第3章 双变量模型:假设检验

合集下载

第3章:双变量描述分析(上)

第3章:双变量描述分析(上)

二、因果关系
1、概念: • 因果关系是指当其中一个变量变化时会引起或导 致另一个变量也随之变化;但是反过来当后一个 变量变化时,却不会引起前一个变量的变化。我 们把变化发生在前边,能引起另一变量发生变化 的变量称为自变量(independent variable常用 X来表示),而变化发生在后边并且变化由前边 变量引起的那个变量称为因变量(dependent variable常用Y来表示)。
二、 2×2列联表的列联强度
• 1、Q系数 • 2×2列联表是只包含两 行两列(不包括边缘分布) 的列联表,是最简单的交 ad 互分类表。如下表:

bc Q ad bc
a
c a+c
b
d b+d
a+b
• Q系数在【-1,+1】之间,
c+d • • a+b+c+d •
请同学写出Y的频率条件分布
第二节:定类变量与定类变量 (定类-定序)
• 一、列联表(contingency table)
• 又称交互分类表,就是将调查所得的一组数据按 照两个不同的变量进行综合的分类。
• 在列联表中,我们一般将 X (自变量)画在横行, 将因变量画在竖行。
• 交互分类表所适用的变量层次是定类变量与定序 变量。
年龄与喜爱电视节目的列联表
喜爱电视 节目 戏曲 歌舞 球赛 合计 老年 20 5 2 27
年龄 中年 10 20 10 40
青年 2 35 20 57
合计 32 60 32 124
最后一行,实际上是变量X(老中青)的频数分布;而最后一列 是变量Y(喜爱电视节目)的频数分布,我们分别称之为X和Y的 频数边际分布(marginal distribution,也叫边缘分布)。 如果是百分比的边际分布,则要分别处以124,再乘以100%。 而表中的每一小格则表示的是X和Y同时取某个值时的频数分布, 我们将其称之为联合分布(Joint Distribution)。

第三章假设检验

第三章假设检验

第三章假设检验1.一种机床加工的零件尺寸绝对平均误差为 1.35mm。

生产厂家现采用一种新的机床进行加工以期进一步降低误差。

为检验新机床加工的零件平均误差与旧机床相比是否有显著差异,从某天生产的零件中随机抽取50 个进行检验。

利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著差异?如果想检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低,结果会如何?( =0.01) 。

50 个零件尺寸的误差数据(mm)1.26 1.19 1.310.97 1.811.130.96 1.06 1.000.940.98 1.10 1.12 1.03 1.161.12 1.120.95 1.02 1.131.230.74 1.500.500.590.99 1.45 1.24 1.01 2.031.98 1.970.91 1.22 1.061.11 1.54 1.08 1.10 1.641.702.37 1.38 1.60 1.261.17 1.12 1.230.820.86答 : H :1.35 H1: <1.35 a = 0.01n = 50 检验统计量: 01. 3152 1. 35z 2. 6061而 z =-2.33,因此拒绝原假设,新机床加工的0. 365749 50零件尺寸的平均误差与旧机床相比有显著降低。

2.一种汽车配件的平均长度要求为 12cm,高于或低于该标准均被认为是不合格的。

汽车生产企业在购进配件时,通常是经过招标,然后对中标的配件提供商提供的样品进行检验,以决定是否购进。

现对一个配件提供商提供的 10 个样本进行了检验。

假定该供货商生产的配件长度服从正态分布,在 0.05 的显著性水平下,检验该供货商提供的配件是否符合要求?10 个零件尺寸的长度(cm)12.210.812.011.811.912.411.312.212.012.3答:供货商生产的配件长度服从正态分布,但为小样本,故使用t 检验。

《数理统计》第三章 假设检验

《数理统计》第三章 假设检验
一个正态总体均值假设检验( 检验 检验) 一个正态总体均值假设检验(t检验)
P328
P329
第三章 1.2 参数假设检验Parameter hypothesis testing
一个正态总体方差的假设检验
第三章 1.2 参数假设检验Parameter hypothesis testing
一个正态总体方差的假设检验
两个正态总体方差比的假设检验 两个正态总体方差比的假设检验 方差比
两个正态总体方差比的假设检验 两个正态总体方差比的假设检验 方差比
P393
P393
第三章 1.2 参数假设检验Parameter hypothesis testing
两个正态总体均值,方差的假设检验举例 两个正态总体均值,方差的假设检验举例
第三章 1.2 参数假设检验Parameter hypothesis testing
一个正态总体均值的假设检验( 检验 检验) 一个正态总体均值的假设检验(U检验)
第三章 1.2 参数假设检验Parameter hypothesis testing
一个正态总体均值的假设检验( 检验) 一个正态总体均值的假设检验(U检验)表示
两个正态总体均值差假设检验举例 两个正态总体均值差假设检验举例
第三章 1.2 参数假设检验Parameter hypothesis testing
两个正态总体均值差假设检验举例 两个正态总体均值差假设检验举例
两个正态总体方差比的假设检验
第三章 1.2 参数假设检验Parameter hypothesis testing
总体分布函数的假设检验
1.3 非参数假设检验(Non-Parameter hypothesis testing) 非参数假设检验 Parameter

第3章:双变量回归模型:估计问题

第3章:双变量回归模型:估计问题

最小二乘估计
1. 德国科学家Karl Gauss(1777—1855)提出用 德国科学家Karl Gauss(1777—1855)提出用 最小化图中垂直方向的误差平方和来估计参数
2. 使因变量的观察值与估计值之间的离差平方 ˆ ˆ 和达到最小来求得β 0 和 β1的方法。即
ˆ ˆ ˆ ˆ ˆ ˆ min ∑ (ui ) 2 = ∑ (Yi − Yi ) 2 = ∑ (Yi − β1 − β 2 X i ) 2 = f ( β1 , β 2 )
回归分析的目的:是运用样本数据估计SRL, 回归分析的目的:是运用样本数据估计SRL,使 SRL SRL能最大限度逼近于PRL。 能最大限度逼近于PRL SRL能最大限度逼近于PRL。 由此而提出的问题是,在什么假定下,运用何种 由此而提出的问题是,在什么假定下, 方法形成SRL SRL, SRL尽可能逼近PRL? 尽可能逼近PRL 方法形成SRL,使SRL尽可能逼近PRL 注意:总体回归函数或直线是:固定的、唯一的 且是未知的。而我们每抽取一个样本,就可以得 出一条样本回归直线,所以样本回归直线不是固 定的,会随着样本的不同而不同,且是已知的, 估计思路就是用已知的或者可以获得的信息来估 计未知的总体信息。
i i i 2 i 2
∑ X ∑Y ∑XY −
i i i
i
1 (均值X = ∑ X i) n
2
∑ X Y − X ∑ Y ( (∑ X ) = n ∑ X − nX ∑Y ( X − X ) = ∑ X − nX ∑ ( X − X )(Y − Y ) = ∑(X − X )
i i i 2 i i 2 i 2 i
i i i 2 i 2 i
i
X i2 ∑ Y i − ∑ X i ∑ X iYi ∑ n∑ X i2 − (∑ X i ) 2

计量经济学重点

计量经济学重点

计量经济学重点第一章经济计量学的特征及研究范围1、经济计量学的定义P11经济计量学是利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学;2经济计量学运用数理统计学分析经济数据,对构建于数理经济学基础之上的模型进行实证分析,并得出数值结果;2、学习计量经济学的目的计量经济学与其它学科的区别P1-P21计量经济学与经济理论经济理论:提出的命题和假说,多以定性描述为主计量经济学:依据观测或试验,对大多数经济理论给出经验解释,进行数值估计2计量经济学与数理经济学数理经济学:主要是用数学形式或方程或模型描述经济理论计量经济学:采用数理经济学家提出的数学模型,把这些数学模型转换成可以用于经验验证的形式3计量经济学与经济统计学经济统计学:涉及经济数据的收集、处理、绘图、制表计量经济学:运用数据验证结论3、进行经济计量的分析步骤P2-P31建立一个理论假说2收集数据3设定数学模型4设立统计或经济计量模型5估计经济计量模型参数6核查模型的适用性:模型设定检验7检验源自模型的假设8利用模型进行预测4、用于实证分析的三类数据P3-P41时间序列数据:按时间跨度收集到的定性数据、定量数据;2截面数据:一个或多个变量在某一时点上的数据集合;3合并数据:包括时间序列数据和截面数据;一类特殊的合并数据—面板数据纵向数据、微观面板数据:同一个横截面单位的跨期调查数据第二章线性回归的基本思想:双变量模型1、回归分析P18用于研究一个变量称为被解释变量或应变量与另一个或多个变量称为解释变量或自变量之间的关系2、回归分析的目的P18-P191根据自变量的取值,估计应变量的均值;2检验建立在经济理论基础上的假设;3根据样本外自变量的取值,预测应变量的均值;4可同时进行上述各项分析;3、总体回归函数PRFP19-P221概念:反映了被解释变量的均值同一个或多个解释变量之间的关系2表达式:①确定/非随机总体回归函数:EY|Xi =B1+B2XiB1:截距;B2:斜率从总体上表明了单个Y同解释变量和随机干扰项之间的关系②随机/统计总体回归函数:Yi =B1+B2Xi+μiμi:随机扰动项随机误差项、噪声B1+B2Xi:系统/确定性部分μi:非系统/随机部分4、随机误差项P221定义:代表了与被解释变量Y有关但未被纳入模型变量的影响;每一个随机误差项对于Y的影响是非常小的,且是随机的;随机误差项的均值为02性质①误差项代表了未纳入模型变量的影响;②反映人类行为的内在随机性;③代表了度量误差;④反映了模型的次要因素,使得模型描述尽可能简单;5、样本回归函数P22-P251概念:是总体回归函数的近似2表达式①确定/非随机样本回归函数:i =b1+b2Xib 1:截距;b2:斜率②随机/统计样本回归函数:Yi =b1+b2Xi+eiei :残差项残差,ei= Yi-iB1+B2Xi:系统/确定性部分μ:非系统/随机部分6、条件期望与非条件期望1EY|Xi条件期望:在解释变量X给定条件下Y的条件期望,可以通过X给定条件下的条件概率分布得到;2非条件期望:在不考虑其他随机变量取值情况时,某个随机变量的期望值;它可以通过该随机变量的非条件分布或边缘分布得到;6、线性回归模型回归参数为线性B的模型7、回归系数/回归参数线性回归模型中的B参数8、回归系数的估计量bs说明了如何通过样本数据来估计回归系数Bs,计算出的回归系数的值称为样本回归估计值9、随机总体回归函数与随机样本回归函数的关系1随机样本回归函数:从所抽取样本的角度说明了被解释变量Yi 同解释变量Xi及残差ei之间的关系;2随机总体回归函数:从总体的角度说明了被解释变量Yi 同解释变量Xi及随机误差项μ之间的关系;10、关于线性回归的两种解释P25-P261变量线性:应变量的条件均值是自变量的线性函数此解释下的非线性回归:EY= B1+B2Xi2;EY= B1+B2×1/Xi2参数线性:应变量的条件均值是参数B的线性函数此解释下的非线性回归:EY= B1+B22Xi线性回归在教材中指的是参数线性的回归11、多元线性回归的表达式P261确定/非随机总体回归函数:EX=B1+B2X2i+B3X3i+B4X4i2随机/统计总体回归函数:Yi = B1+B2X2i+B3X3i+B4X4i+μi12、最小二乘法OLS法P26-P281最小二乘以残差被解释变量的实际值同拟合值之间的差平方和最小的原则对回归模型中的系数进行估计的方法;1表达式2重要性质①用OLS法得出的样本回归线经过样本均值点:;②残差的均值总为0;③对残值与解释变量的积求和,其值为0,即这两个变量不相关:④对残差与i 估计的Yi的积求和,其值为0,即第三章双变量模型:假设检验1、古典线性回归模型的假设P41-P441回归模型是参数线性的,但不一定是变量线性的:Yi =B1+B2Xi+μi2解释变量X与扰动误差项μ不相关3给定Xi ,扰动项的期望或均值为0:Eμ| Xi=04μi 的方差为常数,或同方差:varμi=σ2每个Y值以相同的方差分布在其均值周围,非这种情况为异方差5无自相关假定:两个误差项之间不相关,covμi ,μj=06回归模型是正确假定的:实证分析的模型不存在设定偏差或设定误差2、OLS估计量运用最小二乘法计算出的总体回归参数的估计量3、普通最小二乘估计量的方差与标准误P44-P461的方差与标准误①方差:②标准误:2的方差与标准误①方差:②标准差:3的计算公式n-2为自由度:独立观察值的个数4:回归标准误,常用于度量估计回归线的拟合优度,值越小,Y的回归值越接近根据回归模型得到的估计值4、OLS估计量的性质P461b1和b2是线性估计量:它们是随机变量Y的线性函数2b1和b2是无偏估计量:Eb1=B1,Eb2=B23Eσ^2=σ^2:误差方差的OLS估计量是无偏的4b 1和b 2是有效估计量:varb 1小于B 1的任意一个线性无偏估计量的方差,varb 2小于B 2的任意一个线性无偏估计量的方差 5、OLS 估计量的抽样分布或概率分布P47-P481新加的假设:在总体回归函数Yi=B 1+B 2X i +μi 中,误差项μi 服从均值为0,方差为σ^2的正态分布:μi ~N0,σ^2 2OLS 估计量服从的分布情况:b 1~NB 1,σ2b1 b 2~NB 2,σ2b26、假设检验P48-P53 1使用公式近似2方法①置信区间法②显着性检验法:对统计假设的检验过程 3几个相关检验①t 检验法:基于t 分布的统计假设检验过程 ②双边检验:备择假设是双边假设的检验 ③单边检验:备择假设是单边假设的检验 7、判定系数r 2P53-P56 1重要公式:TSS=ESS+RSS①总平方和TSS=:真实Y 值围绕其均值的总变异;②解释平方和ESS=:估计的Y值围绕其均值=的变异,也称为回归平方和由解释变量解释的部分③残差平方和RSS=:Y变异未被解释的部分2r2判定系数的定义:度量回归线的拟合程度回归模型对Y变异的解释比例/百分比3r2的性质①非负性②0≤r2≤14r2的计算公式5r的计算公式8、同方差性方差相同9、异方差性方差不同10、BLUE最佳线性无偏估计量,即该估计量是无偏估计量,且在所有的无偏估计量中方差最小11、统计显着拒绝零假设的简称第四章多元回归:估计与假设检验1、三变量线性回归模型EYi =B1+B2Xt+ B3X3tY i =B1+B2X2t+ B3X3t+μi2、偏回归系数B2,B3:1B2:在X3保持不变的情况下,X2单位变动引起Y均值EY的变动量2B3:在X2保持不变的情况下,X3单位变动引起Y均值EY的变动量3、多元线性回归模型的若干假定P73-P74 1回归模型是参数线性的,并且是正确设定的2X2,X3与扰动误差项μ不相关①X2,X3非随机:自动满足②X2,X3随机:必须独立同分布于误差项μ3误差项的期望或均值为0:Eμi=04同方差假定:varμi=σ25误差项μi ,μi无自相关:两个误差项之间不相关,covμi,μji≠j6解释变量X2和X3之间不存在完全共线性,即两个解释变量之间无严格的线性关系X2不能表示为另一变量X3的线性函数7随机误差μ服从均值为0,同方差为σ^2的正态分布:μi~N0,σ2 4、多重共线性问题1完全共线性:解释变量之间存在的精确的线性关系2完全多重共线性:解释变量之间存在着多个精确的线性关系5、多元回归函数的估计P74-P756、OLS估计量的方差与标准误P75-P761b1的方差与标准误2b1的方差与标准误3b3的方差与标准误7、多元判定系数P76-P778、多元回归的假设检验P78 方法类似于第三章9、检验联合假设P80-P811联合假设:H0:B2=B3=0H:R2=0多元回归的总体显着性检验2三变量回归模型的方差分析表2F分布公式10、F与R2之间的重要关系P82-P83 1关系式2R2形式的方差分析表11、设定误差P84会导致模型中遗漏相关变量12、校正判定系数P84-P851作用衡量了解释变量能解释的离差占被解释变量总离差的比例2公式3性质①如果k>1,则≤R2,即随着模型中解释变量个数的增加,校正判定系数越来越小于非校正判定系数②虽然未校正判定系数R2总为正,但校正判定系数可能为负13、受限最小二乘法P86-P871受限模型:B2=B3=02非受限模型:包含了所有相关变量3受限最小二乘法:对受限模型用OLS估计参数4非受限最小二乘法:对非受限模型用OLS估计参数5判定对模型施加限制是否有效的F分布公式14、显着性检验1单个多元回归系数的显着性检验①提出零假设和备择假设;②选择适当的显着性水平;③在零假设为真的情况下,计算t统计量;④将t统计量的绝对值|t|同相应自由度和显着性水平下的临界值相比较;⑤如果t统计量大于临界值,则拒绝零假设;该步骤中务必要使用合适的单边或双边检验;2所有偏斜率系数的显着性检验①零假设:H0:B2=B3=...=Bk=0,即所有的偏回归系数均为0;②备择假设:至少一个偏回归系数不为0;③运用方差分析和F检验;④如果F统计量的值大于相应显着性水平下的临界值,拒绝零假设,否则接受;⑤3在1和2中可以不事先选择好显着性水平,只需得到相应统计量的p值,如果p 值足够小,我们就可以拒绝零假设;第五章回归模型的函数形式1、不同的函数形式P121模型形式斜率强性线性双对数对数—线性线性—对数倒数逆对数2、多元对数线性回归模型P104-P1073、线性趋势模型P1104、多项式回归模型P116-P1175、过原点的回归P1186、标准化变量的回归P120第六章虚拟变量回归模型1、虚拟变量P133-P134因变量受到一些定性变量的影响,这类定性变量称为虚拟变量,用D表示虚拟变量,虚拟变量的取值通常为0和12、虚拟变量陷阱P136引入的虚拟变量个数应该比研究的类别少一个,否则就会造成完全多重共线,即通常说的虚拟变量陷阱3、虚拟变量回归模型的类型包含一个定量变量、一个定性变量的回归模型1只影响截距加法模型2只影响斜率乘法模型3同时影响截距与斜率混合模型4、交互效应P142:交互作用虚拟变量5、分类变量和定性变量这类变量的取值不是一般的数据数值变量或定量变量,它们通常代表所研究的对象是否具有的某种特征;6、方差分析模型ANOVA解释变量仅包含定型变量或虚拟变量的回归模型;7、协方差分析模型ANOCVA回归模型中的解释变量有些是线性的,有些是定量的;8、差别截距虚拟变量包含此变量的模型能够分辨被解释变量的均值在不同类别之间是否相同; 9、差别斜率虚拟变量包含此变量的模型能够分辨不同类别之间被解释变量均值变化率的变化范围第七章模型选择:标准与检验1、好的模型具有的性质P164-P1651简约性:模型应尽可能简单;2可识别性:每个参数只有一个估计值;3拟合优度:用模型中所包含的解释变量尽可能地解释应变量的变化;4理论一致性:构建模型时,必须有一定的理论基础;5预测能力:选择理论预测与实践吻合的模型;2、产生设定误差的原因1研究者对所研究问题的相关理论了解不深2研究者没有关注本领域前期的研究成果3研究者在研究中缺乏相关数据4数据测量时的误差3、设定误差的类型P1651遗漏相关变量:“过低拟合”模型P165-P168实际模型:估计模型:后果:①如果遗漏变量X3与模型中的变量X2相关,则a1和a2是有偏的;也就是说,其均值或期望值与真实值不一致;②a1和a2也是不一致的,即无论样本容量有多大,偏差也不会消失;③如果X2和X3不相关,则b32为零,即a2是无偏的,同时也是一致的;④根据两变量模型得到的误差方差是真实误差方差σ2的有偏估计量;⑤此外,通常估计的a2的方差是真实估计量方差的有偏估计量;即使等于零,这一方差仍然是有偏的;⑥通常的置信区间和假设检验过程不再可靠;置信区间将会变宽,因此可能会“更频繁地”接受零假设:系数的真实值为零;2包括不相关变量:“过度拟合”模型P168-169正确模型:错误模型:后果:①过度拟合模型的估计量是无偏的也是一致的;②从过度拟合方程得到的σ2的估计量是正确的;③建立在t检验和F检验基础上的标准的置信区间和假设检验仍然是有效的;④从过度拟合模型中估计的a是无效的——其方差比真实模型中估计的b的方差大;因此,建立在a的标准误上的置信区间比建立在b的标准误上的置信区间宽,尽管前者的假设检验是有效的;总之,从过度拟合模型中得到的OLS估计量是线性无偏估计量,但不是最优先性无偏估计量;3不正确的函数形式P170-171如果选了错误的函数形式,则估计的系数可能是真实系数的有偏估计量;4度量误差①应变量中度量误差对回归结果的影响i. OLS估计量是无偏的;ii. OLS估计量的方差也是无偏的;iii. 估计量的估计方差比没有度量误差时的大,因为应变量中的误差加入到了误差项中;②解释变量的度量误差对回归结果的影响i. OLS估计量是有偏的;ii. OLS估计量也是不一致的;③解决方法:如果解释变量中存在度量误差,建议使用工具变量或替代变量;4、设定误差的诊断1诊断非相关变量P172-P1742对遗漏变量和不正确函数形式的检验P174-P175①判定系数R2和校正后的R2;②估计的t值;③与先验预期相比,估计系数的符号;3在线性和对数线性模型之间选择:MWD检验P175-P176:线性模型:Y是X的线性函数①设定如下假设;HH:对数线性模型:lnY是X或lnX的线性函数1②估计线性模型,得到Y的估计值③估计线性对数模型,得到lnY的估计值④求⑤做Y对X和的回归,如果根据t检验的系数是统计显着的,则拒绝H0⑥求⑦做lnY对X或lnX和的回归,如果的系数是统计显着的,则拒绝H14回归误差设定检验:RESETP177-P178①根据模型估计出Y值;②把的高次幂,,等纳入模型以获取残差和之间的系统关系;由于上图表明残差和估计的Y值之间可能存在曲线关系,因而考虑如下模型③令从以上模型中得到的为,从前一个方程得到的为,然后利用如下F检验判别从以上方程中增加的是否是统计显着的;④如果在所选的显着水平下计算的F值是统计显着的,则认为原始模型是错误设定的;第八章多重共线性:解释变量相关会有什么后果1、完全多重共线性P183-P185回归模型的某个解释变量可以写成其他解释变量的线性组合;设X2可以写成其他某些解释变量的线性组合,即:X 2=a3X3+a4X4…+akXk至少有一个ai≠0,i= 2,3,…k称存在完全多重共线性2、高度多重共线性P185-P187X2与其他解释变量高度共线性,即可以近似写成其他解释变量的线性组合X 2=a3X3+a4X4…+akXk+i至少有一个ai ≠0,i= 2, 3,…k, vi是随机误差项;3、产生多重共线的原因1时间序列解释变量受同一因素影响经济发展、政治事件、偶然事件、时间趋势经济变量的共同趋势2模型设立:解释变量中含有当期和滞后变量4、多重共线性的理论后果P187-P188OLS估计量仍然是最优无偏估计量1在近似共线性的情形下,OLS估计量仍然是无偏的;2近似共线性并未破坏OLS估计量的最小方差性;3即使在总体回归方程中变量X之间不是线性相关的,但在某个样本中,X变量之间可能线性相关;5、多重共线性的实际后果P188-P1891OLS估计量的方差和标准误较大;2置信区间变宽;3t值不显着;4R2值较高;5OLS估计量及其标准误对数据的微小变化非常敏感6回归系数符号有误;7难以评估各个解释变量对回归平方和ESS或者R2的贡献6、多重共线性的诊断P189-P1921观察回归结果R2较高,F很大,但t值显着的不多;多重共线性的经典特征R2较高,F检验拒绝零假设,但各变量的t检验表明,没有或少有变量系数是统计显着的;2简单相关系数法解释变量两两高度相关;变量相关系数比如超过,则可能存在较为严重的共线性;这一标准并不总是可靠,相关系数较低时,也有可能存在共线性3检查偏相关系数不一定可行4判定系数法辅助回归某个解释变量对其余的解释变量进行回归如果判定系数很大,F检验显着,即X与其他解释变量存在多重共线i5方差膨胀因子7、多重共线性的补救P195-P1981从模型中删除引起共线性的变量①找出引起多重共线性的解释变量,将它排除出去最为简单的克服多重共线性问题的方法;②逐步回归法i. 逐步引入如果拟合优度变化显着—新引入的变量是一个独立解释变量;选择解释变量的原则:a. 调整的R2增加,每个∣t∣增加,则保留引入变量;b. 调整的R2下降,每个∣t∣变化不大,则删除引入变量;ii. 逐步剔除①排除变量时应该注意:i. 由实际经济分析确定变量的相对重要性,删除不太重要的变量;ii. 如果删除变量不当,会导致模型设定误差;2获取额外的数据或新的样本3重新考虑模型4先验信息5变量变换将原模型变换为差分模型可有效消除存在于原模型中的多重共线性一般,增量之间的线性关系远比总量之间的线性关系弱得多; 第九章异方差:如果误差方差不是常数会有什么后果1、异方差的定义随机误差项ui 的方差随着解释变量Xi的变化而变化,即:2、异方差的性质P205-P208OLS估计仍是线性无偏,但不具最小方差1线性性2无偏性3方差式1不具有最小方差,式2具有最小方差3、异方差性的后果P209-P210经典模型假定下,OLS估计量是最优线性无偏估计量BLUE;去掉同方差假定:1OLS估计量仍是线性的;2OLS估计量仍是无偏的;3OLS估计量不再具有最小方差性,即不再是最优有效估计量;4OLS估计量的方差通常是有偏的;5偏差的产生是由于,即不再是真实σ2的无偏估计量;6建立在t分布和F分布之上的置信区间和假设检验是不可靠的,如果沿用传统的检验方法,可能得出错误的结论;4、异方差的检验1图形检验P211-P212e2对一个或多个解释变量或Y的拟合值作图; 2帕克检验Park TestP212-P214假定误差方差与解释变量相关形式:步骤:①做OLS估计求平方,取对数②对ei③做辅助回归④检验零假设:B=023格莱泽检验Glejser TestP214假定误差方差与解释变量相关形式:步骤:①做OLS估计②对e求绝对值i③做辅助回归方程=0④检验零假设:B24怀特检验White TestP215-P216和交叉乘积呈线性关系假定误差方差与X、X2步骤:①OLS估计得残差②做辅助回归③检验统计量5、异方差的修正1加权最小二乘法WLSWeighted Least SquaresP217-P222①方差已知原模型:加权后的模型:误差项的方差为:1加权的权数:②方差未知成比例:i. 误差方差与Xi模型变换:ii. 误差方差与Xi2成比例:模型变换:2怀特异方差校正的标准误P222-P223①如果存在异方差,则对于通过OLS得到的估计量不能进行t检验和F检验;②怀特估计方法③大样本情形下回归标准差和回归系数的一致估计量,可以进行t检验和F检验;第十章自相关:如果误差项相关会有什么结果1、自相关的定义P233按时间或空间顺序排列的观察值之间存在的相关关系;2、自相关的性质P233-P2341若古典线性回归模型中误差项ui不存在自相关Covui,uj=Eui,uj=0,i≠j2若误差项之间存在着依赖关系—ui存在自相关Covui,uj=Eui,uj≠0,i≠j3、产生自相关的原因P235-P2361惯性2设定偏误①模型中遗漏了重要变量;②模型选择了错误的函数形式;i. 从不正确的模型中得到的残差会呈现自相关;ii. 检验是否由于模型设定错误而导致残差自相关的方法:3蛛网现象4数据的加工①在用到季度数据的时间序列回归中,这些数据通常来自于每月数据;这种数据加工方式减弱了每月数据的波动而引进数据的匀滑性;②用季度数据描绘的图形要比用月度数据看来匀滑得多;这种匀滑性本身可能使扰动项中出现自相关;③内插法或外推法:用这些方法加工得到的数据都会给数据带来原始数据没有的系统性,这种系统性可能会造成误差自相关;4、自相关的后果P236-P2371OLS估计得到的仍为线性、无偏估计;2OLS估计不再具有有效性;3OLS估计量的方差有偏:低估了估计量的标准差;4通常所用的t检验和F检验是不可靠的;5计算得到的误差方差是真实σ2的无偏估计量,并且很有可能低估了真实的σ2;6通常计算的R2不能测度真实的R27通常计算的预测方差和标准误也是无效的5、自相关的诊断1图形法—时序图P237-P239①误差u并不频繁地改变符号,而是几个正之后跟着几个负,几个负之后跟着t几个正,则呈正自相关;②扰动项的估计值呈循环型,而是相继若干个正的以后跟着几个负的,表明存在正自相关;③扰动项的估计值呈锯齿型一个正接一个负,随时间逐次改变符号,表明存在负自相关;2检验P239-P242①定义值d值近似1 =-1完全负相关d=42 =0无自相关d=23 =1完全正相关d=0②DW检验的判断准则6、自相关的修正ρ的估计主要方法1ρ=1:一阶差分方法P244假定误差项之间完全正相关 Y t = α+βX t +u tu t = u t-1+tY t - Y t-1= βX t -X t-1+t2从DW 统计量中估计ρP244-P245 3从OLS 残差e t 中估计Cochrane-OrcuttP245-P246①e t = e t-1+t②利用OLS 残差,得的估计量 ③迭代,得的收敛值。

第3章 双变量回归模型:估计问题.ppt

第3章 双变量回归模型:估计问题.ppt

() 式乘以 Xi ,() 式乘以n,得
请大家自己推导一次
贵州财经大学经济研究所 白万平 教授


Xi
Yi ˆ1n
X i ˆ2
2
Xi
(1)

n X i Yi ˆ1n X i ˆ2n X i 2 (2)
(2)-(1)得 :
n X iYi X i Yi ˆ2[n X i 2 X i 2 ]
贵州财经大学经济研究所 白万平 教授
假定5:各个干扰之间无自相关
给定任意两个X值,Xi和Xj,ui和uj之间的相关为零
注:
xi yi (Xi X )(Yi Y ) XiYi X Yi Y Xi nXY
其中 Xi nX Yi nY
上式 XiYi 2nXY nXY

n X iYi nXY
X iYi X i n
Yi
xi2 (Xi X )2 Xi2 2X Xi nX 2
Xi nX
上式
Xi2 2nX 2 nX 2
n Xi 2 nX 2
Xi2 n
2
Xi
贵州财经大学经济研究所 白万平 教授
返回
OLS估计量的数值性质:
Ⅰ.OLS估计量是纯粹可以用可观测的样本量(指X和Y)表达的, 因此,这些量是比较容易计算的
可以表达为离差形式(deviation form):
yi ˆ2 xi uˆi
证明: 我们已知有:
Y ˆ1 ˆ2 X
(2.6.2)式减去(3.1.12)式得:
(Yi Y ) ˆ2 (Xi X ) uˆi

数理统计 (研究生课程) :第三章 假设检验

数理统计 (研究生课程) :第三章  假设检验
(1) 差异可能是由抽样的随机性引起的,称为 “抽样误差”或 随机误差 这种误差反映偶然、非本质的因素所引起的随机波动。然 而,这种随机性的波动是有一定限度的, (2) 如果差异超过了这个限度,则我们就不能用 抽样的随机性来解释了.
必须认为这个差异反映了事物的本质差别,即反映 了生产已不正常.
这种差异称作 “系统误差”
正确
第二类错误
人们总希望犯这两类错误的概率越小越好,但 对样本容量一定时,不可能使得犯这两类错误的 概率都很小。 往往是先控制犯第一类错误的概率在一定限度 内,再考虑尽量减小犯第二类错误的概率。
即: 较小的 (0,1) 使得 P{拒绝H0|H0为真}≤ ,
然后减小P{接受H0|H0不真} 犯两类错误的概率:
如发现不正常,就应停产,找出原因,排除 故障,然后再生产;如没有问题,就继续按规定 时间再抽样,以此监督生产,保证质量.
很明显,不能由5罐容量的数据,在把握不大 的情况下就判断生产 不正常,因为停产的损失是 很大的.
当然也不能总认为正常,有了问题不能及时 发现,这也要造成损失.
如何处理这两者的关系,假设检验面对的就 是这种矛盾.
如果H0不成立,但统计量的实测 值未落入否定域,从而没有作出否定 H0的结论,即接受了错误的H0,那就 犯了“以假为真”的错误 . “取伪错误” 这两类错误出现的可能性是不可能排除的。 原因在于:由样本推导总体
假设检验的两类错误
实际情况 H0为真 H0不真 第一类错误 正确
决定 拒绝H0 接受H0
在上面的例子的叙述中,我们已经初步介绍 了假设检验的基本思想和方法 .
基于概率反证法的逻辑的检验: 如果小概率事件在一次试验中居然发生, 我们就以很大的把握否定原假设.

计量经济学复习笔记

计量经济学复习笔记

第一章统计概念1.什么是计量经济学计量经济学是对经济的测度,利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学。

2.计量经济学的方法论(计量经济分析步骤)(1)建立理论假说。

(2)收集数据。

(3)假定数学模型。

(4)设立统计或计量模型。

(5)估计经济模型参数(6)核查模型的适用性:模型设定检验。

(7)检验源自模型的假定(8)利用模型进行预测4.数据类型(1)时间序列数据:按时间跨度获得的数据。

特征是一般变量如 Y t、X t下标为t。

(2)截面数据:同一时点上的一个或多个变量的数据集合。

如:各地区2002年人口普查数据。

(3)合并数据:既包括时间序列数据有包括截面数据。

例:20年间10个国家的失业数据。

20年失业数据是时间序列,10个国家又是截面数据。

(4)面板数据:同一个横截面的单位的跨期调查数据。

例:对相同的家庭数量在几个时间间隔内进行的财务状况调查。

5.理解回归关系回归关系是一种统计上的相关关系,并不意味着自变量和因变量之间存在着因果关系。

第二章线性回归的基本思想1.回归分析的含义: 回归分析是反映的自变量和因变量之间的统计关系,回归分析是在自变量给定条件下的因变量的变化,是一种条件回归分析E(Y i|X i)=B1+B2X i2.随机误差项的性质(为什么要引入随机误差项)(1)随机误差项代表着未纳入模型变量对因变量的影响(2)即使模型包括了影响因变量的所有因素,模型也有不可避免的随机性。

(3)μ还代表着度量误差(4)模型设定应该尽可能简单,只要不遗漏重要变量,把因变量的次要影响因素归于随机项 μ 。

(奥卡姆剃刀原则)3.参数估计方法———普通最小二乘法的基本思想 选择参数使得残差平方和最小——Min ∑e i 2=Min ∑(Y i −Yi ̌)2=Min ∑(Y i −b 1−b 2X i )^24.根据Ols 法得出参数 b 1 b 2 称为最小二乘估计量,最小二乘估计量的性质: (1)Ols 方法获得样本回归直线过样本均值点(X ,Y ) (2)残差的均值总为0,(3)残差项与解释变量的乘积求和为0,即残差项与解释变量不相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档