实验一应变片:单臂、半桥、全桥比较

合集下载

应变片实验报告

应变片实验报告

传感器实验-——-金属箔式应变片:单臂、半桥、全桥比较【实验目得】了解金属箔式应变片,单臂单桥得工作原理与工作情况。

验证单臂、半桥、全桥得性能及相互之间关系。

【所需单元及部件】直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、一片应变片、电压/频率表、电源,重物加在短小得圆盘上。

【旋钮初始位置】直流稳压电源打到±2V挡,电压/频率表打到2V挡,差动放大增益最大.【应变片得工作原理】当金属丝在外力作用下发生机械变形时,其电阻值将发生变化,这种现象称为金属得电阻应变效应。

设有一根长度为L、截面积为S、电阻率为ρ得金属丝,在未受力时,原始电阻为(1-1)当金属电阻丝受到轴向拉力F作用时,将伸长ΔL,横截面积相应减小ΔS,电阻率因晶格变化等因素得影响而改变Δρ,故引起电阻值变化ΔR。

对式(1-1)全微分,并用相对变化量来表示,则有:(1-2)【测量电路】应变片测量应变就是通过敏感栅得电阻相对变化而得到得。

通常金属电阻应变片灵敏度系数K 很小,机械应变一般在10×10-6~3000×10-6之间,可见,电阻相对变化就是很小得。

例如,某传感器弹性元件在额定载荷下产生应变-6,应变片得电阻值为,灵敏度系数K=2,则电阻得相对变化量为10—6=0、002,电阻变化率只有0、2%。

这样小得电阻变化,用一般测量电阻得仪表很难直接测出来,必须用专门得电路来测量这种微弱得电阻变化。

最常用得电路为电桥电路。

(a)单臂(b)半桥(c)全桥图1—1 应变电桥直流电桥得电压输出当电桥输出端接有放大器时,由于放大器得输入阻抗很高,所以,可以认为电桥得负载电阻为无穷大,这时电桥以电压得形式输出。

输出电压即为电桥输出端得开路电压,其表达式为(1-3)设电桥为单臂工作状态,即为应变片,其余桥臂均为固定电阻。

当感受应变产生电阻增量时,由初始平衡条件得,代入式(1—3),则电桥由于产生不平衡引起得输出电压为(1-4)对于输出对称电桥,此时,R´,当臂得电阻产生变化,根据式(1-4)可得到输出电压为(1—5)对于电源电桥,,´,当R1臂产生电阻增量时,由式(1-4)得(1-6)对于等臂电桥,当得电阻增量时,由式(1—10)可得输出电压为(1—7)由上面三种结果可以瞧出,当桥臂应变片得电阻发生变化时,电桥得输出电压也随着变化。

实验01(金属箔式应变片)实验报告

实验01(金属箔式应变片)实验报告

实验一金属箔式应变片测重及三种直流电桥性能比较实验实验1:金属箔式应变片单臂电桥测重实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

比较单臂/半桥/全桥的不同性能,了解其特点。

二、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压Uo1= EKε/4。

三、实验器械主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘、砝码、4 2 1 位数显万用表(自备)。

四、实验接线图五、实验数据记录和数据处理实验数据如下:实验数据拟合图像如下由图像可见系统灵敏度S=ΔU/ΔW=0.2162δ=Δm/yFS ×100%=1.904/45.3×100%=4.203%六、思考题1、单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。

答:正负皆可,因为应变片的受力都会直接导致电阻的变化,从而检测到相应的电压变化。

实验2:金属箔式应变片三种桥路性能比较实验一、实验目的比较单臂/半桥/全桥的不同性能,了解其特点二、实验原理半桥测量电路中,将两只应变片接入组成电桥,电桥输出灵敏度比单臂桥路有所提高,非线性也得到了改善,其桥路输出电压UO2=EKε/2。

全桥测量电路中,将R1、R2、R3、R4四个箔式应变片按它们的受力方向以一定的规律接入组成电桥,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1 =ΔR2=ΔR3=ΔR4时,其桥路输出电压UO3=KEε,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

实验一应变片

实验一应变片

课程 传感器原理及应用 学号 姓名 成绩 实验名称 实验一 单臂、半桥、全桥应变片特性实验 一、实验目的:了解电阻应变片的应变效应;比较单臂、半桥、全桥应变片的灵敏度;掌握数据处理的方法。

二、实验原理:图1为全桥应变片特性实验电路,平衡时,R 4R 2=R 1R 3,电压表指示为0。

当应变片受力时,应变电阻的阻值将会发生变化,即:R 4+∆R 、R 2+∆R 、R 3-∆R 、R 1-∆R ,此时电桥不平衡,电压表有指示,将应力转换成电压。

为了克服桥臂电阻不一致形成的误差,设置了W 1和r 的调零环节。

当R 1、R 2为普通电阻时,实验电路为半桥应变电路,其输出电压是全桥的一半。

当R 1、R 2、R 3均为普通电阻时,实验电路为单臂应变电路,其输出电压是半桥的一半。

三、实验设备:传感器实验箱1台、20克砝码10个、连接线若干。

四、实验预习要求:复习教材中应变式传感器章节。

五、实验步骤 1、实验箱通电预热。

2、将差分放大器模块的同相输入端V +和反相输入端V -均接地,输出端接实-4V +4V图1R 1 R 2R 3R 4rW 1验箱的电压表,调节“调零”电位器,使差分放大器模块输出为零。

“增益”电位器顺时针调到最大后再逆时针回调半圈。

3、将图1接成单臂应变电路,调节平衡电位器“W 1”,使电压表指示最小。

4、将10个20克的砝码依次放在应变梁托盘上,将电压表的示值填入表1。

5、将图1接成半桥应变电路,调节平衡电位器“W 1”,使电压表指示最小,按步骤4的要求完成表1的内容。

6、按图1全桥应变电路,调节平衡电位器“W 1”,使电压表指示最小,按步骤4的要求完成表1的内容。

7、按表1的原始数据分别进行数据处理:(1)作应力/电压特性图;(2)计算电压灵敏度WUK ∆∆=,其中U ∆为输出电压平均变化量,W ∆为重量变化量;(3)用平均选点法拟合直线bx a y +=,其中1212x x y y b --=,22b a -==11b -,而5511∑==i iUy ,5511∑==i iWx ,51062∑==i iUy ,51062∑==i iWx 。

(完整word版)单臂半桥全桥传感器实验报告

(完整word版)单臂半桥全桥传感器实验报告

实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR /R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压U o1= EKε/4。

图1-1 应变式传感器安装示意图三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1.根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。

2.接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表电压输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。

关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。

一直到做完实验三为止)。

3.将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入),此时应将±4地与±15地短接。

应变片单臂、半桥、全桥性能实验PPT课件

应变片单臂、半桥、全桥性能实验PPT课件

• Uo≈(1/4)(△R4/R4)E=(1/4)(△R/R)E=(1/4)KεE
2•020差/2/2动6 放大器输出为Vo。
12
7、应变片半桥特性实验原理图
• 不同应力方向的两片应变片接入电桥作为邻边,输出灵敏 度提高,非线性得到改善。
• 其桥路输出电压Uo≈(1/2)(△R/R)E=(1/2)KεE 。
• 当导体因某种原因产生应变时,其长度L、截面积 A和电阻率ρ的变化为dL、dA、dρ相应的电阻变 化为dR。对式全微分得电阻变化率 dR/R为:
式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr
由材料力学得:εr= - μεL 代入上式
式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5 左右;负号表示两者的变化方向相反。
在传感器的托盘上依次增加放置一只20g砝码尽量靠近托盘的中心点放置读取相应的数显表电压值记下实验数据填入表1202022620应变片单臂电桥性能实验数据5根据表1数据作出曲线并计算系统灵敏度sv输出电压变化量w重量变化量和非线性误差myfs100式中输出值多次测量时为平均值与拟合直线的最大偏差
应变片单臂、半桥、全桥性能实验
2020/2/26
18
3、实验模板中的差动放大器调零
• 按图示接线,将主机箱上的电压表量程切换开关切换到2V档 ,检查接线无误后合上主机箱电源开关;调节放大器的增益电 位器RW3合适位置(先顺时针轻轻转到底,再逆时针回转1圈) 后,再调节实验模板放大器的调零电位器RW4,使电压表显 示为零。
2020/2/26
(b)半桥
(c)全桥
(a)单臂 Uo=U①-U③ =〔(R1+△R1)/(R1+△R1+R5)-R7/(R7+R6)〕E ={〔(R7+R6)(R1+△R1)-R7(R5+R1+△R1)〕/ 〔(R5+R1+△R1)(R7+R6)〕}E

研究报告金属箔式应变片电桥性能实验

研究报告金属箔式应变片电桥性能实验

实验一金属箔式应变片电桥性能实验一、实验目的:了解金属箔式应变片的应变效应;单臂电桥、半桥、全桥的工作原理和性能比较单臂、半桥、全桥输出时的灵敏度和非线性误差。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。

金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化:对单臂电桥而言,电桥输出电压,U01=EKε/4。

对半桥而言,电桥输出电压,U01=EKε/2。

对全桥而言,电桥输出电压,U01=EKε。

三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V 电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图(1-1),应变式传感器已装于应变传感器模板上。

传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。

2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。

3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

(完整word版)单臂半桥全桥传感器实验报告

(完整word版)单臂半桥全桥传感器实验报告

实验一 金属箔式应变片――单臂电桥性能实验一、实验目的:认识金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基来源理: 电阻丝在外力作用下发活力械变形时,其电阻值发生变化,这就是电阻应变效应,描绘电阻应变效应的关系式为:ΔR/R =K ε,式中 ΔR/ R 为电阻丝电阻相对变化, K 为应变敏捷系数,ε=l/l 为电阻丝长度相对变化,金属箔式应变片就是经过光刻、腐化等工艺制成的应变敏感元件,经过它变换被测部位受力状态变化、电桥的作用达成电阻到电压的比率变化,电桥的输出电压反应了相应的受力状态。

对单臂电桥输出电压Uo1= EK ε 。

/4图 1-1 应变式传感器安装表示图三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、 ±15V 电源、 ±4V 电源、万用表(自备) 。

四、实验步骤:1.依据图( 1-1)应变式传感器(电子秤)已装于应变传感器模板上。

传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。

加热丝也接于模板上,可用万用表进行丈量鉴别, R 1= R 2 =R 3 =R 4=350Ω,加热丝阻值为 50Ω 左右。

2.接入模板电源 ±15V (从主控台引入),检查无误后,合上主控台电源开关,将实验模板调理增益电位器R W3 顺时针调理大概到中间地点,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表电压输入端 V i相连,调理实验模板上浮零电位器 R W4,使数显表显示为零(数显表的切换开关打到2V 档)。

封闭主控箱电源(注意:当R w3、R w4的地点一旦确立,就不可以改变。

向来到做完实验三为止)。

3.将应变式传感器的此中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、 R6、R7 接成直流电桥( R5、R6、R7 模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入),此时应将±4 地与±15 地短接。

实验

实验

实验一金属箔式应变片:单臂、半桥、全桥比较实验目的:了解箔式应变片的结构及粘帖方式,测试应变梁变形的应变输出,验证单臂、半直流稳压电源、应变式传感器实验模块,箔式应变计,测微头、数字电压表直流稳压电源打到±2V档,F/V表打到2V档,差动放大器增益打实验步骤:(1) 了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔(2) 连接主机与模块电路电源连接线,差动放大器增益置于最大位置(顺时针方向旋到底),差动放大器“+”“-”输入端对地用实验线短路,即用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与F/V表的输入插口Vi 相连,接电压表2V挡。

开启主机电源,用调零电位器调整差动放大器输出电压为零,然后拔掉实验线,调零后模块上的“增益、调零”电位器均不应再变动。

图1(3) 根据图1接线成桥路,R1、R2、R3为电桥单元的固定标准电阻。

R为应变片(可任选一个);注意连接方式,勿使直流激励电源短路。

(4) 调整测微头使双平行梁处于水平位置(目测),将稳压电源的切换开关置±4V档,F/V 表置20V档。

开启主机,并预热数分钟,使电路趋于稳定。

调节电桥平衡网络中的W1,使F /V表显示为零,等待数分钟后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。

(5) 旋转测微头,使梁分别向上和向下各移动5mm,位移每隔1mm读一个数,将测得数值填入下表,然后关闭主、副电源:注意:由于悬梁弹性恢复的滞后及应变片本身的机械滞后,所以当螺旋测微仪回到初始位置后桥路电压输出值并不能马上回到零,此时可一次或几次将螺旋测微仪反方向旋转一个较大位移,使电压值回到零后再进行反向采集实验。

(6) 保持放大器增益不变,将R1固定电阻换为与R工作状态相反的另一应变片即取二片受力方向不同应变片,形成半桥,调节测微头使梁到水平位置(目测),调节电桥W1使F/V 表显示表显示为零,重复(5)过程同样测得读数,填入下表:(7) 保持差动放大器增益不变,将R2,R3两个固定电阻换成另两片受力相反的应变片,组桥时只要掌握对臂应变片的受力方向相同,邻臂应变片的受力方向相反即可,否则相互抵消没有输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一应变片:单臂、半桥、全桥比较
本次实验中,我们使用了三种不同类型的应变片:单臂应变片、半桥应变片和全桥应
变片。

这些应变片都是用于测量材料的应变变化。

应变片可以将应变变化转化为电信号,
用于测量物体的应变状态。

通过本次实验,我们将比较这三种不同类型的应变片的性能。

单臂应变片是最基本的应变片类型,它由一个被电焊在试件上的直线形变感应器组成。

当试件发生应变时,直线形变感应器的电阻值也会随之发生变化。

单臂应变片可以提供与
应变成正比的电压信号。

在实验中,我们使用单臂应变片来测试试件的应变变化。

半桥应变片由两个被电焊到试件表面的直线形变感应器组成,形成了一个不完整的电路。

当试件发生应变时,其中一个感应器的电阻值会增加,而另一个感应器的电阻值会减少,从而产生电压差。

半桥应变片可以提供比单臂应变片更高的灵敏度和更稳定的输出信号。

在这次实验中,我们在手动加载的条件下使用三种不同类型的应变片来测量试件的应
变变化。

在单臂应变片和半桥应变片的情况下,我们可以很容易地得到试件的应变变化。

然而,在使用全桥应变片时,需要进行更复杂的电路连接和校准过程才能得到准确的测量
结果。

总的来说,单臂应变片是最简单的应变片类型,但其灵敏度和稳定性较低。

半桥应变
片具有更高的灵敏度和稳定性,但需要更复杂的电路连接。

全桥应变片是最灵敏、最稳定
和最准确的应变片类型,但也需要最复杂的电路连接和校准过程。

因此,在实际应用中,
我们需要根据具体案例来选择适当的应变片类型。

相关文档
最新文档