材料科学基础习题及参考答案

合集下载

材料科学基础习题与参考答案(doc14页)完美版

材料科学基础习题与参考答案(doc14页)完美版

材料科学基础习题与参考答案(doc14页)完美版第⼀章材料的结构⼀、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离⼦键、⾦属键、组元、合⾦、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第⼆相强化。

⼆、填空题1、材料的键合⽅式有四类,分别是(),(),(),()。

2、⾦属原⼦的特点是最外层电⼦数(),且与原⼦核引⼒(),因此这些电⼦极容易脱离原⼦核的束缚⽽变成()。

3、我们把原⼦在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。

4、三种常见的⾦属晶格分别为(),()和()。

5、体⼼⽴⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),晶胞中⼋⾯体间隙个数为(),四⾯体间隙个数为(),具有体⼼⽴⽅晶格的常见⾦属有()。

6、⾯⼼⽴⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),晶胞中⼋⾯体间隙个数为(),四⾯体间隙个数为(),具有⾯⼼⽴⽅晶格的常见⾦属有()。

7、密排六⽅晶格中,晶胞原⼦数为(),原⼦半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶⾯为(),具有密排六⽅晶格的常见⾦属有()。

8、合⾦的相结构分为两⼤类,分别是()和()。

9、固溶体按照溶质原⼦在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原⼦与溶剂原⼦相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、⾦属化合物(中间相)分为以下四类,分别是(),(),(),()。

12、⾦属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合⾦中不作为()相,⽽是少量存在起到第⼆相()作⽤。

13、CuZn、Cu5Zn8、Cu3Sn的电⼦浓度分别为(),(),()。

太原理工大学材料科学基础习题及参考答案(全)

太原理工大学材料科学基础习题及参考答案(全)

太原理工大学材料科学基础习题及参考答案(全)第一章原子结构与结合键习题1-1计算下列粒子的德布罗意波长:(1)质量为10-10kg,运动速度为0.01m?s-1的尘埃;(2)速度为103m/s的氢原子;(3)能量为300eV的自由电子。

1-2怎样理解波函数ψ的物理意义?1-3在原子结构中,ψ2和ψ2dτ代表什么?1-4写出决定原子轨道的量子数取值规定,并说明其物理意义。

1-5试绘出s、p、d轨道的二维角度分布平面图。

1-6多电子原子中,屏蔽效应和钻穿效应是怎样影响电子的能级的?1-7写出下列原子的基态电子组态(括号内为原子序号):C(6),P(15),Cl(17),Cr(24)。

1-8形成离子键有哪些条件?其本质是什么?1-9试述共价键的本质。

共价键理论包括哪些理论?各有什么缺点?1-10何谓金属键?金属的性能与金属键关系如何?1-11范德华键与氢键有何特点和区别?参考答案:1-1利用公式λ=h/p=h/mv、E=hν计算德布罗意波长λ。

1-8离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原子相互作用时,产生电子得失而形成的离子固体的结合方式。

1-9共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。

共价键理论包括价键理论、分子轨道理论和杂化轨道理论。

1-10当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属建。

由于存在自由电子,金属具有高导电性和导热性;自由电子能吸收光波能量产生跃迁,表现出有金属光泽、不透明;金属正离子以球星密堆方式组成,晶体原子间可滑动,表现出有延展性。

第二章材料的结构习题2-1定义下述术语,并注意它们之间的联系和区别。

晶系,空间群,平移群,空间点阵。

2-2名词解释:晶胞与空间格子的平行六面体,并比较它们的不同点。

2-3(1)一晶面在x、y、z轴上的截距分别为2a、3b和6c,求出该晶面的米勒指数。

《材料科学基础》经典习题及答案

《材料科学基础》经典习题及答案

材料科学与基础习题集和答案第七章回复再结晶,还有相图的内容。

第一章1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。

2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。

3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。

4.镁的原子堆积密度和所有hcp 金属一样,为0.74。

试求镁单位晶胞的体积。

已知Mg 的密度3Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。

5.当CN=6时+Na 离子半径为0.097nm ,试问:1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少?6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。

试确定在镍的(100),(110)及(111)平面上12mm 中各有多少个原子。

8. 石英()2SiO 的密度为2.653Mg/m 。

试问: 1) 13m 中有多少个硅原子(与氧原子)?2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。

10.若将一块铁加热至850℃,然后快速冷却到20℃。

试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。

若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。

材料科学基础习题与参考答案(doc 14页)(优质版)

材料科学基础习题与参考答案(doc 14页)(优质版)

第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。

二、填空题1、材料的键合方式有四类,分别是(),(),(),()。

2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。

3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。

4、三种常见的金属晶格分别为(),()和()。

5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。

6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。

7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。

8、合金的相结构分为两大类,分别是()和()。

9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。

12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。

13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。

14、如果用M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是(),(),(),()。

材料科学基础课后习题及参考答案

材料科学基础课后习题及参考答案

绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料每种材料需要何种热学、电学性质2、为什么金属具有良好的导电性和导热性3、为什么陶瓷、聚合物通常是绝缘体4、铝原子的质量是多少若铝的密度为cm3,计算1mm3中有多少原子5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计说出至少三种理由。

6、描述不同材料常用的加工方法。

7、叙述金属材料的类型及其分类依据。

8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、 Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。

3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。

5、已知Mg2+半径为,O2-半径为,计算MgO晶体结构的堆积系数与密度。

6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。

7、从理论计算公式计算NaC1与MgO的晶格能。

MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。

8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有%),为什么它也很稳定9、证明等径圆球面心立方最密堆积的空隙率为25.9%;10、金属镁原子作六方密堆积,测得它的密度为克/厘米3,求它的晶胞体积。

材料科学基础课后习题及参考答案

材料科学基础课后习题及参考答案

绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料每种材料需要何种热学、电学性质2、为什么金属具有良好的导电性和导热性3、为什么陶瓷、聚合物通常是绝缘体4、铝原子的质量是多少若铝的密度为cm3,计算1mm3中有多少原子5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计说出至少三种理由。

6、描述不同材料常用的加工方法。

7、叙述金属材料的类型及其分类依据。

8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。

3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。

5、已知Mg2+半径为,O2-半径为,计算MgO晶体结构的堆积系数与密度。

6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。

7、从理论计算公式计算NaC1与MgO的晶格能。

MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。

8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有%),为什么它也很稳定9、证明等径圆球面心立方最密堆积的空隙率为25.9%;10、金属镁原子作六方密堆积,测得它的密度为克/厘米3,求它的晶胞体积。

《材料科学基础》经典习题及答案

《材料科学基础》经典习题及答案

材料科学与基础习题集和答案第七章回复再结晶,还有相图的内容。

第一章1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。

2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。

3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。

4.镁的原子堆积密度和所有hcp 金属一样,为0.74。

试求镁单位晶胞的体积。

已知Mg 的密度3Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。

5.当CN=6时+Na 离子半径为0.097nm ,试问:1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少?6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。

试确定在镍的(100),(110)及(111)平面上12mm 中各有多少个原子。

8. 石英()2SiO 的密度为2.653Mg/m 。

试问: 1) 13m 中有多少个硅原子(与氧原子)?2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。

10.若将一块铁加热至850℃,然后快速冷却到20℃。

试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。

若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。

太原理工大学材料科学基础习题及参考答案(全)

太原理工大学材料科学基础习题及参考答案(全)

太原理工大学材料科学基础习题及参考答案(全)第一章原子结构与结合键习题1-1计算下列粒子的德布罗意波长:(1)质量为10-10kg,运动速度为0.01m?s-1的尘埃;(2)速度为103m/s的氢原子;(3)能量为300eV的自由电子。

1-2怎样理解波函数ψ的物理意义?1-3在原子结构中,ψ2和ψ2dτ代表什么?1-4写出决定原子轨道的量子数取值规定,并说明其物理意义。

1-5试绘出s、p、d轨道的二维角度分布平面图。

1-6多电子原子中,屏蔽效应和钻穿效应是怎样影响电子的能级的?1-7写出下列原子的基态电子组态(括号内为原子序号):C(6),P(15),Cl(17),Cr(24)。

1-8形成离子键有哪些条件?其本质是什么?1-9试述共价键的本质。

共价键理论包括哪些理论?各有什么缺点?1-10何谓金属键?金属的性能与金属键关系如何?1-11范德华键与氢键有何特点和区别?参考答案:1-1利用公式λ=h/p=h/mv、E=hν计算德布罗意波长λ。

1-8离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原子相互作用时,产生电子得失而形成的离子固体的结合方式。

1-9共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。

共价键理论包括价键理论、分子轨道理论和杂化轨道理论。

1-10当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属建。

由于存在自由电子,金属具有高导电性和导热性;自由电子能吸收光波能量产生跃迁,表现出有金属光泽、不透明;金属正离子以球星密堆方式组成,晶体原子间可滑动,表现出有延展性。

第二章材料的结构习题2-1定义下述术语,并注意它们之间的联系和区别。

晶系,空间群,平移群,空间点阵。

2-2名词解释:晶胞与空间格子的平行六面体,并比较它们的不同点。

2-3(1)一晶面在x、y、z轴上的截距分别为2a、3b和6c,求出该晶面的米勒指数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。

⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。

⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。

常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。

⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。

⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。

结合较弱。

⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。

2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。

的等价晶面:的等价晶面:的等价晶向:的等价晶向:4立方点阵的某一晶面(hkl)的面间距为M/,其中M为一正整数,为晶格常数。

该晶面的面法线与a,b,c轴的夹角分别为119.0、43.3和60.9度。

请据此确定晶面指数。

h:k:l=cosα:cosβ:cosγ5.Cu具有FCC结构,其密度为8.9g/cm3,相对原子质量为63.546,求铜的原子半径。

=> R=0.128nm。

6. 写出溶解在γ-Fe中碳原子所处的位置,若此类位置全部被碳原子占据,那么试问在这种情况下,γ-Fe能溶解多少重量百分数的碳?而实际上在γ-Fe中最大的溶解度是多少?两者在数值上有差异的原因是什么?固溶于γ-Fe中的碳原子均处于八面体间隙中,且γ-Fe中的八面体间隙有4个,与一个晶胞中Fe原子个数相等,所以:C wt%=12/(12+56)×100%=17.6%实际上C在γ-Fe中的最大溶解度为2.11%两者数值上有较大差异,是因为此固溶体中,碳原子尺寸比间隙尺寸大,会引起点阵晶格畸变,畸变能升高,限制了碳原子的进一步溶解。

7. a)经x射线衍射测定,在20℃时α-Ti的点阵常数a=0.295nm,c=0.468nm,在882.5℃时α-Ti 转变为γ-Ti,其点阵常数a=0.331nm.按晶体的刚球模型,若球的直径不变,当Ti从室温的hcp转变为高温的bcc时,计算其体积膨胀多少?b)计算从α-Ti 转变为γ-Ti 时,其实际体积膨胀为多少?与a)相比,说明其差别原因。

a)hcp:,有6个原子bcc:有两个原子,得,所以方法二:直接用致密度算:=8.87%b)实际上,差别原因:实际上c/a≠1.633,即hcp结构时不符合钢球模型,实际的原子间隙比钢球模型大,因此实际α-Ti转变为γ-Ti后,相对膨胀的百分比会变小。

8. 已知Cd, In, Sn, Sb 等元素的原子直径分别为0.304nm, 0.314nm, 0.316nm, 0.322nm, 而Ag为0.288nm,它们在Ag中的固溶度(摩尔分数)极限为: x Cd=42%, x In=20%, x Sn=12 %, x Sb=7 %, 。

试分析其固溶度(摩尔分数)极限差别的原因,并计算它们在固溶度(摩尔分数)极限时的电子浓度。

⑴固溶度极限差别原因:当原子尺寸因素较为有利时,在某些一价金属为基的固溶体中,溶质的原子价越高,其溶解度越小,实际上是由电子浓度所决定。

Cd、In、Sn、Sb的原子价分别为+2,+3,+4,+5。

⑵电子浓度:,A,B分别为溶剂和溶质的原子价,x为溶质的原子数分数。

材料科学基础第二次作业1.解释下列术语:合金、组元、相、固溶体、金属间化合物、超结构、负电性和电子浓度。

合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其它方法组合而成,并具有金属特性的物质。

组元:组成合金的基本的、独立的物质。

相:合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。

固溶体:以某一组元为溶剂,在其晶体点阵中溶入其它组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型;金属间化合物:金属与金属或与类金属元素之间形成的化合物超结构:对某些成分接近于一定原子比的无序固溶体中,当它从高温缓冷到某一临界温度以下时,溶质原子会从统计随机分布状态过渡到占有一定位置的规则排列状态,即发生有序化过程,形成有序固溶体。

长程有序的固溶体在其X射线衍射图上会产生外加的衍射线,这称为超结构。

所以有序固溶体通常称为超结构或超点阵。

负电性:元素的原子在化合物中吸引电子的能力电子浓度:合金中价电子数目与原子数目的比值,即e/a。

2. 含w(Mn)为12.3% (重量百分比)、w(C)为1.34%的奥氏体钢,点阵常数为0.3624 nm,密度为7.83 g/cm3,C、Fe、Mn的相对原子质量分别为12.01、55.85、54.94,试判断此固溶体的类型。

判断固溶体的类型,可以用该固溶体合金晶胞内实际原子数(n)与纯溶剂晶胞内原子数的(n0)的比值作为判据,有下式先计算该奥氏体钢的平均分子量:晶胞的体积故对于γ-Fe(奥氏体),n0=4,故n/n0>1,即此固溶体必含有间隙原子。

因为C原子半径比Fe,Mn原子半径小得多,故易处于间隙位置,形成C在Fe中的间隙固溶体。

设C处于Fe间隙位置形成的间隙固溶体的晶胞中平均原子数为n1,由于固溶体中C的原子分数且故可得 n1=4.25由于n1/n=1,所以Mn在合金中应为置换式固溶。

综上所述,可以判断此固溶体为C-间隙,Mn-置换式固溶体。

3.Cu-Zn和Cu-Sn组成固溶体最多可溶入多少原子数分数的Zn和Sn?若Cu晶体中固溶入Zn的原子数分数为10%,最多还能溶入多少原子数分数的Sn?Cu基固溶体的极限电子浓度为1.36。

,Cu-Zn固溶体最多可溶入36%Zn;,Cu-Sn固溶体最多可溶入12%Sn;若Cu已溶入10%Zn后,还可溶入的Sn最大的原子数分数为,最多尚能溶入8.67%Sn。

4,铯与氯的离子半径分别为0.167nm、0.181nm,试问a)在氯化铯内离子在<100>或<111>方向是否相接触?b)每个单位晶胞内有几个离子?c)各离子的配位数是多少?d) ρ和K?a)CsCl型结构系离子晶体结构中最简单的一种,属立方晶系;简单立方点阵,Pm3m空间群,离子半径之比为0.167/0.181=0.92265,其晶体结构如图所示。

从图中可知,在<100>方向不接触,在<111>方向接触。

b)每个晶胞有1个Cs+和1个Cl-。

c)配位数均为8。

d)5. 金刚石是最典型的共价键晶体,其键长为0.1544 nm,试计算金刚石结构的致密度, 当它转换成石墨结构(密度为2.25 g/cm3)时,求其体积改变百分数?金刚石的晶体结构属于复杂的fcc结构,每个C原子有4个等距离的最邻近原子,符合8-N规则。

而最近邻原子距离即相当于键长,根据金刚石的晶体结构可知,键长=故Ⅱ.金刚石的每个晶胞中含有8个碳原子。

金刚石的密度对于1克碳,当它为金刚石结构时其体积当它为石墨结构时其体积材料科学基础第三次作业参考答案1.Pt的晶体结构为fcc,其晶格常数为0.39231nm,密度为21.45g/cm3,试计算空位所占的格子之比例设空位所占的格子比例为x,2、在铁中形成1mol空位的能量为104.675KJ,试计算从20℃升温之850℃时空位数目增加多少倍?,取A=13 钨在20℃时每1023个晶胞中有一个空位,从20℃升至1020℃,点阵常数膨胀了(4X10-4)%,而密度下降了0.012%,求钨的空位形成能及形成熵。

;而W的晶体结构为bcc,每个晶胞含有2个W原子,故。

由于升温时晶体总质量不变,即而晶体从T1上升至T2时,体积的膨胀是由点阵原子间距增大和空位浓度增高共同引起的,对边长为L的立方体,从T1升至T2的总的体积变化率由点阵常数增大引起的体积变化率若T1时空位浓度与T2时相比可忽略不计,则T2时的平衡空位浓度故 C1020=(0.012—3×4×10-4)%=1×10-4因此,解得4如图所示的两个螺型位错,一个含有扭折,另一个含有割阶。

图上所示的箭头方向为位错线的正方向,扭折部分和割阶部分都为刃型位错. bb23450’1’14’3’2’5’I. 若图示滑移面为fcc的(111)面,问这两根位错线段中(指割阶和扭折),哪一根比较容易通过他们自身滑移而去除?为什么?II. 解释含有割阶的螺型位错在移动时怎么样形成空位的。

Ⅰ. 由于扭折处于原位错所在滑移面上,在线张力的作用下可通过它们自身的滑移而去除。

割阶则不然,它与原位错处于不同的面上,fcc的易滑移面为(111),割阶的存在对原位错的运动必定产生阻力,故也难以通过原位错的滑动来去除。

Ⅱ. 1’2’和3’4’段均为刃型位错,并且在1’2’的左侧多一排原子面,在3’4’的右侧多一排原子面,若随着位错线0’5’的运动,割阶1’2’向左运动或割阶3’4’向右运动,则沿着这两段割阶所扫过的面积会产生厚度为一个原子层的空位群。

1.5 如图所示,在相距为h的滑移面上有两个相互平行的同号刃型位错A、B。

试求出位错B滑移通过位错A上面所需的切应力表达式。

两平行位错间相互作用力中,f x项为使其沿滑移面上运动的力(直角坐标系与圆柱坐标系换算:三角函数:)求出f x的零点和极值点(第一象限):θ=0,Sin4θ=0 ,f x=0 两位错间互不受力,处于力的平衡状态;θ=π/8,Sin4θ=1,f x→max 同号位错最大斥力,其值为θ=π/4,Sin4θ=0,f x=0 两位错间互不受力,处于力的平衡状态;θ=3π/8,Sin4θ=1,f x→max 同号位错最大引力,其值为若不考虑其它阻力,(以两正负位错为例)有如下结论:要做相向运动,0<θ<π/4时,需要加切应力:对位错B方向为。

π/4<θ<π/2时,不须加切应力;要做反向运动,0<θ<π/4时,不须加切应力;π/4<θ<π/2时,需要加切应力:,对位错B方向为。

6 已知金晶体的G=27GPa,且晶体上有一直刃型位错b=0.2888nm,试绘出此位错所产生的最大分剪应力与距离的关系图,并计算当距离为2µm时的最大分剪应力。

相关文档
最新文档