二次方程的根与系数之间的关系
第14讲一元二次方程根与系数的关系-尖子班

一、一元二次方程根与系数的关系(韦达定理):若21,x x 是关于x 的一元二次方程)0(02≠=++a c bx ax 的两个根,则方程的两个根21,x x 和系数c b a ,,有如下关系:ac x x a b x x =⋅-=+2121,.【例1】先阅读,再填空解题:⑴方程x 2-x -12=0的根是:x 1=3-,x 2=4,则x 1+x 2=1,x 1·x 2=12-;⑵方程2x 2-7x +3=0的根是:x 1=12,x 2=3,则x 1+x 2=72,x 1·x 2=32;⑶方程x 2-3x +1=0的根是:x 1=,x 2=.则x 1+x 2=,x 1·x 2=;⑷根据以上⑴⑵⑶你能否猜出:如果关于x 的一元二次方程mx 2+nx +p =0(m ≠0且m 、n 、p 为常数)的两根为x 1、x 2,那么x 1+x 2、x 1·x 2与系数m 、n 、p 有什么关系?请写出来你的猜想并说明理由.⑸在⑶的条件下,求下列各式的值:①221221x x x x +;②221211x x +【例2】不解方程,求下列方程两根的积与和.⑴25100x x --=⑵22710x x ++=⑶23125x x -=+⑷()137x x x -=+一元二次方程根与系数的关系【例3】(1)设方程24730x x --=的两个根为1x 、2x ,不解方程求下列各式的值①12(3)(3)x x --;②211211x x x x +++;③12x x -(2)已知α、β是方程2520x x ++=的两根,求βααβ+的值.(3)设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是__________.【例4】若方程210x px ++=的一个根为12-,则它的另一根等于__________,p 等于_________【例5】(1)已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .①求实数m 的取值范围;②当22120x x -=时,求m 的值.(2)已知一元二次方程2(1)230m x mx m +++-=有两个不相等的实数根,并且这两个根又不互为相反数.①求m 的取值范围;②当m 在取值范围内取最小偶数时,方程的两根为12,x x ,求2123(14)x x -的值.(3)关于x 的方程20x px q ++=的两根和为1s ,两根的平方和为2s ,两根的立方和为3s ,试求321s ps qs ++的值.(4)已知方程组22200x y x kx y k ⎧+-=⎨--=⎩①②(x 、y 为未知数)⑴求证:不论k 为何实数,方程组总有两个不同的实数解⑵设方程组的两个不同的实数解为11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩求证:221212()()x x y y -+-是一个常数【例6】已知关于x 的方程①2230x mx m -+=的两个实根是1x 、2x 且212()16x x -=。
1元二次方程根和系数的关系

1元二次方程根和系数的关系小伙伴们!今天咱们来唠唠一元二次方程根和系数之间那奇妙的关系。
咱得知道一元二次方程长啥样,一般形式就是ax^2+bx + c = 0(a≠0)。
这里的a、b、c就是方程的系数,就像方程这个小王国里的三位大臣,各自有着不同的作用。
那方程的根呢?就是能让这个方程成立的x的值。
比如说x^2-5x + 6 = 0,它的根是x = 2和x = 3。
现在咱们就来揭开根和系数神秘关系的面纱。
有个很厉害的定理,叫韦达定理。
韦达定理说,在一元二次方程ax^2+bx + c = 0(a≠0)中,如果它的两个根是x_1和x_2,那么就有x_1+x_2=-(b)/(a)。
这就好比是两个根手拉手,它们的和与系数a和b有了联系。
比如说方程x^2-3x 4 = 0,这里a = 1,b=-3,它的根是x = 4和x=-1,4+(-1)=3,而-(b)/(a)=-(-3)/(1)=3,是不是很神奇呢?还有x_1x_2=(c)/(a)。
这就像是两个根之间还有个小秘密,这个秘密和系数a和c 有关。
就拿刚才的x^2-3x 4 = 0来说,4×(-1)= 4,(c)/(a)=(-4)/(1)=-4。
这韦达定理有啥用呢?它的用处可大了去了。
比如我们知道一个一元二次方程的两根之和与两根之积,就能快速地写出这个方程。
或者在解题的时候,不用求出方程的根,就能通过根和系数的关系得到一些关于根的信息。
咱可以把一元二次方程想象成一个神秘的花园,系数是花园的守护者,而根是花园里的花朵。
韦达定理就像是一条隐藏的小径,把花朵和守护者联系起来。
这样,当我们在数学的花园里漫步时,就可以通过这条小径,更轻松地探索方程的奥秘啦。
再比如说,有些时候题目只告诉我们关于根的一些条件,像两根的和或者积,我们就可以利用韦达定理,反推方程的系数,从而确定方程。
这就像是玩侦探游戏一样,根据一点点线索,找到真相。
一元二次方程根和系数的关系就像是一把神奇的钥匙,打开了很多数学问题的大门。
第二章一元二次方程根与系数的关系及应用

一元二次方程根与系数的关系及应用教学目标掌握根与系数关系,灵活应用根与系数关系解题重难点分析重点:1、根与系数关系的公式; 2、根的关系变形; 3、列一元二次方程。
难点:1、根与系数关系的变形及运算; 2、应用题中一元二次方程的列法。
知识点梳理1、一元二次方程根与系数关系若一元二次方程02=++c bx ax (0≠a )有两个实数根2142b b ac x a -+-=,2242b b ac x a ---=,则有2212442222b b ac b b ac b bx x a a a a-+-----+=+==-; 2222122244(4)42244b b ac b b ac b b ac ac cx x a a a a a-+------=⋅===。
即根与系数的关系为a b x x -=+21,acx x =⋅21以上关系称为韦达定理。
2、特殊根问题3、列一元二次方程解应用题的一般步骤可归结为“审、设、列、解、验、答”,具体如下: (1)审题:仔细阅读题目、分析题意,明确题目要求,弄清已知数、未知数以及它们之间(2)设未知数:一种方法是直接设所要求的量为x ;另一种方法是设与所求量有关系,且具有关键性作用的未知量为,而所求量能用的代数式表示;(3)列方程:根据题中已知量和未知量之间的关系列出方程; (4)解方程。
(5)检验:检验未知数的值是否满足所列出的方程,还必须检验它是否能使实际问题有意义。
若不符合实际意义则应舍去;(6)写出答案:书写答案,要注意不要遗漏单位和名称。
知识点1:探索根与系数关系【例1】解下列方程,并填写表格:方 程+知识点2:根与系数关系的应用(1)已知一元二次方程,求两根关系【例1】若1x ,2x 分别是一元二次方程0822=--x x 的两根。
(1)求21x x +的值; (2)求21x x ⋅的值; (3)求2111x x +的值 (4)求的值【随堂练习】1、已知方程0132=--x x 的两根为1x ,2x ,求)3)(3(21--x x 的值。
根与系数的关系及应用

根与系数的关系及应用根是数学中的重要概念,常常出现在方程、多项式以及数列等中。
根作为方程的解,与系数密切相关,其关系的研究对于解方程、揭示方程性质等方面具有重要的意义。
本文将探讨根与系数之间的关系,并介绍其在数学中的应用。
一、根与系数的关系根与系数之间的关系可以通过方程来研究。
假设有一个二次方程:ax^2 + bx + c = 0(其中a、b、c为实数,且a≠0),其中方程的根分别为x1和x2。
根据二次方程的求根公式,我们可以得到:x1,2 = [ -b ± √(b^2 - 4ac) ] / 2a从这个公式可以看出,根与系数之间存在着一定的关系。
首先,根的取值与系数b和c的符号有关。
当b^2 - 4ac > 0时,方程有两个不相等的实根;当b^2 - 4ac = 0时,方程有两个相等的实根;当b^2 - 4ac < 0时,方程无实根。
其次,根的取值还与a的值有关,a的符号决定了根的正负。
除了二次方程,一次方程的根与系数之间也存在着关系。
对于 ax + b = 0(其中a和b为实数,且a≠0),其根为x = -b/a。
可以看出,在一次方程中,根的取值与系数a和b之间有线性关系。
二、根与系数的应用根与系数之间的关系在数学中有广泛的应用。
以下将介绍一些常见的应用场景。
1. 解方程根与系数的关系在解方程中起到了关键的作用。
通过根与系数的关系,我们可以利用求根公式快速求解各种形式的方程,如二次方程、一次方程以及更高次的多项式方程。
这极大地简化了方程的求解过程,使我们能够更高效地得到方程的解。
2. 研究方程性质根与系数之间的关系也可以用来研究方程的性质。
例如,通过分析方程根的数量和性质,可以判断方程的图像在坐标平面上的形状,从而帮助我们更好地理解和应用方程。
3. 数列的通项公式根与系数的关系还可以应用于数列的求解中。
对于递推数列 an =c1r^(n-1) + c2r^(n-2) + ... + cn,其中r是常数,c1、c2、...、cn为系数,则该数列的通项公式可以表示为 an = d1x1^(n-1) + d2x2^(n-2) + ... + dnxn,其中x1、x2、...、xn为方程 cx^n + c1x^(n-1) + c2x^(n-2) + ... +cn = 0 的根,d1、d2、...、dn为常数。
九年级数学一元二次方程根与系数的关系

根与系数关系1、一元二次方程根与系数关系的推导及应用;2、熟练应用根与系数的关系.结论:【知识梳理】1、 一元二次方程)0(02≠=++a c bx ax 的求根公式为)04(2422≥--±-=ac b aac b b x 。
2、 一元二次方程)0(02≠=++a c bx ax 根的判别式为:ac b 42-=∆(1)有两个实数根。
(2)有两个正实数根。
(3)有一个正数根和一个负数根。
(4)两个根都小于2。
答案:(1) 253k ≤;(2) 2503k ≤<; (3) 0k <;(4) 无解。
变式训练1、已知关于x 的方程022=+-a ax x 。
(1)求证:方程必有两个不相等的实数根; (2)a 取何值时,方程有两个正根;(3)a 取何值时,方程有两异号根,且负根绝对值较大; (4)a 取何值时,方程到少有一根为零? 答案:(1) 证240b ac ->;(2) 0a >; (3) 0a <;(4) 0a = 知识点四:已知方程两个根满足某种关系,确定方程中字母系数的值.例4、已知关于x 的方程05)2(222=-+++m x m x 有两个实数根,并且这两个根的平方和比两个根的积大16,求m 的值。
变式训练1、已知关于x 的方程03)1(222=-++-m x m x (1)当m 取何值时,方程有两个不相等的实数根?(2)设1x 、2x 是方程的两根,且012)()(21221=-+-+x x x x ,求m 的值。
知识点五:综合运用例5、方程x 2-6x-k=1与x 2-kx-7=0有相同的根,求k 值及相同的根.例6、已知α、β是方程0522=-+x x 的两个实数根,则ααβα22++的值为_0__例7、求作一个一元二次方程使它的两根分别是1- 5 和1+ 5 。
答案:2240x x --=例8、已知两个数的和等于8,积等于7,求这两个数. 答案:1、7变式训练1.求一个一元二次方程使它的两个根是1、5. 答案:2650x x -+=2.已知αβ≠,则2370αα+-=,2370ββ+-=,试求11αβ+的值.答案:37。
一元二次方程根与系数的关系公式有哪些

⼀元⼆次⽅程根与系数的关系公式有哪些
韦达定理指出了⼀元⼆次⽅程根与系数的关系,让我们⼀起来了解⼀下吧。
下⾯是由店铺编辑为⼤家整理的“⼀元⼆次⽅程根与系数的关系公式有哪些”,仅供参考,欢迎⼤家阅读本⽂。
⼀元⼆次⽅程根与系数的关系
韦达定理指出:⼀元⼆次⽅程中两根的和等于它的⼀次项系数除以⼆次项系数所得的商的相反数;两根的积等于它的常数项除以⼆次项系数所得的商。
设⼀元⼆次⽅程ax²+bx+c=0中(a,b,c∈R,a≠0),设此⼀元⼆次⽅程有两根x₁、x₂,有如下关系:
由⼀元⼆次⽅程求根公式如下:
达定理与根的判别式的关系更是密不可分。
⼀元⼆次⽅程的根的判别式为:△=b2-4ac(a,b,c分别为⼀元⼆次⽅程的⼆次项系数,⼀次项系数和常数项)。
根的判别式是判定⽅程是否有实根的充要条件,韦达定理说明了根与系数的关系。
⽆论⽅程有⽆实数根,实系数⼀元⼆次⽅程的根与系数之间适合韦达定理。
判别式与韦达定理的结合,则更有效地说明与判定⼀元⼆次⽅程根的状况和特征。
韦达定理为数学中的⼀元⽅程的研究奠定了基础,对⼀元⽅程的应⽤创造开拓了⼴泛的发展空间。
已知两个根其中的⼀个,就可以代⼊韦达定理的关系式⾥求得另⼀个根,并且还可以⽤另⼀个关系式来检验。
一元二次方程的根与系数的关系

当今教科书指出:一元二次方程的根与系数的关系属选学内容,只供学习有余力的学生学习。
但是一元二次方程的根与系数的关系这个知识点的应用却是相当的广泛,习题的内容之多,题目的形式灵活多样,在中考及平时的考试中所占分值却很重,而大部分同学对这个内容却学得不好。
在此简单讲解一下一元二次方程的根与系数的关系的相关知识及相关应用,望对同学们有所帮助。
一元二次方程的根与系数的关系(以前的教科书叫韦达定理):如果方程ax2+bx+c=0(a ≠0)的两个根是x1、x2,那么x1+x2=-b/a,x1x2=c/a。
也就是说,两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数与二次项系数的比。
一元二次方程的根与系数的关系是通过求根公式演变过来的,下面是证明的过程:对于一元二次方程ax2+bx+c=0(a≠0),当判别式△=b2-4ac≥0时,方程有两个实数根,,,故有x1+x2=-b/a,x1x2=c/a。
该知识点的使用方法:先把一元二次方程化成一般形式ax2+bx+c=0(a≠0),然后确定二次项系数、一次项系数及常数项(特别是要注意这些系数的符号),最后再根据根与系数的关系,求出相关值。
一、根与系数的关系的直接应用例1:不解方程,求出2x2+4x=1的两根的和与两根的积。
解:将原方程化为一般形式得:2x2+4x-1=0确定a,b,c的值为a=2,b=4,c=-1于是x1+x2=- c/a=-2,x1x2=c/a=-1/2。
二、根与系数的关系的几种变形例2: x1、x2是方程2x2-3x-5=0的两个根,不解方程,求下列代数式的值:(1)x12+x22 (2)| x1-x2| (3)x12+3x22-3x2解:由根与系数关系可知 x1+x2=3/2, x1x2 =-5/2(1) x12+x22=(x1+x2)2 -2x1x2=(2) | x1-x2|=√(x1+x2)2-4x1x2=√19/2(3)由2x2-3x-5=0可得:2x2-3x=5故:原式= (x12+x22)+(2x22-3x2)= +5 = 12三、由根与系数的关系求字母的值例3:已知关于x的方程x2+2(m+2)x+m2-5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m的值。
一元二次方程根的判别式和根与系数的关系

中考专题复习〈〈一元二次方程根的判别式和根与系数的关系》1、根的判别式及应用(△ = b2 一4ac):(1)判定一元二次方程根的情况。
(2)确定字母的值或取值范围。
2、根与系数的关系(韦达定理)的应用:韦达定理:如果一元二次方程ax2+bx+c=0(a乒0)的两根为x i、X2,b c贝U X i+X2=—— , x i X2=—。
a a(1) 已知一根求另一根及未知系数;(2) 求与方程的根有关的代数式的值;(3) 已知两根求作方程;(4) 已知两数的和与积,求这两个数;(5)确定根的符号:(x1、x2是方程两根)。
3、应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把求作方程的二次项系数设为1,即以x「乂2为根的一元二次方程为x2-(x〔+x2)x+x〔x2= 0 ;求字母系数的值时,需使二次项系数a乒0,同时满足^> 0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和x1 +x2, ?两根之积x1x2的代数式的形式,整体代入。
1.一元二次方程根的判别式:关于x的一元二次方程a顶4bx+c=0a#0 )的根的判别式为.(1) b2 -4ac>0u 一元二次方程ax2+bx + c =0(a #0)有两个实数根.(2) 史—4ac=0U 一元二次方程有相等的实数根,即x1 = x2= ^(3) b2—4ac<0u 一元二次方程ax2+bx+c = 0(a #0 实数根.2.一元二次方程根与系数的关系若关于x的一元二次方程ax2 +bx + c =0(a , 0)有两根分别为x1, x2,那么x1 + x2=,2 2x1 x2 = ^变形:x1 +x2 =, x1 -x2 =。
至十兰=。
x1 %3.易错知识辨析:1) 在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.2) 应用一元二次方程根与系数的关系时,应注意:①根的判别式b2 -4ac芝0 ;②二次项系数a#0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系^一、【典型示例】【例1】当k为何值时,方程x2-6x + k-1=0 , (1)两根相等;(2)有一根为0 ;(3)两根为倒数【例2】已知关于x的方程x2 +2(a—1)x+a2—7a—4=0,(1) 若方程有两个不相等的实数根,求a的取值范围;(2) 若方程的有两个实数根为x〔、x2 ,且x; +x;=32,求a的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次方程的根与系数之间的关系二次方程是数学中的重要概念,它在各个领域都有广泛的应用。
本文将探讨二次方程的根与系数之间的关系,以便更好地理解和应用二次方程。
一、二次方程的定义与一般形式
二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c为实数且a≠0。
方程中的变量x代表未知数,而a、b、c则是方程的系数。
二、二次方程的求根公式
对于一般形式的二次方程ax^2 + bx + c = 0,可以通过求根公式来求解它的根。
求根公式如下:
-b ± √(b^2 - 4ac)
x = -----------------------
2a
其中,±代表两个不同的根,√表示开平方,b^2 - 4ac称为判别式。
三、判别式与根的关系
判别式b^2 - 4ac对于二次方程的根具有重要意义,通过判别式可以判断根的性质。
1. 当判别式大于0时,即b^2 - 4ac > 0,方程有两个不同的实数根。
这是因为当判别式大于0时,会出现开根号的情况,从而得到两个不
同的根。
2. 当判别式等于0时,即b^2 - 4ac = 0,方程有两个相等的实数根。
这是因为当判别式等于0时,开根号后得到的结果为0,因此只能得到
一个相等的根。
3. 当判别式小于0时,即b^2 - 4ac < 0,方程没有实数根。
这是因
为当判别式小于0时,无法进行开根号运算,因此方程没有实数根。
四、根与系数之间的关系
通过求根公式可以得到二次方程的根与系数之间的关系。
1. 根的和与系数之间的关系
对于方程ax^2 + bx + c = 0,它的两个根分别为x1和x2。
根的和可
以表示为x1 + x2 = -b / a。
这个等式表明,根的和与二次方程的一次项
系数-b的相反数成比例,而比例常数为二次方程的二次项系数a的倒数。
2. 根的积与系数之间的关系
对于方程ax^2 + bx + c = 0,它的两个根分别为x1和x2。
根的积可
以表示为x1 * x2 = c / a。
这个等式表明,根的积与二次方程的常数项c
成比例,而比例常数为二次方程的二次项系数a的倒数。
五、应用实例
下面通过一个具体的实例来说明二次方程的根与系数之间的关系。
例题:已知二次方程的两个根为3和5,求该二次方程的表达式。
解析:根据二次方程的特性可知,二次方程为(x - 3)(x - 5) = 0。
将
其展开后得到x^2 - 8x + 15 = 0,这就是所求的二次方程的表达式。
六、总结
二次方程的根与系数之间存在着一定的关系。
判别式可以判断方程
的根的性质,而根的和与系数之间、根的积与系数之间也有特定的关系。
理解并掌握这些关系,有助于更好地应用二次方程解决实际问题。
通过本文的介绍,希望读者能够更深入地理解二次方程的根与系数
之间的关系,并能够在实际应用中灵活运用。
二次方程作为数学中的
基础概念之一,在各个科学领域都具有重要的意义。
对于进一步学习
数学和解决实际问题都有着积极的促进作用。