE (SAS ).∴AM =AE ,∠BAM =∠CAE .∵∠BAC =90°,∠MAN =45°,∴∠BAM +∠CAN =45°.于是,由∠BAM =∠CAE ,得∠MAN =∠EAN =45°.在△MAN 和△EAN 中{AM =AE∠MAN =∠EAN AN =AN,∴△MAN ≌△EAN (SAS ).∴MN =EN .在Rt △EN C 中,由勾股定理,得EN 2=EC 2+NC 2.∴MN 2=BM 2+NC 2.∵BM =1,CN =3,∴MN 2=12+32,∴MN =√10.【练1】如图,在四边形ABC D 中,AB =AD ,BC =CD ,∠ABC =∠ADC =90°,∠MAN =∠BA D .(1)如图1,将∠MAN 绕着A 点旋转,它的两边分别交边BC 、CD 于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN 绕着A 点旋转,它的两边分别交边BC 、CD 的延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN 绕着A 点旋转,它的两边分别交边BC 、CD 的反向延长线于M 、N ,试判断这一过程中线段BM 、DN 和MN 之间有怎样的数量关系?直接写出结论,不用证明.【答案】证明见解析【解答】解:(1)证明:如图,延长MB 到G ,使BG =DN ,连接AG .∵∠ABG=∠ABC=∠ADC=90°,AB=AD,∴△ABG≌△ADN.∴AG=AN,BG=DN,∠1=∠4.∠BA D.∴∠1+∠2=∠4+∠2=∠MAN=12∴∠GAM=∠MAN.又AM=AM,∴△AMG≌△AMN.∴MG=MN.∵MG=BM+BG.∴MN=BM+DN.(2)MN=BM﹣DN.证明:如图,在BM上截取BG,使BG=DN,连接AG.∵∠ABC=∠ADC=90°,AD=AB,∴△ADN≌△ABG,∴AN=AG,∠NAD=∠GAB,∠DAB,∴∠MAN=∠NAD+∠BAM=12∠BAD,∴∠MAG=12∴∠MAN=∠MAG,∴△MAN≌△MAG,∴MN=MG,∴MN=BM﹣DN.(3)MN=DN﹣BM.【练2】已知:如图(1)在Rt△AB C中,∠BAC=90°,AB=AC,点D、E分别为线段BC 上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形AB C中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【答案】(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立,详见解析;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.【解析】解:(1)DE2=BD2+EC2;证明:如图,将△ADB沿直线AD对折,得△AFD,连FE,∴△AFD≌△ABD,∴AF=AB,FD=DB,∠F AD=∠BAD,∠AFD=∠ABD,∵∠BAC=90°,∠DAE=45°∴∠BAD+∠CAE=45°,∠F AD+∠F AE=45°,∴∠CAE=∠F AE又AE=AE,AF=AB=AC∴△AFE≌△ACE,∴∠DFE=∠AFD+∠AFE=45°+45°=90°,∴DE2=FD2+EF2∴DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠F AD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠F AE=∠F AD+∠DAE=∠F AD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠F AE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DC A.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.【题型三:正方形中的半角模型】【模型】在正方形ABC D中,E、F分别是BC、CD边上的点,∠EAF=45°,BD为对角线,交AE于M点,交AF于N点。

相关文档
最新文档