极坐标及参数方程高考题练习含答案

合集下载

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。

参数方程大题及答案

参数方程大题及答案

参数方程大题及答案【篇一:高考极坐标参数方程含答案(经典39题)】p class=txt>a,b两点.(1)求圆c及直线l的普通方程.(224.已知直线lc(1)求圆心c的直角坐标;(2)由直线l上的点向圆c引切线,求切线长的最小值.l,且ll分别交于b,c两点.在极坐标系(与直角坐标系5.在直角坐标系xoy 中,直线lxoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,圆c的方程为??4cos?. (Ⅰ)求圆c在直角坐标系中的方程;(Ⅱ)若圆c与直线l相切,求实数a的值.6.在极坐标系中,o为极点,已知圆c(Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线l和直线l(Ⅱ)求|bc|的长.3.在极坐标系中,点m轴为x轴的正半轴建立平面直角坐标系,斜率是?1(1)写出直线l的参数方程和曲线c的直角坐标方程;(2)求证直线l和曲线c相交于两点a、b,并求|ma|?|mb|的值.cr=1,p在圆c上运动。

(i)求圆c的极坐标方程;(ii)在直角坐标系(与极坐标系取相同的长度单位,且以极点o为原点,以极轴为x轴正半轴)中,若q为线段op的中点,求点q轨迹的直角坐标方程。

l的极坐7.在极坐标系中,极点为坐标原点o,已知圆c(1)求圆c的极坐标方程;(2)若圆c和直线l相交于a,b两点,求线段ab的长.9.在直角坐标平面内,以坐标原点o为极点,x轴的正半轴为极轴建立极坐标系,曲线c的极坐标方程是??4cos?,直线lt为参数)。

求极点在直线l上的射影点p的极坐标;若m、n分别为曲线c、直线l10.已知极坐标系下曲线c的方程为??2cos??4sin?,直线l?x?4cos??y?sin?8.平面直角坐标系中,将曲线?(?为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线c1 .以坐标原点为极点,x的非负半轴为极轴,建立的极坐标中的曲线c2的方程为??4sin?,求c1和c2公共弦的长度.(Ⅰ)求直线l在相应直角坐标系下的参数方程;(Ⅱ)设l与曲线c相交于两点a、b,求点p到a、b两点的距离之积.11.在直角坐标系中,曲线c1的参数方程为??x?4cos?(?为参数).以坐标原点为极点,x轴的正?y?3sin?14.已知椭圆cf1,f2为其左,右焦点,直线l的参数半轴为极轴的极坐标系中.曲线c2(1)分别把曲线c1与c2化成普通方程和直角坐标方程;并说明它们分别表示什么曲线.(2)在曲线c1上求一点q,使点q到曲线c2的距离最小,并求出最小距离.12.设点m,n分别是曲线??2sin??01)求直线l和曲线c的普通方程;(2)求点f1,f2到直线l的距离之和.?x?3cos?15.已知曲线c:?,直线l:?(cos??2sin?)?12.y?2sin??⑴将直线l的极坐标方程化为直角坐标方程;⑵设点p在曲线c上,求p点到直线l距离的最小值.m,n间的最小距离.16.已知?o1的极坐标方程为??4cos?.点a的极坐标是(2,?).(Ⅰ)把?o1的极坐标方程化为直角坐标参数方程,把点a的极坐标化为直角坐标.(Ⅱ)点m(x0,y0)在?o1上运动,点p(x,y)是线段am的中点,求点p运动轨迹的直角坐标方程.求曲线c2上的点到直线l距离的最小值.19.在直接坐标系xoy中,直线l的方程为x-y+4=0,曲线c的参数方程为(1)已知在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,点p17.在直角坐标系xoy中,直线l为参数),若以o为极点,x轴正半轴为极轴建立极坐标系,则曲线c的极坐标方程为?长.18.已知曲线c1的极坐标方程为??4cos?,曲线c2p与直线l的位置关系;,求直线l被曲线c所截的弦(2)设点q 是曲线c上的一个动点,求它到直线l的距离的最小值.20l交曲线c:?比数列,求直线l的方程.?x?2cos?(?为参数)于a、b?y?2sin?的方程是4x?y?4, 直线l的参数方程22(t为参数).(1)求曲线c1的直角坐标方程,直线l的普通方程;(2)21.已知曲线c1的极坐标方程是,曲线c2的参数方程是(1)写出曲线c和直线l的普通方程;(2)若|pm|,|mn|,|pn|成等比数列,求a的值.1)写出曲线c1的直角坐标方程和曲线c2的普通方程;(2)求t 的取值范围,使得c1,c2没有公共点.22.设椭圆e24.已知直线lc(1)设y?sin?,?为参数,求椭圆e的参数方程;(2)点p?x,y?是椭圆e 上的动点,求x?3y的取值范围.23.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线a2c?s??,已知过点0p??2,?4?的直线l的参数方程为?oal与曲线c(i)求圆心c的直角坐标;(Ⅱ)由直线l上的点向圆c引切线,求切线长的最小值.25.在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方弦长.?x?2cos?c的参数方程为?(?为对数),求曲线c截直线l所得的?y?sin? c:?si2n??分别交于m,n【篇二:2015高考理科数学《参数方程》练习题】lass=txt>一、选择题?x=1+3t,1.若直线的参数方程为?答案:d?x=3t+2,2.参数方程为?2?y=t-1a.线段 c.圆弧2(t为参数),则直线的倾斜角为( )y-2-3t3(0≤t≤5)的曲线为( )b.双曲线的一支 d.射线解析:化为普通方程为x=3(y+1)+2,即x-3y-5=0,由于x =3t2+2∈[2,77],故曲线为线段.故选a. 答案:a3.曲线?解析:曲线化为普通方程为答案:c4.若直线2x-y-3+c=0与曲线?x2b.3 d.2312+y218=1,∴c=6,故焦距为26.b.6或-4-----欢迎登陆明师在线浏览更多的学习资讯!-----c.-2或8解析:将曲线?22d.4或-6|-3+c|=0与圆x+y=5相切,可知=5,解得c=-2或8.5答案:c5.已知曲线c:??x=t,?y=t+b(t为参数,b为实数),若曲线c上恰有3个点到直线l的距离等于1,则b=( )a.2 c.0解析:将曲线c和直线l的参数方程分别化为普通方程为x2+y2=4和y=x+b,依题意,若要|b|使圆上有3个点到直线l的距离为1,只要满足圆心到直线的距离为1即可,得到=1,解得b=答案:d?x=4t,6.已知点p(3,m)在以点f为焦点的抛物线??y=4ta.1 c.3b.2 d.42(t为参数)上,则|pf|=( )解析:将抛物线的参数方程化为普通方程为y2=4x,则焦点f(1,0),准线方程为x=-1,又p(3,m)在抛物线上,由抛物线的定义知|pf|=3-(-1)=4.答案:d 二、填空题??x=-2-2t,7.(2014年深圳模拟)直线??y=3+2t?坐标是________.??x=-2-2t,1222??y=3+2t2222(t为参数)上与点a(-2,3)的距离等于2的点的(t-----欢迎登陆明师在线浏览更多的学习资讯!-----为参数),得所求点的坐标为(-3,4)或(-1,2).答案:(-3,4)或(-1,2)8.(2014年东莞模拟)若直线l:y=kx与曲线c:?解析:曲线c化为普通方程为(x-2)2+y2=1,圆心坐标为(2,0),半径r=1.由已知l与圆相切,则r=|2k|333解析:利用直角坐标方程和参数方程的转化关系求解参数方程. 1?21?2x-+y=将x+y-x=0配方,得?2?4?22所以圆的直径为1,设p(x,y),?2210.已知曲线c的参数方程为?24??-----欢迎登陆明师在线浏览更多的学习资讯!-----(1)将曲线c的参数方程化为普通方程;解析:(1)由?2x2+y=1,x∈[-1,1].4???x+y+2=0,?2?x+y=1得x2-x-3=0.解得x=[-1,1],故曲线c与曲线d无公共点.2?x=2cos t,11.已知动点p、q都在曲线c:?(1)求m的轨迹的参数方程;m的轨迹的参数方程为?212.(能力提升)在直角坐标系xoy中,圆c1:x+y=4,圆c2:(x-2)+y=4.(1)在以o为极点,x轴正半轴为极轴的极坐标系中,分别写出圆c1,c2的极坐标方程,并求出圆c1,c2的交点坐标(用极坐标表示);222-----欢迎登陆明师在线浏览更多的学习资讯!-----3(2)解法一由?得圆c1与c2交点的直角坐标分别为(1,3),(1,-3).?x=1,故圆c1与c2的公共弦的参数方程为??y=t,?x=1,(或参数方程写成??y=y,-3≤t≤3.-3 ≤ y ≤3)解法二将x=1代入?于是圆c1与c2的公共弦的参数方程为 ?x=1,?======*以上是由明师教育编辑整理======------欢迎登陆明师在线浏览更多的学习资讯!-----【篇三:坐标系与参数方程典型例题(含高考题----答案详细)】ass=txt>一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. ⑤了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程:①了解参数方程,了解参数的意义.②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.③了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.二、基础知识归纳总结:?x????x,(??0),1.伸缩变换:设点p(x,y)是平面直角坐标系中的任意一点,在变换?:?的作用下,?y???y,(??0).?点p(x,y)对应到点p?(x?,y?),称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

新课标极坐标参数方程高考题汇总,DOC

新课标极坐标参数方程高考题汇总,DOC

极坐标参数方程训练题1、(2014·福建高考理科·T21)已知直线l 的参数方程为2()4x a tt y t=-⎧⎨=-⎩为参数,圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 2..(2014·辽宁高考)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C 的参数方程;(Ⅱ)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.3..(2014·新课标全国卷Ⅱ高考·T23)(2014·新课标全国卷Ⅱ高考理科数学·T23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈0,2π⎡⎤⎢⎥⎣⎦. (1)求C 的参数方程.(2)设点D 在C 上,C 在D 处的切线与直线l:y=3x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.4.(15年新课标1)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.5.(2015新课标(II ))直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:23cos C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB的最大值.6.(2013·辽宁高考)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系。

极坐标与参数方程大题及答案

极坐标与参数方程大题及答案

极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。

首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。

首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。

使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。

2023年高考数学微专题练习专练67高考大题专练七坐标系与参数方程含解析理

2023年高考数学微专题练习专练67高考大题专练七坐标系与参数方程含解析理

专练67 高考大题专练(七) 坐标系与参数方程1.[2022·贵阳市五校联考]以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数),直线l 的极坐标方程为ρsin (θ-π6)=- 3.(1)已知点M(6,a)在曲线C 上,求a 的值;(2)设点P 为曲线C 上一点,求点P 到直线l 距离的最小值.2.[2022·全国甲卷(理),22]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+t 6y =t (t为参数),曲线C 2的参数方程为⎩⎪⎨⎪⎧x =-2+s 6y =-s(s 为参数). (1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cos θ-sin θ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标.3.[2022·安阳模拟]在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =sin θ(θ为参数),直线l 过点M(1,0)且倾斜角为α.(1)求出直线l 的参数方程和曲线C 的普通方程; (2)若直线l 与曲线C 交于A ,B 两点,且|MA|·|MB||||MA|-|MB|=33,求cos α的值.4.[2021·全国甲卷]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=22cos θ.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P 满足AP →=2AM →,写出P 的轨迹C 1的参数方程,并判断C 与C 1是否有公共点.5.[2022·石嘴山模拟]在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,点A 为曲线C 1上的动点,点B 在线段OA 的延长线上且满足|OA|·|OB|=8,点B 的轨迹为C 2.(1)求曲线C 1,C 2的极坐标方程;(2)设点M 的极坐标为(2,3π2),求△ABM 面积的最小值.6.[2022·全国乙卷(理),22]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =3cos 2t ,y =2sin t(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.专练67 高考大题专练(七) 坐标系与参数方程1.解析:(1)∵点M 在曲线C 上,∴6=3t ,∴t=2,∴a=y =2×22+1=9. (2)∵直线l 的极坐标方程为ρsin (θ-π6)=-3,∴直线l 的直角坐标方程为x -3y -23=0. ∵点P 在曲线C 上,∴设P(3t ,2t 2+1), 则点P 到直线l 的距离为d =|3t -23t 2-33|2,当t =34时,d min =21316. 2.解析:(1)C 1的参数方程为⎩⎪⎨⎪⎧x =2+t 6,y =t .消去参数t ,得C 1的普通方程为y 2=6x -2(y≥0). (2)曲线C 3的极坐标方程为2cos θ-sin θ=0, 两边同乘ρ,得2ρcos θ-ρsin θ=0, 则C 3的直角坐标方程为y =2x.联立得方程组⎩⎪⎨⎪⎧y 2=6x -2(y≥0),y =2x ,解得⎩⎪⎨⎪⎧x =12,y =1或⎩⎪⎨⎪⎧x =1,y =2.将曲线C 2的参数方程中的参数s 消去,得y 2=-6x -2(y≤0).联立得方程组⎩⎪⎨⎪⎧y 2=-6x -2(y≤0),y =2x ,解得⎩⎪⎨⎪⎧x =-12,y =-1或⎩⎪⎨⎪⎧x =-1,y =-2.所以C 3与C 1交点的直角坐标为⎝ ⎛⎭⎪⎫12,1和()1,2,C 3与C 2交点的直角坐标为⎝ ⎛⎭⎪⎫-12,-1和(-1,-2).3.解析:(1)曲线C 的参数方程⎩⎨⎧x =2cos θ,y =sin θ(θ为参数),转换为普通方程为x 22+y2=1;直线l 过点M(1,0)且倾斜角为α,则参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数).(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数)代入x 22+y 2=1.得到(1+sin 2α)t 2+2t cos α-1=0, 所以t 1+t 2=-2cos α1+sin 2α, t 1t 2=-11+sin 2α(t 1和t 2分别为A 和B 对应的参数), t 1t 2<0,则t 1,t 2异号,||MA|-|MB||=||t 1|-|t 2||=|t 1+t 2|, 由|MA|·|MB|||MA|-|MB||=33,整理得|t 1+t 2|=⎪⎪⎪⎪⎪⎪-2cos α1+sin 2α=3|t 1t 2|=31+sin 2α, 解得cos α=±32. 4.解析:(1)根据ρ=22cos θ,得ρ2=22ρcos θ, 因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=22x ,所以C 的直角坐标方程为(x -2)2+y 2=2. (2)设P(x ,y),M(x′,y′),则AP →=(x -1,y),AM →=(x′-1,y′).因为AP →=2AM →,所以⎩⎨⎧x -1=2(x′-1)y =2y′,即⎩⎪⎨⎪⎧x′=x -12+1y′=y 2,因为M 为C 上的动点,所以(x -12+1-2)2+(y 2)2=2,即(x -3+2)2+y 2=4.所以P 的轨迹C 1的参数方程为⎩⎨⎧x =3-2+2cos α,y =2sin α(其中α为参数,α∈[0,2π)).所以|CC 1|=3-22,⊙C 1的半径r 1=2,又⊙C 的半径r =2,所以|CC 1|<r 1-r , 所以C 与C 1没有公共点.5.解析:(1)由曲线C 1的参数方程⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),消去参数,可得普通方程为(x -1)2+y 2=1,即x 2+y 2-2x =0, 又由x =ρcos θ,y =ρsin θ,代入可得曲线C 1的极坐标方程为ρ=2cos θ,设点B 的极坐标为(ρ,θ),A 点的极坐标为(ρ0,θ0), 则|OB|=ρ,|OA|=ρ0,ρ0=2cos θ0,θ=θ0, 因为|OA|·|OB|=8, 所以ρ·ρ0=8,即8ρ=2cos θ,即ρcos θ=4, 所以曲线C 2的极坐标方程为ρcos θ=4. (2)由题意,可得|OM|=2,则S △ABM =S △OBM -S △OAM =12|OM|·|x B -x A |=12×2×|4-2cos 2θ|=|4-2cos 2θ|,即S △ABM =4-2cos 2θ,当cos 2θ=1时,可得S △ABM 的最小值为2. 6.解析:(1)由ρsin (θ+π3)+m =0,得12ρsin θ+32ρcos θ+m =0. ∵ρcos θ=x ,ρsin θ=y , ∴l 的直角坐标方程为32x +12y +m =0.(2)(方法一)把x =3cos 2t ,y =2sin t 代入32x +12y +m =0,得m =-32cos 2t -sin t =-32+3sin 2t -sin t =3(sin t -16)2-1912.∵sin t∈[-1,1],∴当sin t =16时,m 取得最小值-1912;当sin t =-1时,m 取得最大值52.∴m 的取值范围是[-1912,52].(方法二)x =3cos 2t =3(1-2sin 2t)=3[1-2(y 2)2]=3-32y 2.∵y=2sin t ,sin t∈[-1,1],∴y∈[-2,2]. 联立得方程组⎩⎪⎨⎪⎧x =3-32y 2,3x +y +2m =0.消去x 并整理,得3y 2-2y -4m -6=0, 即4m =3y 2-2y -6=3(y -13)2-193(-2≤y≤2).∴-193≤4m≤10,∴-1912≤m≤52.∴m 的取值范围是[-1912,52].。

极坐标(一)有答案

极坐标(一)有答案

极坐标(一)班级: 姓名:一、填空题:1.极坐标系中,直线sin 24πρθ(+)=被圆4ρ=截得的弦长为 。

答案:2.极坐标方程分别为2cos ρθ=和sin ρθ=的两个圆的圆心距为 。

答案:23.在直角坐标方系中圆C 的参数方程为2cos (22sin x y θθθ=⎧⎨=+⎩为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为 。

答案:4sin ρθ=4.设平面上的伸缩变换的坐标表达式为123x x y y ⎧'=⎪⎨⎪'=⎩,则在这一坐标变换下正弦曲线sin y x =的方程变为 。

答案:3sin 2y x ''=5.极坐标系中,点(1,0)到直线(cos sin )2ρθθ+=的距离为 。

答案:26.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:cos()13πρθ-=,M 、N 分别为曲线x 轴、y 轴的交点,则MN 的中点P 在平面直角坐标系中的坐标为 .答案:37.已知直线的极坐标方程为sin()42πρθ+=,则极点到这条直线的距离是 .答案:28.在极坐标系中,圆4ρ=上的点到直线(cos )6ρθθ+=的距离的最大值是 . 答案:79.在极坐标系中,设圆32ρ=上的点到直线sin sin )θθθ-=的距离为d ,则d 的最大值为 。

答案:2二、解答题:10.求极坐标方程cos(4πρθ=-)所表示的曲线。

答案:以44(,)为圆心,12为半径的圆11.已知圆1O 和圆2O 的极坐标方程分别为2ρ=,2cos()24πρθ--=. (1)把圆1O 和圆2O 的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.答案:(1)222220x y x y +---=;(2)sin()42πρθ+=.12.在极坐标系下,已知圆:cos sin O ρθθ=+和直线:sin()42l πρθ-=.(1)求圆O 和直线l 的直角坐标方程;(2)当(0,)θπ∈时,求直线l 与圆O 公共点的一个极坐标。

高三数学专项训练:极坐标与参数方程(附答案)

高三数学专项训练:极坐标与参数方程(附答案)

x 中,⊙ 的参数方程为cos ,( 为参数), xOy O过点 0, 2 且倾斜角为 的直线 与⊙ 交于 , 两点.l O AB Ptl,( 为参数),设 与 的交点为 ,当 变化时, 的轨迹为曲线 . m l l P k P Cm y , k(1)写出 的普通方程: C(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设l : (co s s in ) , 为 与 M lxC3 cosx 3、(2016 全国 I I I 卷高考)在直角坐标系s in1坐 标 原 点 为 极 点 , 以 x 轴 的 正 半 轴 为 极 轴 ,, 建 立 极 坐 标 系 , 曲 线) 2 2 . 41(II )设点 P 在 上,点 Q 在 上,求|P Q |的最小值及此时 P 的直角坐标.4、(成都市 2018 届高三第二次诊断)在平面直角坐标系xOy 中,曲线C 的参数方程为x.在以坐标原点O 为极点,轴的正半轴为极轴的极坐标2s ins in ( ) 5 2 0 ,直线的极坐标方程为 . 44(1)求直线的直角坐标方程与曲线C 的普通方程;5、(成都市 2018 届高三第三次诊断)在极坐标系中,曲线C 的极坐标方程是 ,直线l 的2 s in 在直线l 上.以极点为坐标原点 O ,极轴为 x 轴的4正半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.(I )求曲线C 及直线l 的直角坐标方程; (Ⅱ)若直线l 与曲线C 相交于不同的两点 A,求 Q A Q B 的值.6、(达州市 2017 届高三第一次诊断)在平面直角坐标系中,以原点为极点,x 轴的非负半轴为极轴2tx 2建立极坐标系,直线l 的参数方程为.t 2y 2 t2 2(1)若l 的参数方程中的t1 1(0, 2) l (2)若点 P, 和曲线C 交于 两点,求.7、(德阳市 2018 届高三二诊考试)在平面直角坐标系xOy 中,直线l : (t 为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,曲线C :x.0,0l与直线 和曲线C 的交点分别为点M 和点 N (异于点O ), 2 O N 求 的最大值.O M8、(广元市 2018 届高三第一次高考适应性统考)在平面直角坐标系x Oy4cos a 2(a 为参数),以O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线 的极坐标方y程为 ( ) .R 6C(2)设直线 与曲线 相交于 , 两点,求的值.ABC A B 轴为极轴建立极坐标系,已知直线 l 的极坐标方程为 3 c os s inC3 0 , 的极坐标方程为.4s in( ) 6(I )求直线 l 和 的普通方程;C (II )直线 l 与 有两个公共点 A 、B ,定点 P (2, 3) ,求|||| 的值.C 10、(绵阳市 2018 届高三第一次诊断)在直角坐标系中,曲线C 的参数方程是yx(1)求曲线C 的极坐标方程;C, AOB与曲线 分别交于异于原点的 A B 两点,求 的面积.(2)设l, ,若631211、(南充市 2018 届高三第二次高考适应性考试)在直角坐标系xOy 中,曲线C 的参数方程为1:1 ,以坐标原点O 为极点,以 轴正半轴y1x22 2(Ⅰ)求曲线C 的普通方程和曲线C 的极坐标方程;12C C,与曲线 , 分别交于 A B 两点,求61 212、(仁寿县 2018 届高三上学期零诊)在平面直角坐标系xoy 中 ,圆 C 的参数方程为l3)=7. 43 t 2 (t 为参数),以坐标原 1224 c os(3(1)求圆C 的直角坐标方程; 2(2)若 P(x, y )是直线l 与圆面 4cos( )的公共点,求 3x y的取值范围.32 0( PQ (1)求点 的轨迹C 的直角坐标方程;3 (2)若C 上点 M 处的切线斜率的取值范围是,求点 M 横坐标的取值范围. 315、(雅安市 2018 届高三下学期三诊)在直角坐标系中,已知圆 的圆心坐标为(2,0) ,半径为CXCl(2)点 的极坐标为 1,,直线 与圆 相交于 , ,求 PAC 的值.P l A B 235 cos16、(宜宾市 2018 届高三第一次诊断)在直角坐标系 中,曲线C 的参数方程为xOy 5 s iny(其中参数 ).xCx 1 t c os (2)直线l 的参数方程为(其中参数 , 是常数),直线l 与曲线 交于t RC y点,且 ,求直线l 的斜率.AB2 3 l2t , x 2 y 4 t的极坐标方程为 4cos .(1)写出直线 l 普通方程和曲线 C 的直角坐标方程;(2)过点 M (1,0) 且与直线 平行的直线 交 于 A , B 两点,求| AB | .l l C 在平面直角坐标系中,以坐标原点为极点, 轴x si n 2 cos ( 0) ,过点 的正半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 a a2x 2 ( 为 t参数),直线 与曲线 相交于 两点. 的直线 的参数方程为2 y 42 (1)写出曲线 的直角坐标方程和直线 的普通方程; 2 PA PB AB 求 的值 (2)若 ,. a 1、解答:的参数方程为的普通方程为 22yl : x 0 与e O有两个交点,当| 0 0 2 |t an2 ,由直线l 与e O时,设直线l 的方程为 y x1 两个交点有,得 ,∴或,综上时,点P 坐标为 (0,0)ly 22A22为 y, 1 1 2 2③2 2k 2(1 k )x 2 2kx 1 0 2 2 ,∴,∴得121222y ④2xk 代入④得 x y 2y 0 .当点 P(0,0) 时满足方程 x y 2y 0 ,∴ AB 中点的 P2 2 2 2 y22 2 的 轨 迹 方 程 是 x, 即 xy2 22 2 2 222 2 22B (y 0 ,故点 P 的参数方程为 ,则22 2 2 2y s in2 2 0).2、【解析】⑴将参数方程转化为一般方程l : y k x 2 112k① ②消 可得: 4k x 2 y 2 即 的轨迹方程为 4 ;P ⑵将参数方程转化为一般方程……③Cl3422x 2y2 c os解得 5y.5s in c os 10 0.4c oss in ,可得直线的直角坐标方程为y , 2 3 c osx x 2 y 2 将曲线C 的参数方程C12 4(2)设Q(2 3cos ,2s in ) (0 ).(4 2, ) 化为直角坐标为(4, 4).4则 M.2s in( ) 103 cos s in 103.225s in ( ) 1,即 当 3 6∴点 M 到直线的距离的最大值为6 25、.316C242 2 t ) (2 2 22 2121 21121 121 2,4. s in c os2由得:2,所以 x 2 y 2 y ,所以曲线C 的直角坐标方程为: x .224 2s in, s in c oss in s in cos 2O N所以,4 4 23由于0 ,所以当时, 取得最大值:.2844cos a 2得曲线 的普通方程:C所以曲线 的极坐标方程为: 4 c os 12 C 2(2)设 , 两点的极坐标方程分别为( , ),( , ) ,661224 c os 12 0 的两根2是 C2∴ 2 3, 12121 29、解:(I )直线 l 的普通方程为: 3 3 0, ·································································· 1 分x y因为圆 的极坐标方程为, C 63 1所以 2 4( s i n cos ) , ··············································································· 3 分2 2所以圆 的普通方程 22 3 0 ;·························································· 4 分 C x 2 y 2 x y (II )直线 l : 3 3 0的参数方程为: x y3 y 3 t2代入圆 的普通方程 22 3 0 消去 x 、y 整理得: x 2 y 2 x y 2 9 17 0 , ··········································································································· 6 分t t | | | ,| | | |,··························································································· 7 分PB tPA t 1 2|| PA | | PB |||| t | | t ||| t t | (t t ) ······························································· 8 分2 12122 12219 417 13 .··································································································· 10 分2 10、解:(Ⅰ)将 C 的参数方程化为普通方程为(x -3) +(y -4) =25,2 2 22.(Ⅱ)把 代入 6 c os 8s in ,得,6 1∴ . ……………………………………………………………6 分A66 c os 8s in32∴ . ……………………………………………………………8 分B31s in AOB2 1 21225 3. 4211、解:(Ⅰ)由2.3yx 2所以曲线 的普通方程为C 2.13 c os1 s i n 1,得到,化简得到曲线把 x,代入22的极坐标方程为2 cos.C 2(Ⅱ)依题意可设 A,曲线C 的极坐标方程为 2.2 261211代入C 的极坐标方程得 2 2,解得 .621.622.12)=7.根据 ρcosθ=x ,ρsinθ=y 可得:﹣y+x=7. 即直线 l 的直角坐标方程为 x.---------------------------5 分(θ 为参数),其圆心为(﹣1,2),半径r=4.----6 分5 2.---------------------8 分2∴ AB 的最小值为圆心到直线的距离 d ﹣r ,即 AB min4 c os( )13、【解析】(1)∵圆C 的极坐标方程为323 14 c os ( cos )∴ , 322又∵ 2222∴圆C 的普通方程为 x 22(2)设 z,y 2x 2 3y 0 (x 1) (y 3) 4 ,22 2 2 ∴圆C 的圆心是(1, 3)3 t2 3x y 得 z t , 代入 z 12,圆C 的半径是 ,2 3,即 x y 的取值范围是∴,∴.……10 分 2 0 14、解:(1)由,得22设,,1 1x 2 yx 2x 2, y 2y则 x ,122111 1得22,∴221,0 为圆心,1半径的半圆,如图所示,,设点处切线 的倾斜角为 lM设253 由l 斜率范围, …………7 分3 3 63 而,∴,∴ ,26 3 22M , 所以,点 横坐标的取值范围是 . …………10 分22,,化简得圆 的极坐标方程:,:由l 得 ,y1l 的极坐标方程为.4(1,0), (2)由 PP22 t x2直线 的参数的标准方程可写成2y 1 t2 2 2t 2) (1 t) 2 ,2 2 2 2,,.3 5 cosx Q 16、解: (1)5 s iny 的普通方程 x 22x 1t c osQ1 直线l 的普通方程 y k xy3k 0 k k 122 t ,217、(1)由2y 4 t2 又由 4cos 得 4cos ,则 的直角坐标方程为 0 . ··············5 分2C x 2 y 22 t , x2 (2) 过点 M ( 1,0) 且与直线 平行的直线 的参数方程为l l 2 y t .2 将其代入 4 0 得 2 23 0 ,则 t t,x 2 y 2 x tt 1 2 所以| AB ||t t | (t t ) 4t t14 . ······················································10 分2 1212(1)由 整理得= ,,(2)将直线 的参数方程代入曲线 的直角坐标方程 = 得,.设两点对应的参数分别为,则有∵=,即=,解得或者(舍去),。

坐标系与参数方程 高考数学必刷真题分类大全-专题18

坐标系与参数方程 高考数学必刷真题分类大全-专题18

专题18坐标系与参数方程考向一极坐标与参数方程【母题来源】2022年高考浙江卷【母题题文】在直角坐标系xOy 中,曲线1C的参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C的参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.【试题解析】【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 的普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 的普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 的普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【命题意图】本题考查极坐标、参数方程与直角坐标的互化,属于较为简单题目.【命题方向】这类试题在考查题型上以解答题的形式出现.试题难度不大,多为低档题,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)极坐标与直角坐标互化;(2)参数方程与直角坐标互化;(3)直线参数方程中参数的几何意义.【得分要点】(1)运用极坐标,借助极径的几何意义;(2)参数方程与直角方程的互化,借助直线的参数的几何意义;1.(2022·四川成都·模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t为参数,α为常数且2πα≠),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为:22sin 40ρρθ--=.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)点(1,1)P ,直线l 与曲线C 交于,A B 两点,若2PA PB =,求直线l 的斜率.2.(2022·河南安阳·模拟预测(文))在直角坐标系xOy 中,1C 的圆心为()11,1C点为极点,x 轴正半轴为极轴建立极坐标系,2C的极坐标方程为ρθ=.(1)求1C 的极坐标方程,判断1C ,C 的位置关系;(2)求经过曲线1C ,2C 交点的直线的斜率.3.(2023·四川·成都七中模拟预测(理))在直角坐标系xOy 中,倾斜角为α的直线l的参数方程为:2cos sin x t y t αα=+⎧⎪⎨=⎪⎩,(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为22cos 8ρρθ=+.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A B ,两点,且AB =,求直线l 的倾斜角.4.(2022·青海·海东市第一中学模拟预测(理))在直角坐标系xOy 中,已知曲线1C的参数方程为x y t ⎧=⎪⎨=⎪⎩(t 为参数).曲线2C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程;(2)若曲线1C ,2C 的交点为A ,B,已知)1P-,求PA PB ⋅.5.(2022·内蒙古·海拉尔第二中学模拟预测(文))在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(其中α为直线的倾斜角,t 为参数),在以为O 极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4cos 0.ρθθ-=(1)当直线l 的斜率k =2时,求曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)如果直线l 与曲线C 有两个不同交点,求直线l 的斜率k 的取值范围.6.(2022·全国·模拟预测(文))在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,圆C 的极坐标方程为2sin ρθ=.(1)求C 的参数方程;(2)判断l 与C 的位置关系.7.(2022·河南·开封市东信学校模拟预测(理))在平面直角坐标系xOy 中,曲线C 的参数方程为2,2x t y t =⎧⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 20ρθρθ+-=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于P ,Q 两点,且点(0,2)M ,求11||||MP MQ +的值.8.(2022·四川·成都市锦江区嘉祥外国语高级中学模拟预测(理))在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系(取相同的单位长度),曲线1C 的极坐标方程为4cos ρθ=,曲线2C的参数方程为2222x y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),曲线1C ,2C 相交于A 、B 两点,曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C .(1)求曲线1C 的普通方程和线段AB 的长度;(2)设点P 是曲线3C 上的一个动点,求PAB △的面积的最小值.9.(2022·全国·模拟预测(理))在直角坐标系xOy中,曲线1C的参数方程是11cos221sin2xyϕϕ⎧=+⎪⎪⎨⎪=⎪⎩(ϕ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线2C的极坐标方程为1()ρθρ=∈R.(1)求曲线1C和曲线2C除极点外的交点的极坐标(02π)θ≤<;(2)若A,B分别为曲线1C和2C上的异于极点O的两点,且OA OB⊥,求OAB面积的最大值.10.(2022·吉林市教育学院模拟预测(理))以等边三角形的每个顶点为圆心,以其边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形被称为勒洛三角形,如图,在极坐标系Ox中,曲边三角形OPQ为勒洛三角形,且π2,6P⎛⎫-⎪⎝⎭,π2,6Q⎛⎫⎪⎝⎭,以极点O为直角坐标原点,极轴Ox为x轴正半轴建立平面直角坐标系xOy,曲线1C的参数方程为2112x ty t⎧=⎪⎪⎨⎪=-+⎪⎩(t为参数).(1)求 PQ的极坐标方程和OQ所在圆2C的直角坐标方程;(2)已知点M的直角坐标为()0,1-,曲线1C和圆2C相交于A,B两点,求11||||MA MB-.1.(2022·四川成都·模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为常数且2πα≠),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为:22sin 40ρρθ--=.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)点(1,1)P ,直线l 与曲线C 交于,A B 两点,若2PA PB =,求直线l 的斜率.【答案】(1)tan (1)1y x α=⋅-+;22240x y y +--=(2)±1【解析】【分析】(1)消参可以把参数方程转化为普通方程,根据极坐标和直角坐标的转化,可将极坐标方程化成直角坐标方程.(2)根据直线的标准参数方程的几何意义以及韦达定理即可求解2cos 2α=±,进而可求tan α.(1)1cos 1sin x t y t αα=+⎧⎨=+⎩()tan 11y x α⇒=⋅-+,2222sin 40240x y y ρρθ--=⇒+--=;(2)将1cos 1sin x t y t αα=+⎧⎨=+⎩代入22240x y y +--=得22cos 40t t α+-=,12122cos 4t t t t α+=-⎧⎨=-⎩,因为点P 在圆内,故,A B 在点P 两侧,由题意知,122t t =-,因此122152t t t t +=-,即21212()12t t t t +=-,故2(2cos )142α-=--,解得2cos 2α=,进而tan 1k α==±因此斜率为±1.2.(2022·河南安阳·模拟预测(文))在直角坐标系xOy 中,1C 的圆心为()11,1C ,半径为2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,2C 的极坐标方程为2ρθ=.(1)求1C 的极坐标方程,判断1C ,2C 的位置关系;(2)求经过曲线1C ,2C 交点的直线的斜率.【答案】(1)2cos 2sin r q q =+,1C ,2C 相交21【解析】【分析】(1)先求解1C 的标准方程,再根据直角坐标与极坐标的转换求解1C 的极坐标方程,再根据2C 的直角坐标方程,分析1C ,2C 圆心之间的距离与半径之和差的关系判断即可;(2)根据1C ,2C 均过极点,联立极坐标方程,求解tan θ即可(1)由题意,1C 的标准方程为()()22112x y -+-=,即22220x y x y +--=,故1C 的极坐标方程为22cos 2sin =+ρρθρθ,即2cos 2sin r q q =+,又,2C 的极坐标方程为222cos ρθ=,即2222x y +=,(2222x y +=.因为()()22122110422C C -+-=-1C ,2C 半径相等,半径和为22124224222C C =-=<1C ,2C 相交.故1C 的极坐标方程2cos 2sin r q q =+,1C ,2C 相交.(2)由(1)1C :2cos 2sin r q q =+,2C :22ρθ=均经过极点且相交,联立2cos 2sin 22ρθθρθ=+⎧⎪⎨=⎪⎩有2cos 2sin 22θθθ+=,显然cos 0θ≠,故22tan 22θ+=,即tan 21θ=,即经过曲线1C ,2C 213.(2023·四川·成都七中模拟预测(理))在直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为:2cos 3sin x t y t αα=+⎧⎪⎨=⎪⎩,(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为22cos 8ρρθ=+.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A B ,两点,且42AB =,求直线l 的倾斜角.【答案】(1)当π2α=时,直线l 的普通方程为2x =;当π2α≠时,直线l 的普通方程为()3tan 2y x α=-;22280x y x +--=(2)π6或π2【解析】【分析】(1)因为直线l 的参数方程为2cos 3sin x t y t αα=+⎧⎪⎨=+⎪⎩(t 为参数),讨论π2α=和π2α≠时,消去参数t ,即可求出直线l 的普通方程,因为222x y ρ=+,cos x ρθ=即可求出曲线C 的直角坐标方程.(2)将直线l 的参数方程代入曲线C 的方程整理,()2232cos 50t t αα++-=.因为0∆>,可设该方程的两个根为2,l t t ,所以()2121224l AB t t t t t t =-=+-线l 的倾斜角.(1)因为直线l 的参数方程为2cos 3sin x t y t αα=+⎧⎪⎨=+⎪⎩(t 为参数),当π2α=时,直线l 的普通方程为2x =.当π2α≠时,直线l 的普通方程为()3tan 2y x α=-.因为222x y ρ=+,cos x ρθ=,因为22cos 8ρρθ=+,所以2228x y x +=+.所以C 的直角坐标方程为22280x y x +--=.(2)曲线C 的直角坐标方程为22280x y x +--=,将直线l 的参数方程代入曲线C 的方程整理,得()2232cos 50t t αα++-=.因为()2232cos 200αα∆=++>,可设该方程的两个根为2,l t t ,则()2232cos l t t αα+=-+,25l t t =-.所以()2121224l AB t t t t t t =-=+-()2[23sin 2cos ]2042αα=-++=整理得()23cos 3αα+=,故π2sin 36α⎛⎫+=± ⎪⎝⎭因为0πα≤<,所以ππ63α+=或π2π63α+=,解得或π6α=或π2α=,综上所述,直线l 的倾斜角为π6或π2.4.(2022·青海·海东市第一中学模拟预测(理))在直角坐标系xOy 中,已知曲线1C 的参数方程为3x ty t ⎧=-⎪⎨=⎪⎩(t 为参数).曲线2C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C ,2C 的极坐标方程;(2)若曲线1C ,2C 的交点为A ,B ,已知)3,1P-,求PA PB ⋅.【答案】(1)1:C πsin 06ρθ⎛⎫+= ⎪⎝⎭(或5π6θ=,R ρ∈),2:C ρ=4.(2)12【解析】【分析】(1)利用消参法进行化简曲线方程,然后通过公式将曲线的普通方程转化成极坐标方程;(2)利用直线的极坐标方程,结合参数的几何意义,联立曲线普通方程进行计算即可.(1)由曲线13:x tC y t ⎧=⎪⎨=⎪⎩(t 为参数),消去参数t 得30x =,化成极坐标方程得cos 3sin 0ρθρθ=.化简极坐标方程为πsin 06ρθ⎛⎫+= ⎪⎝⎭(或5π6θ=,R ρ∈).曲线24cos :4sin x C y θθ=⎧⎨=⎩(θ为参数)消去参数θ得2216x y +=.化简极坐标方程为ρ=4.(2)由已知得P 在曲线1C 上,将曲线1C 化为标准参数方程332112x y t ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)代入2C 的直角坐标方程2216x y +=,得2231311622t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎭,即24120t t --=,即A ,B 所对应的参数分别为1t ,2t ,所以121212PA PB t t t t ⋅===.5.(2022·内蒙古·海拉尔第二中学模拟预测(文))在平面直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(其中α为直线的倾斜角,t 为参数),在以为O 极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin 4cos 0.ρθθ-=(1)当直线l 的斜率k =2时,求曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)如果直线l 与曲线C 有两个不同交点,求直线l 的斜率k 的取值范围.【答案】52(2)5151(,0))22⋃【解析】【分析】(1)利用极坐标与平面直角坐标互化公式得到曲线C 的平面直角坐标方程为24y x =,设出曲线上点()2,A s s ±,求出直线方程230x y -+=,利用点到直线距离公式,得到曲线C 上的点A 与直线l 上的点B 间的最小距离;(2)直线l 的普通方程为:()11y k x -=+,与曲线C :24y x =联立消去x 后用根的判别式得到不等式,求出斜率k 的取值范围.(1)2sin 4cos 0ρθθ-=两边同乘以ρ得:22sin 4cos 0ρθ-ρθ=,所以曲线C 的平面直角坐标方程为24y x =,设曲线上的一点坐标为()2,2A s s ±,当直线l 的斜率k =2时,直线方程为()121y x -=+,即230x y -+=,则A 点到直线距离为2215222223415s s s d ⎛⎫±+⎪±+⎝⎭==+当12s =±时,d 52,故曲线C 上的点A 与直线l 上的点B 52;(2)直线l 的普通方程为:()()110y k x k -=+≠,与曲线C :24y x =联立得:24440y y k k-++=,由0∆>得:1152k +>1152k -解得:5151()22k ---∈⋃6.(2022·全国·模拟预测(文))在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,圆C 的极坐标方程为2sin ρθ=.(1)求C 的参数方程;(2)判断l 与C 的位置关系.【答案】(1)cos 1sin x y θθ=⎧⎨=+⎩(θ为参数)(2)直线l 与圆C 相切.【解析】【分析】(1)先将圆C 的极坐标方程转化为直角坐标方程,求出圆心及半径,再转化为参数方程即可;(2)将直线l 的极坐标方程转化为直角坐标方程,利用圆心到直线的距离判断直线l 与圆C 的位置关系即可.(1)解:因为圆C 的极坐标方程为2sin ρθ=,则22sin ρρθ=,则其直角坐标方程为222x y y +=,即22(1)1y x +-=,圆心为(0,1),半径为1,则圆C 的参数方程为cos 1sin x y θθ=⎧⎨=+⎩(θ为参数).(2)解:因为直线l 的极坐标方程为2cos 36πρθ⎛⎫-= ⎪⎝⎭,则2cos cos sin sin 3066ππρθθ⎛⎫+-= ⎪⎝⎭3cos sin 30ρθρθ+-=,所以直线l 330x y +-=,由(1)得圆C 的直角坐标方程为22(1)1y x +-=,圆心为(0,1),半径为1,则圆心(0,1)到直线l 22301131(3)1⨯+⨯-=+,故直线l 与圆C 相切.7.(2022·河南·开封市东信学校模拟预测(理))在平面直角坐标系xOy 中,曲线C 的参数方程为2,2x t y t =⎧⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 20ρθρθ+-=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于P ,Q 两点,且点(0,2)M ,求11||||MP MQ +的值.【答案】(1)曲线2:2C y x =;直线:20+-=l x y (2)344【解析】【分析】(1)消去参数t 即可得C 的普通方程,并用极坐标与直角坐标互化即可得直线的普通方程;(2)写出直线l 参数方程的标准形式,再与C 的普通方程联立,借助参数的几何意义得解.(1)曲线C 的参数方程为2,2x t y t=⎧⎨=⎩(t 为参数),转化为直角坐标方程为22y x =,可得22y x =;直线l 的极坐标方程为cos sin 20ρθρθ+-=,转化为直角坐标方程为20x y +-=;(2)把直线l 的方程换成参数方程,得2,2222x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),代入22y x =.得22202t t --=,∴12122,22t t t t +==-,显然12,t t 异号.由22111211||,||22MP t t t MQ t =+==,∴()212121212121212121841111342||||24t t t t t t t t MP MQ t t t t t t t t ++-+-+=+=====.8.(2022·四川·成都市锦江区嘉祥外国语高级中学模拟预测(理))在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系(取相同的单位长度),曲线1C 的极坐标方程为4cos ρθ=,曲线2C 的参数方程为222222x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数),曲线1C ,2C 相交于A 、B 两点,曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C .(1)求曲线1C 的普通方程和线段AB 的长度;(2)设点P 是曲线3C 上的一个动点,求PAB △的面积的最小值.【答案】(1)22(2)4x y -+=,22AB =(2)45【解析】【分析】(1)利用极坐标与直角坐标的互化公式可求出1C 的普通方程,求出2C 的普通方程,然后求出圆心到直线的距离,再由圆心距,弦和半径的关系可求出AB 的长度,(2)由伸缩变换可求出曲线3C 的方程为2214xy +=,设点()2cos ,sin P ϕϕ,求出点P 到直线AB 的距离,化简后利用三角函数的性质可求出其最小值,从而可求出PAB △的面积的最小值(1)由4cos ρθ=,得24cos ρρθ=,又222x y ρ=+,cos x ρθ=,所以22(2)4x y -+=.由22222x y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),消去参数得4x y -=,1C 的圆心为(2,0),半径为2,则圆心到直线4x y -=的距离为2422d -==,所以()2222222AB =-=(2)曲线3C 经过伸缩变换22x x y y ='+='⎧⎨⎩后得到曲线1C ,则()()222224+-+=x y ,即曲线3C 的方程为2214x y +=,设点()2cos ,sin P ϕϕ,则点P 到直线AB 的距离为2555cos sin 4552cos sin 422d ϕϕϕϕ⎛⎫-- ⎪--⎝⎭==()5sin 4522αϕ--==25sin 5α=,5cos 5α=),故当()sin 1αϕ-=时,d 取得最小值,且min 52d =,因此,当点P 到直线AB 的距离最小时,PAB △的面积也最小,所以PAB △的面积的最小值为min 1152245222AB d ⋅⋅=⨯=.9.(2022·全国·模拟预测(理))在直角坐标系xOy 中,曲线1C 的参数方程是11cos 221sin 2x y ϕϕ⎧=+⎪⎪⎨⎪=⎪⎩(ϕ为参数).以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为13sin ()ρθρ=+∈R .(1)求曲线1C 和曲线2C 除极点外的交点的极坐标(02π)θ≤<;(2)若A ,B 分别为曲线1C 和2C 上的异于极点O 的两点,且OA OB ⊥,求OAB 面积的最大值.【答案】(1)()1,0,14π,23⎛⎫- ⎪⎝⎭31【解析】【分析】(1)求出曲线1C 的普通方程,进而求出极坐标方程,与2C 的极坐标方程联立,求出曲线1C 和曲线2C 除极点外的交点的极坐标;(2)设出,A B 两点的极坐标方程,表达出OAB 的面积,利用三角函数的有界性求出最大值.(1)曲线1C 的普通方程为221124x y ⎛⎫-+= ⎪⎝⎭,化为极坐标方程为:()2211cos sin 24ρθρθ⎛⎫-+= ⎪⎝⎭,化简得到:cos ρθ=,与13sin ()ρθρ=+∈R 联立,得:cos 13θθ=,即π1cos 32θ⎛⎫+= ⎪⎝⎭,因为02πθ≤<,所以ππ7π333θ≤+<,所以π5π33θ+=,或ππ33θ+=,解得:14π3θ=或20θ=,当4π3θ=时,此时4π1cos 32ρ==-,当0θ=时,此时cos01ρ==所以曲线1C 和曲线2C 除极点外的交点的极坐标为()1,0与14π,23⎛⎫- ⎪⎝⎭;(2)因为OA OB ⊥,①设()ππcos ,,13,22A B αααα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则()2πcos 13cos 133cos 2OAB S αααααα⎛⎫⎛⎫=⋅+=⋅=+ ⎪ ⎪⎝⎭⎝⎭ 2333cos 612α=⎭因为[]cos 1,1α∈-,所以当cos 1α=时,OAB 31+;②设()ππcos ,,13,22A B αααα⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则()2πcos 13cos 133cos 2OAB S αααααα⎛⎫⎛⎫=⋅-=⋅=-+ ⎪ ⎪⎝⎭⎝⎭ 2333cos 612α⎫=-+⎪⎪⎭,因为[]cos 1,1α∈-,所以当3cos 6α=时,OAB 面积取得最大值,最大值为312;33112>OAB 31.10.(2022·吉林市教育学院模拟预测(理))以等边三角形的每个顶点为圆心,以其边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形被称为勒洛三角形,如图,在极坐标系Ox 中,曲边三角形OPQ 为勒洛三角形,且π2,6P ⎛⎫- ⎪⎝⎭,π2,6Q ⎛⎫⎪⎝⎭,以极点O 为直角坐标原点,极轴Ox 为x 轴正半轴建立平面直角坐标系xOy ,曲线1C 的参数方程为32112x t y t⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)求 PQ的极坐标方程和 OQ 所在圆2C 的直角坐标方程;(2)已知点M 的直角坐标为()0,1-,曲线1C 和圆2C 相交于A ,B 两点,求11||||MA MB -.【答案】(1)ππ2,,66ρθ⎛⎫=∈- ⎪⎝⎭;222:(3)(1)4++=C x y (2)3【解析】【分析】(1)由已知,可根据题意直接写出 PQ 的极坐标方程,并标注范围,然后求解出点P 的直角坐标,写出 OQ所在圆的直角坐标方程即可;(2)由已知,设A ,B 对应的参数分别为12,t t ,将曲线1C 的参数方程带入圆2C ,并根据根与系数关系,求解11||||MA MB -即可.(1)因为π2,6P ⎛⎫- ⎪⎝⎭,π2,6Q ⎛⎫ ⎪⎝⎭,所以 PQ 的极坐标方程:ππ2,,66ρθ⎛⎫=∈- ⎪⎝⎭,因为点P 的直角坐标是(3,1)-,所以 OQ所在圆的直角坐标方程为222:(3)(1)4++=C x y .(注: PQ的极坐标方程不标明θ的取值范围或写错扣1分)(2)设A ,B 对应的参数分别为12,t t ,将32112x y t ⎧=⎪⎪⎨⎪=-+⎪⎩代入22(3)(1)4x y ++=得:2310,0--=∆>t t 所以12123,1+==-t t t t 因为120t t <,由t 的几何意义得:121212121111113||||+-=-=+==t tMA MB t t t t t t。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标系与参数方程高考题练习2014年一.选择题1. (2014)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩〔θ为参数〕的对称中心〔 B 〕.A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.(2014)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位。

直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为〔 D 〕〔A 〕14 〔B 〕214 〔C 〕2 〔D 〕223(2014) (2).〔坐标系与参数方程选做题〕假设以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为〔 〕 A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A 【解析】1y x =-()01x ≤≤10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭所以选A 。

二.填空题1. (2014)〔选修4-4:坐标系与参数方程〕曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y tx ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. (2014)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,〔α为参数〕交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________. 3 (2014)直线l 的参数方程为⎩⎨⎧+=+=t y t x 32〔t 为参数〕,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014)曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是。

【答案】 31【解析】.C (2014)〔坐标系与参数方程选做题〕在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是C5 (2014**)在以O 为极点的极坐标系中,圆θρ4sin =和直线a =θρsin 相交于,A B 两点.假设ΔAOB 是等边三角形,则a 的值为___________. 解:3 圆的方程为2224xy ,直线为y a .因为AOB 是等边三角形,所以其中一个交点坐标为,代入圆的方程可得3a .6. (2014)〔坐标与参数方程选做题〕在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为*轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__三.解答题1.(2014新课标I)〔本小题总分值10分〕选修4—4:坐标系与参数方程曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩〔t 为参数〕. (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;〔Ⅱ〕过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.【解析】:.(Ⅰ) 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩〔θ为参数〕,直线l 的普通方程为:260x y +-=………5分〔Ⅱ〕〔2〕在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为54cos 3sin 65d θθ=+-, 则()025||5sin 6sin 305d PA θα==+-,其中α为锐角.且4tan 3α=. 当()sin 1θα+=-时,||PA 225; 当()sin 1θα+=时,||PA 取得最小值,最小值为55. …………10分 2. (2014新课标II)〔本小题总分值10〕选修4-4:坐标系与参数方程在直角坐标系*oy 中,以坐标原点为极点,*轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. 〔Ⅰ〕求C 的参数方程;〔Ⅱ〕设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据〔Ⅰ〕中你得到的参数方程,确定D 的坐标.3. 〔2014〕〔本小题总分值10分〕选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. 〔1〕写出C 的参数方程;〔2〕设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,*轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.【答案】 〔1〕π∈[0,θθsin 2,θcos ,==y x 〔2〕 03θsin ρ4-cos θ 2ρ=+ 【解析】〔1〕]π∈[0,θθsin 2,θcos ,的参数方程:曲线==y x C 〔2〕4〔2014〕〔本小题总分值7分〕选修4—4:极坐标与参数方程直线l 的参数方程为⎩⎨⎧-=-=t y ta x 42,〔t 为参数〕,圆C 的参数方程为⎩⎨⎧==θθsin 4cos 4y x ,〔θ为常数〕. 〔I 〕求直线l 和圆C 的普通方程;〔II 〕假设直线l 与圆C 有公共点,数a 的取值围.解:(1)直线l 的普通方程为2*-y -2a =0, 圆C 的普通方程为*2+y 2=16. (2)因为直线l 与圆C 有公共点, 故圆C 的圆心到直线l 的距离d =52a -≤4,解得-25≤a ≤2 5.2007--2013年高考 极坐标与参数方程〔2013数学〔理〕〕在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为〔 B 〕A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和〔2013**数学〔理〕〕圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭,则|CP | = 23.1〔2013卷〔理〕〕在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为_____152+_____ 解析:2〔2013卷〔理〕〕在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于____1_____.3〔2013数学〔理〕〕在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.假设极坐标方程为cos 4ρθ=的直线与曲线23x ty t⎧=⎪⎨=⎪⎩(为参数)相交于,A B 两点,则______AB = 【答案】164〔2013〔理〕〕(坐标系与参数方程选讲选做题)曲线C的参数方程为x ty t ⎧=⎪⎨=⎪⎩(为参数),C 在点()1,1处的切线为, 以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则切线的极坐标方程为.【答案】*+y=2 ;sin 4πρθ⎛⎫+= ⎪⎝⎭5〔2013〔理〕〕C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .【答案】R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 26〔2013〔理〕〕(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t=⎧⎨=⎩(为参数),假设以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________ 【答案】2cos sin 0ρθθ-=7〔2013卷〔理〕〕在平面直角坐标系xoy 中,假设,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为________. 【答案】38〔2013〔理〕〕在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取一样的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线与圆O的极坐标方程分别为sin 4πρθ⎛⎫+=⎪⎝⎭()m 为非零常数与b ρ=.假设直线经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为___________.〔2013新课标〔理〕〕动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【答案】9〔2013〔理〕〕在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 4πρθρθ⎛⎫==-= ⎪⎝⎭.(I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.直线PQ 的参数方程为()3312x t at R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值 【答案】10〔2013〔理〕〕坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.点A的极坐标为)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.【答案】解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线的方程可化为cos sin 2ρθρθ+= 从而直线的直角坐标方程为20x y +-= (Ⅱ)由得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r =以为圆心到直线的距离212d =<,所以直线与圆相交 11〔2013〕在平面直角坐标系xoy 中,直线的参数方程为⎩⎨⎧=+=ty t x 21(为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线与曲线C 的普通方程,并求出它们的公共点的坐标. 【答案】C 解:∵直线的参数方程为⎩⎨⎧=+=ty t x 21∴消去参数后得直线的普通方程为022=--y x ①同理得曲线C 的普通方程为x y 22=②①②联立方程组解得它们公共点的坐标为)2,2(,)1,21(-12〔2013新课标1〔理〕〕选修4—4:坐标系与参数方程曲线C 1的参数方程为45cos 55sin x t y t=+⎧⎨=+⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (Ⅰ)把C 1的参数方程化为极坐标方程; (Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【答案】将45cos 55sin x ty t=+⎧⎨=+⎩消去参数,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=; (Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为(2,4π),(2,)2π. 【2012新课标文23】曲线C 1的参数方程是〔φ为参数〕,以坐标原点为极点,*轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正三角形ABC 的顶点都在C 2上,且A 、B 、C 以逆时针次序排列,点A 的极坐标为〔2,〕〔Ⅰ〕求点A 、B 、C 的直角坐标;〔Ⅱ〕设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2的取值围. 解析:【2012文23】在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。

相关文档
最新文档