食品工程原理课程设计——蒸发器的设计

食品工程原理课程设计——蒸发器的设计
食品工程原理课程设计——蒸发器的设计

食品工程原理

课程设计说明书

任务名称:蒸发器的设计

设计人:

指导教师:

班级组别:

设计时间:

成绩:

目录

1、设计说明书 (2)

2、设计方案的确定 (3)

3、方案说明 (4)

4、物料衡算 (5)

5、热量衡算 (5)

6、工艺尺寸计算 (9)

7、附属设备尺寸计算 (15)

8、主要技术参数 (17)

9、计算结果汇总 (17)

10、设备流程及装备图 (18)

11、参考文献 (21)

设计说明书

一、题目: 蒸发器的设计

设计蒸发量为4吨/小时的双效真空浓缩装置,用于浓缩番茄酱的生产。已知进料浓度为4.25%,成品浓度为28%,第一效真空度为600mmHg,第二效真空度为700mmHg。加热蒸汽的压力为0.15 MPa

二、原始数据:

1、原料:浓度为4.25%的番茄酱

2、产品:浓度为28%的番茄酱

3、生产能力:蒸发量四吨每小时,一天工作10个小时

4、热源:加热蒸汽为饱和水蒸汽,压力0.15MPa

5、压力条件:第一效为600 mmHg的真空度,第二效为700 mmHg的真空度

三、设计要求内容:

1、浓缩方案的确定:蒸发器的型式、蒸发操作流程、蒸发器的效数等。

2、蒸发工艺的计算:进料量、蒸发水量、蒸发消耗量、温差损失、传热量、

传热面积等。

3、蒸发器结构的计算:加热室尺寸、加热管尺寸及排列、蒸发室尺寸、接管尺

寸等。

4、附属设备的计算:冷凝器、真空系统的选用

5、流程图及装配图绘制

四.设计要求

1、设计说明书一份;

2、设计结果一览表;蒸发器主要结构尺寸和计算结果及设备选型情况等;

3、蒸发器流程图和装配图

设计方案的确定

1.蒸发器的确定:选用外加热式蒸发器,它的特点是加热室与分离室分开,便

于清洗和更换。这种结构有利于降低蒸发器的总高度,所以可以采用较长的加热管。并且,因循环管不受热而增大了溶液的循环速度,可达1.5m/s。

2.蒸发器的效数:双效真空蒸发。真空操作的压力小,故在蒸发器内物料的沸

点就低,对于番茄这种热敏性较高的物料,采用真空蒸发降低沸点是有必要的。采用多效蒸发是减少加热蒸汽耗用量,提高热能经济性的有效措施。然而也不能无限地增加效数。理由如下:(1)效数越多,节省地加热蒸汽量就越少。由单效改为双效时,加热蒸汽用量可减少50%,但由四效改为五效只能节省10%,热能经济性提高不大。(2)效数越多,温度差损失越大,分配

到各效的有效温度差就越小。为了维持料液在溶液沸腾阶段,每效的有效温度差不能小于5--7摄氏度。这样也限制了效数的增加。(3)热敏性溶液的蒸发,一般不超过三效。

3.加热方式:直接饱和蒸汽加热,压力0.15Mpa。

4.操作压力:Ⅰ效为600 mmHg真空度,Ⅱ效为700 mmHg真空度。

5.加料方式:并流式。其优点在于:(1)后一效蒸发室的压强比前一效的低,

故溶液在效简述送不用泵而利用各效间的压力差;(2)后一效溶液的沸点较前一效的低,溶液进入后效时发生闪蒸现象,产生较多二次蒸汽;(3)高浓度溶液的温度依效序降低对浓缩热敏性食品有利。

6.辅助设备:冷凝器用水喷式冷凝器;惯性捕集器

方案说明

1.本流程采用直接蒸汽加热,双效外加热式蒸发器,并流法蒸发。使用25℃水

作为冷却剂,冷凝水出口温度为40℃。

2.设备流程:

1)物料:预热杀菌后的番茄酱由循环泵由下部进入,流经管内,由上部进入蒸发分离室,先经加热器的管内上升,通过弯头进入另一台加热器,经加热料液

由管内下降,以切线方向进入Ⅰ效蒸发分离器进行汽液分离。然后由物料泵送至Ⅱ效再蒸发。料液料液聚集到倾斜的底部,由排出口与循环管连接,经液位平衡器至Ⅰ效蒸发室,当Ⅰ效蒸发室达到平衡液位时,料液直接进入Ⅱ效加热器。蒸发产生的二次蒸汽与物料一起进入分离器。由二效分离器出来的物料浓度达到所要求28%。

2)加热蒸汽:Ⅰ效蒸发与其预热管内物料的热能由蒸汽供给,Ⅱ效蒸发和预热管内物料的热能全部为一效二次蒸汽供给。Ⅱ效二次蒸汽全部进入水喷式冷凝器冷却。

3)本流程采用直接蒸汽加热,双效外加热式蒸发器,顺流法蒸发。优点是料液沸点依效序递降,因而当前效料液进入后效时,便在降温的同时放出其显热,供一小部分水分汽化,增加蒸发器的蒸发量。使用25℃水作为冷却剂,冷凝水出口温度为40℃。真空蒸发的条件:不断供给热量;要维持番茄酱的沸腾,需要不断供给热量。必须顺速排除二次蒸汽;如不及时排除二次蒸汽,又会凝结成水回到番茄酱中去。本操作中将二次蒸汽引入另一效蒸发器作为热源使用,热能利用率高。

(一)物料衡算

1、原料处理量:

每小时处理量:

∵????

?

?-=n x x F W 0

1 (常用化工单元设备设计153页)

h Kg x x x W F /471625

.4282840000220=-?=-?=

式中0F —原料处理量,kg/h ;

x 0——进Ⅰ效蒸发器料液的浓度,质量百分比; x 2——出Ⅱ效蒸发器料夜的浓度,质量百分比; W ——水分蒸发量kg/h ;

日处理量:每天10小时:4715×10=47.15 吨/日

2、初步估算一、二效的蒸发水量 由《常用化工单元设备设计》 P 153

取W1:W2=1:1.1 故 W 1=

1

.114000

+=1904.8(kg/h) W 2=4000-1904.8=2095.2(kg/h)

其中,W 1——第Ⅰ效的蒸发量,kg/h

W 2——第Ⅱ效的蒸发量,kg/h

Ⅰ效二次蒸汽浓度1000W F x F x -=

I =8

.19044716%

25.44716-?=6.31%

3、成品产量:F 2=0F -W=4716-4000=716 kg/h

(二)热量衡算

1. 有关参数

(1) 总蒸发量:4000 kg/h

(2) 进料: 1x =4.25% 1T =61.1℃ (查《食品工程原理》843页此温度下

水的比热Cw w =4179J/Kg.k) 出料: 2x =28% 2T =41.4℃

料液比热: k Kg J x C C O W ?=-=-

=/4001)100

25.41(4179)1001(0 (3) 真空度分配:

第Ⅰ效:600mmHg 1P =0.21×105 P a (查得此压力下饱和蒸汽温度

1T =61.1℃)

第Ⅱ效:700mmHg 2P =0.08×105 P a (查得此压力下饱和蒸汽温度

2T =41.4℃)

来自《食品工程原理》741页饱和水蒸汽表

二次蒸汽的热参数值如下表

2、温差损失

、温度损失的计算

t t f m a +=?'''

?=?'?'

''+?''+?'=?

式中:?——温度差损失,℃

?'——操作压强下由于溶液蒸汽压下降而引起的沸点升高,℃ ?''——液层静压引起的温度差损失,℃

?'''——管路流动阻力引起的温度差,℃

'

?a ——常压下由于溶液蒸汽压下降而引起的沸点升高,℃ f ——校正系数,无因次,其经验计算式为:

'

2

')273(0162.0r T f += 式中:T '——操作压强下二次蒸汽的温度,℃ γ'——操作压强下二次蒸汽的汽化潜热,kJ/kg 2

0gh

p p m ρ+

=

式中:m p ——溶液内部平均压强,Pa 0p ——液面上方的压强,Pa

h ——溶液液层高度,m (该题设其液层高度为6m )

ρ——溶液密度,kg/ m 3

该题密度为33/10028.1m kg ?

常温下番茄酱沸点升高C a ?='

?15.01

()115.015.05

.23522731.610162.02

=?+=

?' (℃)

a m

kP p 223.512

10028.1681.9210003

+???+

= 由压强51.223 kPa 查表得:

82=m T ℃

3..217.60820=-=-=?''T T m ℃ 取1=?'''℃

4.2213.2111

5.0=++=?'''+?''+?'=?

3、W 1,W 2,D 1

物料衡算公式:()1120011ηβ?-?+=W C F D W ① 20022η??+=C F D W ② 式中1W 2W ——ⅠⅡ效蒸发水量 [kg/h] D 1 D 2——ⅠⅡ效蒸汽量 [kg/h] β1β2-----ⅠⅡ效自蒸发系数 0F ------原料处理量 [kg/h] C 0------原料比热 [kj/kgk] 1η2η——热利用系数

(来自《食品工厂机械与设备》192页)

根据逆流时的自然蒸发系数,按下式计算: n

n n

T c i T --+1n n T

∴00838.0186

.41.616.26061

.614.41β1-=?--=

00822.0186

.44.412.25704

.411.61β2=?--=

将①式代入②式中 ∵D 2 =W 1

∴()[]12111w ββo o o o C F W C F D ?+-?+=

()[]()00838.000822.0001.441760186.4471611-??+-?+=W D 1100838.078.141W D +-= ∴98.1420085.1w 11-=D ③ 将③式代入②式中

00822.00186.4471698.1420085.1w 12??+-=D 8.120085.11-=D

∴A=1.0085+1.0085=2.017 18.1308.1298.142=--=B

()h Kg A

B W D /68.2047017

.218.13040001=--=

-=

∴第Ⅰ效蒸发量h kg D /11.192298.14268.20470085.198.1420085.1w 11=-?=-= 第Ⅱ效蒸发量h kg D /29.20528.1268.20470085.18.120085.1w 12=-?=-= 与初估各效蒸发水量比较误差≤3﹪,可不必对各效蒸发水量及浓度加以修正。

3.第Ⅱ效放出浆量∏F 及浓度∏x

%

52.771

.266343

.20029.20524716%25.44716/71.266329.20524716F 22==-?=-?=

=-=-=∏∏W F x F x h kg W F o o o o 4.、Ⅰ、 Ⅱ效加热面积的确定

Ⅰ效传热量:h kJ D /46003176.224668.2047Q 011=?=?=γ Ⅱ效传热量:h kJ D /44815916.233111.1922Q 122=?=?=γ 各效有效温度差:2.501.613..111T 101=-=-=?T T ℃

7.184.4111.61T 21212=--=-?-=?-T T ℃

其中12-?——两效间温度损失12-?=1℃

各类蒸发器传热系数(食品工程原理P 722)

通过上表按经验数据取:

强制循环 K m h kJ K ??=21/6698 自然循环 K m h kJ K ??=22/3349 ∴第Ⅰ效加热面积:2111168.132

.5066984600317

S m T K Q =?=??=

第Ⅱ效加热面积:2222256.707

.1833494481591

S m T K Q =?=??=

(三)工艺尺寸计算

1、Ⅰ效加热器的尺寸

根据《常用化工单元设备设计》162页,采用φ32×1.5mm 不锈钢管,管长

L=3 m ∴503

029.014.368

.13n 011=??==

L d S π(根) 式中 S ——传热面积,2m ; 0d ——加热管直径,m ; L ——管子长度,m 。 取管间距为1.25H d 的同心圆排列:

根据排列四层共61根管子

∴第Ⅰ效加热面积:2I 66.163029.014.361S m =???= 加热室壳体直径的计算:()e b t D 21+-= 式中 D ——壳体直径,m ; t ——管间距,m ;

b ——沿直径方向排列的管子数

e ——最外层管中心到壳体内壁的距离,取

mm d e H 403225.125.1=?==

管子在管板上的排列间距:mm d H 403225.125.1t =?== 中心排列管子数:824b =?=(根)

内径()()mm e b t D B 3604021840211=?+-?=+-= 根据《常用化工单元设备设计》163页 取外壳壁厚δ=10mm

外径mm D B 3801023602D 11H =?+=+=δ 将外径圆整到400mm 2、Ⅱ效加热器的尺寸

采用φ32×1.5不锈钢管,管长L=3 m ∴2593

029.014.356

.70n 022=??==

L d S π(根) 取管间距为1.25H d 的同心圆排列:

在各级中心安装一根φ50mm 的抽气管,所以取消了一、二层排列,同时在φ160~240之间的管板内,加一根φ200mm 中央抽气管,所以排列总管数为260根。

第Ⅱ效加热器实际加热面积:22713029.014.3260m S =???= 加热室壳体直径的计算:

中心排列管子数:1829b =?=(根)

内径()()mm e b t D B 76040211840212=?+-?=+-= 根据《常用化工单元设备设计》163页 取外壳壁厚δ=12mm

外径mm D B 7841227602D 22H =?+=+=δ 将外径圆整到800mm

3、蒸发室直径的确定 第Ⅰ效:36004

01

11?'

??=

ωπV W d m

式中 1W ——Ⅰ效蒸发水量 [kg/h] 1V ——二次蒸汽比体积 []

kg m /3

'

0ω——二次蒸汽上升速度 []s m /

查《食品工程原理》841页并用内差法计算得61.1℃饱和水蒸汽的密度

31/1369.0m kg =ρ

kg m V /16.71396

.01

1

31

1==

=

ρ

s m /15.31369

.026

.426

.43

3

1

0==='ρω

∴m 55.1360015.34

14

.316

.711.1922d 1=???=

取m d 6.11=

第Ⅱ效:36004

d 02

22?"

??=

ωπV W m

式中 1W ——Ⅱ效蒸发水量 kg/h

"

0ω——二次蒸汽上升速度 m/s 2V ——二次蒸汽的比体积 kg m /3

查《食品工程原理》841页并用内差法计算得41.4℃饱和水蒸汽密度

32/05514.0m kg =ρ

kg m V /14.1805514

.01

1

32

2==

=

ρ

s m /26.405514

.026

.426

.43

3

2

0==="ρω

m V W 76.13600

26.4785.014

.1829.205236004

d 02

22=???=

?"

??=

ωπ

取m d 8.12=

4、蒸发室的截面积 F=

4

2

d π

第Ⅰ效:F 1=46.114.32

?=2㎡

第Ⅱ效F 2=4

8.114.32

?=2.54㎡

5、蒸发室的高度

根据《常用化工单元设备设计》163页取蒸发室高径比H/D=2 ∴第Ⅰ效:m d H 2.36.12211=?=?= 第Ⅱ效:m d H 6.38.12222=?=?=

6、循环管尺寸 上循环管直径取

m d d 32.06.12.02.011=?=='

下循环管直径取 m n d d B 52.0321029.022

2=?=?=" 式中 B d ——加热管内径; n ——加热管根数。 7、连接管直径的确定 1、加热蒸汽进口管径d m

d m =

π

m

F ?4

式中:F m ——进口管截面积,㎡

3600

?=

m m

m DV S ω

V m ——加热蒸汽的比容,m 3/kg

根据加热蒸汽压力为0.15Mpa ,由《食品工程原理》饱和水蒸汽表查得3/7334.0m kg =ρ

V m = 1/0.7334=1.3635m 3/kg

由《食品工厂机械与设备》得:加热蒸汽进口压力为3大气压,取饱和蒸汽的速度为30米/秒,蒸汽进口压力为1大气压,取饱和蒸汽的速度为25米/秒,故本题加热蒸汽进口压力为1.5大气压,取饱和蒸汽的速度为26.25米/秒。

m ω——饱和蒸汽速度,26.25m/s 故 202955.03600

25.263635

.168.2047m F m =??=

m d m 194.014

.302955

.04=?=

由《食品工程原理》P852:取整后选用mm d m 219=,壁厚mm 6,内截面

双效蒸发课程设计课件

食品工程原理课程设计说明书@ 设计题目:番茄汁双效并流蒸发装置的设计 姓名:张馨月 [ 班级: 2014级食品科学与工程(1)班 学号: 123 指导教师:张春芝 日期: 2016年5月21日 , [

目录 前言 (4) 设计题目 (4) ~ 蒸发流程特点 (4) 设计任务及操作条件 (4) 设备型式: (4) 操作条件 (4) 2.设计项目 (5) 设计方案简介: (5) 蒸发器的工艺计算: (6) 估算各效蒸发量和完成液浓度 (6) ! 估计各效溶液的沸点和有效总温度差的估算 (6) 加热蒸汽消耗量和各效蒸发水量的初步计算 (10) 蒸发器传热面积的估算 (12) 有效温差的再分配 (13) 重复上述计算步骤 (13) 计算结果列表 (17) 3.蒸发器的主要结构尺寸设计 (18) 加热管的选择和管数的初步估计 (18) # 循环管的选择 (18) 加热室直径及加热管数目的确定 (19) 分离室直径与高度的确定 (20) 接管尺寸的确定 (21) 番茄汁的进出口 (22) 加热蒸汽进口与二次蒸汽出口 (22) 冷凝水出口 (22) 4.蒸发装置的辅助设备 (23) $ 气液分离器 (23) 蒸汽冷凝器 (24) 泵的选型 (25)

5.番茄汁双效并流加料蒸发装置的流程图和蒸发器设备工艺简图 (26) (26) 6.设计总结 (27) 7.参考文献 (28)

前言 设计题目 番茄汁双效并流加料蒸发装置的设计。 蒸发流程特点 蒸发是使含有不挥发溶质的溶液沸腾汽化并移出蒸汽,从而使溶液中溶质浓度提高的单元操作。蒸发具有它独特的特点:从传热方面看,原料和加热蒸汽均为相变过程,属于恒温传热:从溶液特点分析,有的溶液有晶体析出、易结垢、易生泡沫、高温下易分解或聚合,粘度高、腐蚀性强;从传热温差上看,因溶液蒸汽压降低,沸点增高,故传热温度小于蒸发纯水温度差;从泡沫夹带情况看,二次蒸汽夹带泡沫,需用辅助仪器除去;从能源利用上分析,可以对二次蒸汽重复利用等。这就需要我们从五个方面考虑蒸发器的设计。 随着工业蒸发技术的发展,蒸发器的结果和形式也不断的改进。目前蒸发器大概分为两类:一类是循环型,包括中央循环管式、悬筐式、外热式、列文式及强制循环式等;另一类是单程型,包括升膜式、降膜式、升——降膜式等。这些蒸发器形式的选择要多个方面综合得出。 现代化工生产实践中,为了节约能源,提高经济效益,很多厂家采用的蒸发设备是多效蒸发。因为这样可以降低蒸汽的消耗量,从而提高蒸发装置的各项热损失。多效蒸发流程课分为:并流流程、逆流流程、平流流程及错流流程。在选择形式时应考虑料液的性质、工程技术要求、公用系统的情况等。 设计任务及操作条件 设备型式:中央循环管式蒸发器。 图1-1 中央循环管式蒸发器

干式和满液式蒸发器地区别

干式和满液式蒸发器的优缺点 满液式壳管蒸发器在管内走水,制冷剂在管簇外面蒸发,所以传热面基本上都与液体制冷剂接触。一般壳体内充注的制冷剂量约为筒体有效容积的55%~65%,制冷剂液体吸热气化后经筒体顶部的液体分离器,回入压缩机。 其优点是结构紧凑,操作管理方便,传热系数较高。其缺点是: ①制冷系统蒸发温度低于0℃时,管内水易冻结,破坏蒸发管; ②制冷剂充灌量大; ③受制冷剂液柱高度影响,筒体底部的蒸发温度偏高,会减小传热温差; ④蒸发器筒体下部会积油,必须有可靠的回油措施,否则影响系统的安全运行。 干式壳管式即非满液式蒸发器的制冷剂在管内流动,水在管簇外流动。制冷剂流动通常有几个流程,由于制冷剂液体的逐渐气化,通常越向上,其流程管数越多。为了增加水侧换热,在筒体传热管的外侧设有若干个折流板,使水多次横掠管簇流动。 其优点是: ①润滑油随制冷剂进入压缩机,一般不存在积油问题 ②充灌的制冷剂少,一般只有满液式的1/3 左右; ③t0在0℃附近时,水不会冻结。 但使用这种蒸发器必须注意: ①制冷剂有多个流程,在端盖转弯处如处理不好会产生积液,从而使

进入下一个流程的液体分配不均匀,影响传热效果; ②水侧存在泄漏问题,由于折流板外缘与壳体间一般有1~3mm间隙,与传热管之间有2mm左右的间隙,因而会引起水的泄漏。实践证明,水的泄漏会引起水侧换热系数降低20%~30%,总的传热系数降低5%~15%。 一种螺旋式油分离器在满液式螺杆冷水机组中的应用研究 -李进杨 回油的原因 由于润滑油沸点远高于制冷剂的,所以润滑油随制冷剂进入蒸发器后不会同制冷剂一起蒸发,此时若不采取适当措施,润滑油势必在蒸发器中越积越多,一方面在换热器的壁面上形成一层油膜,这样就大大降低了传热效果和制冷效率;另一方面压缩机缺油,这对机组的安全高效运行极为不利。因此,需要有合适的技术措施和控制程序处理润滑油,否则不能保证满液式蒸发器传热性能,机组的安全运行也会成问题。 油分离器 当螺杆式压缩机排出的高压气体和油的混合物进入油分离器时,由于油分离器容积大,气体的流速突降,加上气体的流动方向改变,依靠惯性作用使油分离沉降下来,大量的油聚集在分离器底部。这种分离被称为一级分离。为了进一步提高分离精度,一般要进行二级分离。一级分离后,利用特制的充填物,将细小的雾状油滴通过捕集作用,使油滴聚集变大,在流经填充物时被进一步分离出来。有的高效

食品工程原理课程设计

设计任务书 1、设计题目:年处理量为4400吨桃浆蒸发器装置的设计; 试设计一套三效并流加料的蒸发器装置,要求将固形物含量10%的桃浆溶液浓缩到42%,原料液沸点进料。第一效蒸发器的饱和蒸汽温度为103℃,冷凝器的绝对压强为20kPa。 2、操作条件: (1)桃浆固形物含量:入口含量10%,出口含量42%; (2)加热介质:温度为103℃的饱和蒸汽,各效的冷凝液均在饱和温度下排出,假设各效传热面积相等,并忽略热损失; (3)每年按330天计,每天24小时连续生产。 3、设计任务: (1)设计方案简介:对确定的工艺流程及蒸发器型式进行简要论述。 (2)蒸发器的工艺计算:确定蒸发器的传热面积。 (3)蒸发器的工艺计算:确定蒸发器的传热面积。 (4)蒸发器的主要结构尺寸设计。 (3)绘制蒸发装置的流程图,并编写设计说明书。

目录 设计任务书 (1) 第1章绪论 (3) 1.1蒸发技术概况 (3) 1.1.1蒸发 (3) 1.1.2发生条件 (3) 1.1.3蒸发的两个基本过程 (3) 1.1.4影响因素 (3) 1.1.5影响蒸发的主要因素 (4) 1.2蒸发设备 (4) 1.2.1蒸发器 (4) 1.2.2蒸发器分类 (4) 1.2.3蒸发器的特点 (5) 1.3蒸发操作的分类 (7) 1.4蒸发在工业生产中的应用 (8) 第2章设计方案 (9) 2.1蒸发器的选择 (9) 2.2蒸发流程的选择 (9) 2.3操作条件 (10) 第3章蒸发器的工艺计算 (11) 3.1估计各效蒸发量和完成液浓度 (11) 3.2估计各效溶液的沸点和有效总温度 (11) 3.3 加热蒸汽消耗量和各效蒸发器水量的初步计算 (13) 3.4蒸发器传热面积的估算 (14) 3.5有效温差的分配 (15) 3.6校正 (15) 3.7设计结果一览表 (17) 符号说明 (18) 参考文献 (20) 结束语 (21)

升膜蒸发器设计计算说明书

《食品工程原理》课程设计 目录 一《食品工程原理》课程设计任务书 (1) (1) ........................................................................................................................................... .设计课题 (2) (2) ........................................................................................................................................... .设计条件 (2) (3) ........................................................................................................................................... .设计要求 (2) (4) ........................................................................................................................................... .设计意义 (2) (5) ........................................................................................................................................... .主要参考资料.. (3) 二设计方案的确定 (3) 三设计计算 (4) 3.1. ......................................................................................................................................... 总蒸发水量 (4) 3.2. ......................................................................................................................................... 加热面积初算. (4) ( 1)估算各效浓度 (4) ( 2)沸点的初算 (4) ( 3)温度差的计算 (5) (4)计算两效蒸发水量V,V2及加热蒸汽的消耗量S (6) (5)总传热系数K的计算 (7) ( 6)分配有效温度差,计算传热面积 (9) 3.3. ............................................................................................................................................ 重算两效传热面积.. (10) ( 1)第一次重算 (10) 3.4 计算结果 (11) 四蒸发器主要工艺尺寸的计算 (13)

课程设计-蒸发器

过程设备原理课程设计 题目:NaOH水溶液蒸发装置的设计 学院:制造科学与工程学院 系别: 过程装备与控制工程 班级: 过控1102 学生姓名:周伟 学号: 20116201 指导老师:张健平 设计时间: 2014/7/4

《过程设备原理课程设计》任务书 题目:NaOH水溶液蒸发装置的设计 一、设计原始数据 (1)设计任务:处理量:7.92×104(吨/年)(7.92×104,9.95×104,1.667×105); 料液浓度: 4.7% (4.7%,10.6%)质量%; 产品浓度:23.7% (23.7%,30%)质量%; 加热蒸汽温度151 (℃)(151,158.1); 末效冷凝器的温度49 (℃)(49,59.6)。 (2)操作条件:加料方式:三效并流加料; 原料液温度:第一效沸点温度; 各效蒸发器中溶液的平均密度:ρ1=1014kg/m3,ρ2=1060kg/m3,ρ=1239kg/m3; 3 加热蒸汽压强:500kPa; 冷凝器压强:20kPa; 各效蒸发器的总传热系数:K1=1500W/(m2?K), K2=1000W/(m2?K), K3=600W/(m2?K); 各效蒸发器中液面的高度:1.5m; 各效加热蒸汽的冷凝液均在饱和温度下排出; 假设各效传热面积相等,并忽略热损失。 (3)设备型式:中央循环管式蒸发器。 (4)厂址:四川绵阳。 (5)工作日:每年300天,每天24小时连续运行。 二、基本要求 (1)设计方案的简介:对确定的工艺流程及蒸发器型式进行简要论述。 (2)蒸发器的工艺计算:确定蒸发器的传热面积。 (3)蒸发器的主要结构尺寸设计。

满液式蒸发器的设计说明

3满液式蒸发器的设计 3.1制冷剂流量的确定 制冷剂压焓图: 图3.1 由蒸发温度50=t ℃,40=k t ℃,5=g t ℃,根据文献1《制冷原理及设备》附表13(P 341)和附图5(P 373)查得: 1407.143/(.)h kJ kg K =,)./(050.4302K kg kJ h =,)./(686.24943K kg kJ h h == ) ./(963.242, 4,3K kg kJ h h ==, kg m /103556.40331-?=ν, kg m /109876.17332-?=νkg m /1088392.0333-?=ν, kg m /100003.933,4-?=ν 单位制冷量: )./(180.164963.242143.407, 410K kg kJ h h q =-=-=(P 31) (3.1) 制冷剂流量: 00700.4263/164.180 m Q q kg s q = == (P 31) (3.2) 3.2载冷剂流量的确定 3301270 3.343610/()1000 4.1875 vs p s s Q q m s c t t ρ-= ==?-?? (P 246) (3.3) 3.3传热管的确定 选用φ10×1低螺纹铜管,取水流速度s m u /2.1=,则每流程的管子数Z 为

3 226 44 3.34361055.463.14(102)10 1.2 vs i q Z d u π--??===?-??根 (3.4) 圆整后,Z=56根。 实际水流速度 3 22644 3.343610 1.1884/ 1.2/3.14(102)1056vs i q u m s m s d Z π--??===≈?-?? (3.5) 3.4管程与有效管长 假定热流密度q=6600W /m 2 ,则所需的传热面积 3 20701010.616600 k Q F m q ?=== (3.6) 管子与管子有效长度的乘积 0010.61 6.033.140.0156 c F NI m d Z π===?? (3.7) 采用管子成正三角形排列的布置方案,管距s=14mm,对不同流程数N ,有效单管长c l ,总根数NZ,壳体直径D 及长径比D l c /进行组合计算,组合计算结果 表3.1不同流程数N 对应的管长c l 及D l c / 从D 及D l c /值看, 4流程是可取的。 3.5传热系数的确定 3.5.1蒸发器中污垢的热阻

食品工程原理课程设计

食品工程原理课程设计 ---管壳式冷凝器设计

目录 食品工程原理课程设计任务书 (2) 流程示意图 (3) 设计方案的确定 (4) 冷凝器的造型计算 (6) 核算安全系数 (8) 管壳式冷凝器零部件的设计 (10) 设计概要表 (12) 主要符号表 (13) 主体设备结构图 (14) 设计评论及讨论 (14) 参考文献 (15)

(一)食品科学与工程设计任务书 一、设计题目: 管壳式冷凝器设计 二、设计任务: 将制冷压缩机压缩后制冷剂(如F-22、氨等)过热蒸汽冷却、冷凝为过冷液体,送去冷库蒸发器使用。 三、设计条件: 1、冷库冷负荷Q0=1700KW; 2、高温库,工作温度0~4℃,采用回热循环; 3、冷凝器用河水为冷却剂,取进水温度为26~28℃; 4、传热面积安全系数5~15%。 四、设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5. 编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图; ⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) 6.绘制工艺流程图、管壳式冷凝器的的结构(3号图纸)、花板布置图(3号或4号图纸)。

(二)流程示意图 流程图说明: 本制冷循环选用卧式管壳式冷凝器,选用氨作制冷剂,采用回热循环,共分为4个阶段,分别是压缩、冷凝、膨胀、蒸发。 1 2 由蒸发器内所产生的低压低温蒸汽被压缩机吸入压缩机气缸,经压缩后温度升高; 2 3 高温高压的F—22蒸汽进入冷凝器;F—22蒸汽在冷凝器中受冷却水的冷却,放出热量后由气体变成液态氨。 4 4’ 液态F—22不断贮存在贮氨器中; 4’ 5 使用时F—22液经膨胀阀作用后其压力、温度降低,并进入蒸发器; 5 1 低压的F—22蒸汽在蒸发器中不断的吸收周围的热量而汽化,然后又被压缩机吸入,从而形成一个循环。 5’1是一个回热循环。 本实验采用卧式壳管式冷凝器,其具有结构紧凑,传热效果好等特点。所设计的卧式管壳式冷凝器采用管内多程式结构,冷却水走管程,F—22蒸汽走壳程。采用多管程排列,加大传热膜系数,增大进,出口水的温差,减少冷却水的用量。

化工原理课设 双效蒸发

化工原理课程设计 题目稀碱液NaOH的双效外加热式装置的设计 班级 学号 * * * * * * * * * * * * 姓名 * * * 指导教师陈少虎 完成日期

目录 第一部分设计任务书…………………………………………………………* 第二部分前言…………………………………………………………………* 第三部分符号说明……………………………………………………………(* 第四部分流程的确定及说明……………………………………………………* 第五部分设计计算书……………………………………………………………… * (一) 设计条件…………………………………………………………* (二) 计算过程…………………………………………………………* 5.2.1计算各效蒸发量及完成液的浓度……………………………* 5.2.2 估算各效溶液的沸点和有效总温度差………………………* 5.2.3估算各效温度差损失…………………………………………* 5.2.4各效溶液沸点及有效温度差…………………………………* 5.2.5加热蒸汽消耗量及各效蒸发量………………………………* 5.2.6传热面积………………………………………………………* 5.2.7重新分配有效温差……………………………………………* 5.2.8对各种温度差进行重新计算…………………………………* 5.2.9重算加热汽消耗量及各效蒸发量……………………………* 5.2.10重算传热面积…………………………………………………* (三) 蒸发器的主要结构尺寸…………………………………………* 5.3.1加热管的选择和管数的初步估计…………………………* 5.3.2蒸发装置的辅助设备及换热器选用………………………* 5.3.3蒸发器各尺寸的确定…………………………………* 5.3.4有关计算说明……………………………………………* 第六部分设计成果及讨论……………………………………………………* 第七部分参考文献……………………………………………………………*

蒸发器课程设计

蒸发器主体为加热室和分离室,蒸发器的主要结构尺寸包括:加热室和分离室的直径及高度;加热管的规格、长度及在花板上的排列方式、连接管的尺寸。这些尺寸的确定取决于工艺计算结果,主要是传热面积。 3.1加热管的选择和管数的初步估计 3.1.1管子长度的选择根据溶液结垢的难易程度、溶液的起泡性和厂房的高度等因素来考虑。本次设计选用外循环式蒸发器,国产外循环式蒸发器蒸发器的管长一般从2560到3000mm不等,具体参考《糖汁加热与蒸发》⑴第139页表6-1,再根 据糖汁的黏度情况,选择加热管以及板管型号如下表3-1所示: 表3-1加热选择参数 因加热管固定在管板上,管板选择考虑到管板厚所占有的传热面积,以及因焊接所 需要每端留出的剩余长度,则计算理论管子数n时的管长实际可以按以下公式计 算: L=(L0-0.1 )m=3-0.1=2.9 m 前面已经计算求得各效面积A取500m2 n= = =1307 加热管的排布方式按正三角形排列,查《常用化工单元设备设计》[3]第163页表 4-6,知道当管数为1303时,排布为a=19层,1307与1303相差不大,在这可以取19层进行计算。其中排列在六角形内管数为=1027根,其余排列在弓形面积内,如果按标准间距即管间距离54mm排列,则有四根管排不下,四根管的总面积为: A3=3.1415926 X 0.042 >2.9 >3=1.53 m 2 鉴于前面已经取1.11的安全系数,如果现在取1303根管,则总面积为: =500-1.53=498.47 安全系数为K= =1.108 在安全系数范围内,所以可以不要三根管,取1303根。 3.1.2加热壳体的直径计算 D=t(b-1)+2e D-----壳体直径,m ; t -- 管间距,m ; b-----沿直径方向排列的管子数目; e-----外层管的中心到壳体内壁的距离,一般取e=(1.0?1.5)d0,在此取1.5。 b =2a-仁2 1X 仁37 D=0.054 (37-1)+2 X.5 X.042 =2.07m

干式和满液式蒸发器的区别

干式和满液式蒸发器的区别

————————————————————————————————作者: ————————————————————————————————日期:

干式和满液式蒸发器的优缺点 满液式壳管蒸发器在管内走水,制冷剂在管簇外面蒸发,所以传热面基本上都与液体制冷剂接触。一般壳体内充注的制冷剂量约为筒体有效容积的55%~65%,制冷剂液体吸热气化后经筒体顶部的液体分离器,回入压缩机。 其优点是结构紧凑,操作管理方便,传热系数较高。其缺点是: ①制冷系统蒸发温度低于0℃时,管内水易冻结,破坏蒸发管; ②制冷剂充灌量大; ③受制冷剂液柱高度影响,筒体底部的蒸发温度偏高,会减小传热温差; ④蒸发器筒体下部会积油,必须有可靠的回油措施,否则影响系统的安全运行。 干式壳管式即非满液式蒸发器的制冷剂在管内流动,水在管簇外流动。制冷剂流动通常有几个流程,由于制冷剂液体的逐渐气化,通常越向上,其流程管数越多。为了增加水侧换热,在筒体传热管的外侧设有若干个折流板,使水多次横掠管簇流动。 其优点是: ①润滑油随制冷剂进入压缩机,一般不存在积油问题 ②充灌的制冷剂少,一般只有满液式的1/3左右; ③t0在0℃附近时,水不会冻结。 但使用这种蒸发器必须注意: ①制冷剂有多个流程,在端盖转弯处如处理不好会产生积液,从而使

进入下一个流程的液体分配不均匀,影响传热效果; ②水侧存在泄漏问题,由于折流板外缘与壳体间一般有1~3mm间隙,与传热管之间有2mm左右的间隙,因而会引起水的泄漏。实践证明,水的泄漏会引起水侧换热系数降低20%~30%,总的传热系数降低5%~15%。 一种螺旋式油分离器在满液式螺杆冷水机组中的应用研究 -李进杨 回油的原因 由于润滑油沸点远高于制冷剂的,所以润滑油随制冷剂进入蒸发器后不会同制冷剂一起蒸发,此时若不采取适当措施,润滑油势必在蒸发器中越积越多,一方面在换热器的壁面上形成一层油膜,这样就大大降低了传热效果和制冷效率;另一方面压缩机缺油,这对机组的安全高效运行极为不利。因此,需要有合适的技术措施和控制程序处理润滑油,否则不能保证满液式蒸发器传热性能,机组的安全运行也会成问题。 油分离器 当螺杆式压缩机排出的高压气体和油的混合物进入油分离器时,由于油分离器容积大,气体的流速突降,加上气体的流动方向改变,依靠惯性作用使油分离沉降下来,大量的油聚集在分离器底部。这种分离被称为一级分离。为了进一步提高分离精度,一般要进行二级分离。一级分离后,利用特制的充填物,将细小的雾状油滴通过捕集作用,使油滴聚集变大,在流经填充物时被进一步分离出来。有的高效型

双效蒸发课程设计课件

食品工程原理课程设计说明书 设计题目:番茄汁双效并流蒸发装置的设计 姓名:张馨月 班级: 2014级食品科学与工程(1)班 学号: 20144061123 指导教师:张春芝 日期:2016年5月21日

目录 前言 (3) 1.1设计题目 (3) 1.2蒸发流程特点 (3) 1.3设计任务及操作条件 (3) 1.3.1设备型式: (3) 1.3.2操作条件 (4) 2.设计项目 (4) 2.1设计方案简介: (4) 2.2蒸发器的工艺计算: (4) 2.2.1 估算各效蒸发量和完成液浓度 (5) 2.2.2 估计各效溶液的沸点和有效总温度差的估算 (5) 2.2.3 加热蒸汽消耗量和各效蒸发水量的初步计算 (7) 2.2.4 蒸发器传热面积的估算 (8) 2.2.5 有效温差的再分配 (8) 2.2.6重复上述计算步骤 (8) 2.3计算结果列表 (9) 3.蒸发器的主要结构尺寸设计 (10) 3.1.1 加热管的选择和管数的初步估计 (10) 3.1.2 循环管的选择 (10) 3.1.3 加热室直径及加热管数目的确定 (10) 3.1.4分离室直径与高度的确定 (11) 3.2接管尺寸的确定 (12) 3.2.1 番茄汁的进出口 (12) 3.2.2 加热蒸汽进口与二次蒸汽出口 (12) 3.2.3 冷凝水出口 (12) 4.蒸发装置的辅助设备 (13) 4.1气液分离器 (13) 4.2蒸汽冷凝器 (13) 4.3泵的选型 (14) 5.番茄汁双效并流加料蒸发装置的流程图和蒸发器设备工艺简图 (15) (15) 6.设计总结 (16) 7.参考文献 (16)

格力满液式水冷螺杆式冷水机组产品产品介绍和说明

湖南地区部份螺杆机使用情况(截止到2007年12月30日) 地区工程名称使用机型数量发货日期长沙XX际5A写字楼LSBLG960HG22007.08长沙XX招待所LSBLG325/B12006.04株洲XX休闲中心LSBLG27012005.04株洲XX足浴LSBLG32512004.09娄底XX建材超市LSBLG850HG12007.10浏阳XX有限公司LSBLG525/B 22006.06衡阳XX酒楼LSBLG270/B12005.06衡阳XX饭店LSBLG370/B12006.07衡阳XX潮流特区LSBLG420/B12007.01岳阳XX宾馆LSBLG325/B 22006.04岳阳XX宾馆LSBLG120/B12006.06益阳XX 大酒店LSBLG340/T12002.07益阳XX 宾馆LSBDG16012004.06益阳XX 宾馆LSBLG16012005.05益阳XX王朝LSBLG420/B12006.09沅江XX研究所LSBLG16012005.05沅江XX宾馆LSBLG160/B12006.05沅江XX娱乐城LSBLG650/B12006.05常德XX宾馆LSBLG190/B12006.06张家界XX大楼LSBLG840/B12006.01吉首XX娱乐城LSBLG270/B12006.04吉首XX娱乐城LSBLG325/B12006.05吉首XX国际大酒店LSBLG650/B12006.07吉首XX洗脚城LSBLG160/B12006.08怀化XX宾馆LSBLG650/B12006.05怀化XX娱乐城LSBLG300/B12006.06

5、产品样本、说明书等技术资料及获奖产品的证明 格力满液式水冷螺杆式冷水机组主要配置及易损件表 部件名称规格型号制造厂名和国别 压缩机(含电机)上海/北京冷凝器卧式壳管式冷凝器珠海 蒸发器满液式蒸发器珠海 油分离器卧式油分离珠海电子膨胀阀墨西哥干燥过滤器墨西哥电磁阀墨西哥微机控制系统格力触摸屏台湾

三效蒸发器的设计 化工原理课程设计

化工原理课程设计

字符说明 ........................................................................................................................................................... - 2 - 第一节概述 ............................................................................................................................................... - 3 - 一.蒸发及蒸发流程 ............................................................................................................................... - 3 - 二.蒸发操作的分类 ............................................................................................................................... - 3 - 三.蒸发操作的特点 ............................................................................................................................... - 3 - 四、蒸发设备 ........................................................................................................................................... - 4 - 五、蒸发器选型 ....................................................................................................................................... - 4 - 第二节蒸发装置设计任务.............................................................................................................................. - 5 - 一、设计题目 ........................................................................................................................................... - 5 - 二、设计任务及操作条件........................................................................................................................ - 5 - 第三节三效蒸发器得工艺计算.................................................................................................................... - 5 - 一、估计各效蒸发量和完成液浓度........................................................................................................ - 5 - 二、估计各效溶液的沸点和有效总温差................................................................................................ - 6 - 三加热蒸汽消耗量和各效蒸发水量的计算.......................................................................................... - 8 - 四、蒸发器的传热面积的估算................................................................................................................ - 9 - 五、有效温差的再分配.......................................................................................................................... - 10 - 六、重复上述计算步骤.......................................................................................................................... - 10 - 七、计算结果 ......................................................................................................................................... - 12 - 第四节蒸发器的主要结构尺寸计算.................................................................................................... - 12 - 一、加热管的选择和管数的初步估计.................................................................................................. - 12 - 二、循环管的选择 ................................................................................................................................. - 12 - 三、加热室直径及加热管数目的确定.................................................................................................. - 13 - 四、分离室直径与高度的确定.............................................................................................................. - 13 - 五、接管尺寸的确定 ............................................................................................................................. - 14 - 第五节蒸发装置的辅助设备.................................................................................................................. - 15 - 一、气液分离器 ..................................................................................................................................... - 15 - 二、蒸汽冷凝器 ..................................................................................................................................... - 15 - 三淋水板的设计 ................................................................................................................................... - 16 - 【参考文献】 ......................................................................................................................................... - 17 -

蒸发器设计说明书

KNO3水溶液三效并流蒸发系统设计 摘要:蒸发是化工生产中重要的单元操作,普遍应用于化工、医药、食品等行业中。本次课程设计的任务是设计三效并流蒸发装置,将10% KNO3溶液浓缩至40%,年处理量为5×104吨。采用中央循环管型蒸发器。设计工作主要包括工艺设计计算,蒸发器传热面积优化编程,蒸发器工艺尺寸的设计计算及辅助设备的选型计算,主要设备的强度校核,管道及各种连接件的选型,工艺流程图及蒸发器装配图的绘制。 关键词:三效并流蒸发装置;蒸发;KNO3 Abstract: Evaporation is an important unit operation in chemical process. It finds wide application in such fields as chemical industry, pharmaceutical industry, food industry and so on. The task is to design a three-effect forward flow evaporation system to concentrate 20,000 ton/year of KNO3aqueous solution from 10% to 40%. Standard evaporator (evaporator with central circulation downcomer) was chosen. The major work includes calculation of the process parameters and the heat transfer area, determination of the size and structure of the evaporator, and selection of the ancillary facilities, as well as checking the strength of the main equipments and choosing appropriate pipes. The process flow chart and the assembly drawing of one evaporator were completed with the aid of Auto CAD. Keyword: Three-effect forward flow evaporation; evaporation; KNO3 第一章概述

(建筑工程设计)食品工程原理课程设计管壳式冷凝器设计

目录 食品工程原理课程设计任务书 (2) 流程示意图 (3) 设计方案的确定及说明 (4) 设计方案的计算及说明(包括校核) (5) 设计结果主要参数表 (10) 主要符号表 (11) 主体设备结构图 (11) 设计评价及问题讨论 (12) 参考文献 (12)

一食品工程原理课程设计任务书 一.设计题目:管壳式冷凝器设计. 二.设计任务:将制冷压缩机压缩后的制冷剂(F-22,氨等)过热蒸汽冷却,冷凝为过冷液体,送去冷库蒸发器使用。 三.设计条件: 1.冷库冷负荷Q0=学生学号最后2位数*100(kw); 2.高温库,工作温度0~4℃。采用回热循环; 3.冷凝器用河水为冷却剂, 每班分别可取进口水温度: 17~20℃(1班)、21~24℃(2班)、 25~28℃(3班)、 13~16℃(4班)、9~12℃(5班)、5~8℃(6班); 4.传热面积安全系数5%~15%。 四.设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算,热量衡算; 3.确定管式冷凝器的主要结构尺寸; 4.计算阻力; 5.编写设计说明书(包括:①封面;②目录;③设计题目; ④流程示意图;⑤流程及方案的说明和论证;⑥设计计算及说明(包括校 核);⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨 论;⑩参考文献。) 6.绘制工艺流程图,管壳式冷凝器的结构图(3号图纸)、及花 板布置图(3号或者4号图纸)。

二、流程示意图 流程图说明: 本制冷循环选用卧式管壳式冷凝器,选用氨作制冷剂,采用回热循环,共分为4个阶段,分别是压缩、冷凝、膨胀、蒸发。 1 2 由蒸发器内所产生的低压低温蒸汽被压缩机吸入压缩机气缸,经压缩后温度升高; 2 3 高温高压的F—22蒸汽进入冷凝器;F—22蒸汽在冷凝器中受冷却水的冷却,放出热量后由气体变成液态氨。 4 4’ 液态F—22不断贮存在贮氨器中; 4’ 5 使用时F—22液经膨胀阀作用后其压力、温度降低,并进入蒸发器; 5 1 低压的F—22蒸汽在蒸发器中不断的吸收周围的热量而汽化,然后又被压缩机吸入,从而形成一个循环。 5’1是一个回热循环。 本实验采用卧式壳管式冷凝器,其具有结构紧凑,传热效果好等特点。所设计的卧式管壳式冷凝器采用管内多程式结构,冷却水走管程,F—22蒸汽走壳程。采用多管程排列,加大传热膜系数,增大进,出口水的温差,减少冷却水的用量。

化工原理课程设计三效逆流蒸发器

NaOH水溶液三效并流加料蒸发装置的设计设计单位: 设计者: 设计日期:

设计任务书 一、设计题目 NaOH水溶液三效并流加料蒸发装置的设计 二、设计任务及操作条件 1.处理能力 2.5×104吨/年NaOH水溶液 2.设备形式蒸发器 3.操作条件 a.NaOH水溶液的原料液浓度为10%(wt) ,温度为35℃,用预热器加热至第一效沸点温度,再送进蒸发器;完成液浓度为40%(wt)。 b.加热蒸汽压强为500kPa(绝压),末效为真空,压力为15.5kPa(绝压)。 c.各效传热系数分别为: K1=3000 W/(m2·℃) K2=1500 W/(m2·℃) K3= 750W/(m2·℃) d.各效蒸发器中的液面高度:1.5-2.5m。 e.各效加热蒸汽的冷凝液均在饱和温度下排出。假设各效传热面积相等,并忽略热损失。 f.每年按330天计,每天24小时连续运行。 三、设计项目 1.设计方案简介:对确定的工艺流程及蒸发器型式进行简要论述。 2.蒸发器的工艺计算:确定蒸发器的传热面积。 3.蒸发器的主要结构尺寸设计。 4.主要辅助设备选型,包括预热器、汽液分离器及蒸汽冷凝器。 5.绘制NaOH水溶液三效并流加料蒸发装置的流程图及蒸发器总装配图。 目录 1.概述 (1)

1.1蒸发操作的特点 (1) 1.2蒸发设备及蒸发器 (5) 1.3三效蒸发工艺流程 (10) 2.工艺计算及主体结构计算 (11) 2.1三效蒸发工艺计算 (11) (11) (13) 2.2蒸发器主要结构计算 (23) 3.蒸发装置辅助设备选型 (30) 4.探索使用Aspen Plus设计蒸发器方法 (33) 5.后记 (35)

相关文档
最新文档