教育最新K12安徽省六安市2017-2018学年七年级数学下学期期末试题 新人教版
2017-2018学年度下学期期末考试七年级数学试题

2017-2018学年度下学期期末考试七年级数学试题一、选择题:(本大题共10个小题,每小题3分,共30分) ( )1. 平面内三条直线的交点个数可能有:A.0,1,2,3个B.1,3个C.2,3个D.1,2,3个( )2. 下列计算正确的是:A.24±=B.3)3(2-=- C.5)5(2=-D.3)3(2-=-( )3. 平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标 相比:A. 横坐标不变,纵坐标加3B. 纵坐标不变,横坐标加3C. 横坐标不变,纵坐标乘以3D. 纵坐标不变,横坐标乘以3( )4. 下列各式是二元一次方程的是:A. y x 21+B.342=+-y yx C. 95-=yx D.02=-y x( )5. 若n m >,则下列各式一定成立的是:A. 33+<+n mB. 33-<-n mC.33n m > D. n m 33->-( )6. 以下调查中适合作抽样调查的有: ①了解全班同学期末考试的成绩情况; ②了解夏季冷饮市场上冰激凌的质量情况; ③了解“神七”飞船各部件的安全情况;④了解《长江作业本》在全省七年级学生中受欢迎的程度.A. 4个B. 3个C. 2个D. 1个 ( )7. 如图,点F,E 分别在线段AB 和CD 上,下列条件能判定AB ∥CD 的是:A. ∠1=∠2B. ∠3=∠4C. ∠2=∠4D. ∠1=∠4( )8. 若y x ,满足018)2(2=-++y x ,则y x +的平方根是:A. 4±B. 2±C. 4D. 2( )9. 日本某地突发地震,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的 帐篷恰好(即不多也不少)能容纳这60名灾民,则不同的搭建方案有:A. 4种B. 6种C. 9种D. 11种 ( )10. 若关于x 的不等式⎩⎨⎧≤-<-1250x m x 的整数解有且只有4个,则m 的取值范围是:A. 65≤≤mB. 65<<mC. 65<≤mD. 65≤<m二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横线上. 11. 已知无理数b a <+<51,并且b a ,是两个连续的整数,则ab 的值为___________. 12. 如图,已知AB ∥ED,∠ACB=90°,则图中与∠CBA 互余的角是___________.13. 课间操时,王超,邓祖男的位置如图所示,陈贝尔对邓祖男说,如果我的位置用)0,0(表示,王超的位置用 )1,2(表示,那么邓祖男的位置可以表示成________.14. 把三个能够重合的长方形如图排列在一个大长方形中,若大长方形的周长为888cm,则一个小长方形的 周长等于_________cm.15. 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有 36张白铁皮.若用x 张制盒身,y 张制盒底可以使盒身与盒底配套,那么可列方程组为:______________. 16. 若不等式1)32(<-x a 的解集是321->a x ,则a 的取值范围是_____________. 三、解答题:(本大题共8个小题,共72分) 17.(本小题满分10分) 解下列方程组:(1)⎩⎨⎧=-=+33651643y x y x(2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x18.(本小题满分10分)解下列不等式(组),并把它们的解集在数轴上表示出来:(1)1213312≥---x x(2) ⎪⎩⎪⎨⎧≤-+<+321)1(352x x x x20.(本小题满分6分)如图,已知AD 平分∠CAB,DE ∥AC,∠1=30°.求∠2的度数.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱 的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘 制了如图所示的两幅不完整的统计图.(1) 从全体学生的调查表中随机抽取了_______名学生的调查表; (2) 将条形图补充完整;(3) 艺术类读物所在扇形的圆心角是________度. 21.(本小题满分8分)如图,在长方形ABCD 中,放置9个形状,大小都相同的小长方形,相关数据如图所示. 求图中阴影部分的面积.22.(本小题满分8分)先阅读理解下面的例题,再按要求解答:例题:解不等式0)3)(3(>-+x x解:由有理数的乘法法则“两数相乘,同号得正” 有①⎩⎨⎧>->+0303x x 或②⎩⎨⎧<-<+0303x x解不等式组①得3>x ,解不等式组②得3-<x 故原不等式的解集为:3>x 或3-<x 问题: 求不等式01523<-+x x 的解集.某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球 25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元. (1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌的足球50个,正好赶上商场对商品价格进行调整,A 种品牌的足球售价比第一次购买时提高4元,B 种品牌的足球 按第一次购买时售价的九折出售,如果学校此次购买A 、B 两种品牌的足球的总费用不超过第一 次花费的70%,且保证这次购买的B 种品牌的足球不少于23个,则这次学校有哪几种购买方案?24.(本小题满分12分)如图,以直角△AOC 的直角顶点O 为原点,以OC,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A ),0(a ,C )0,(b 满足082=-++-b b a .(1) 点A 的坐标为______________;点C 的坐标为_____________.(2) 已知坐标轴上有两动点P,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速 度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点 整个运动随之结束.AC 的中点D 的坐标是)3,4(,设运动时间为t 秒.问:是否存在这样的t ,使得 △ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3) 在(2)的条件下,若∠DOC=∠DCO,点G 是第二象限中一点,并且y 轴平分∠GOD.点E 是线段 OA 上一动点,连接接CE 交OD 于点H,当点E 在线段OA 上运动的过程中,探究∠GOA,∠OHC, ∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180可以直接使用).七年级数学试题参考答案一.选择题题号 12345678910 答案A C ABC CD B BD二.填空题11. 12 12. ∠BAC 与∠ACE 13. )3,4( 14. 296 15. ⎩⎨⎧⨯==+xy y x 2524036 16.23<a(第12题只填一种且正确的给2分,填了两种但有一种错误的不给分;第15题第二个方程用比例式的也对)三.解答题17.(1)⎩⎨⎧=-=+33651643y x y x解:①3⨯,得 48129=+y x ③ ②2⨯,得 661210=-y x ④ ③+④,得 11419=x6=x把6=x 代入①,得 16463=+⨯y 24-=y 21-=y 所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x(每小题3分,请按步骤给分)18.(1)解:去分母,得 6)13(3)12(2≥---x x 去括号,得 63924≥+--x x 移项,得 32694-+≥-x x 合并同类项,得 55≥-x系数化为1,得 1-≤x ………......................………………………2分 数轴表示如图……....…………3分(2)解:解不等式①,得2>x .....................................………………………4分 解不等式②,得3≤x .......................………………………………5分 把不等式①和②的解集在数轴上表示出来:① ② (2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x解:②6⨯,得 6)()(3=-++y x y x ③ ③-①,得 2)(5=-y x 52=-y x ④ 把④代入①,得 1528=+y x ⑤ ④+⑤,得 1517=x ④-⑤,得 1511=y 所以这个方程组的解是⎪⎪⎩⎪⎪⎨⎧==15111517y x①②所以不等式组的解集:32≤<x …….......................................……6分 19.解:(1)300;....................................………………………2分 (2)补全图如下;..................................………………4分 (3)72....................................……...…………………6分20.证明: ∵AB 平分∠CAB…………………….........................………………1分 ∴∠CAB=2∠1=︒=︒⨯60302……………………………………2分 又∵DE ∥AC…………………………................................…………3分 ∴∠2=∠CAB=60°…………………………….....................………5分 21.解:设小长方形的长和宽分别为y x ,则 ⎩⎨⎧=+-=+42394y y x y x …………….........................….............……………1分解得⎩⎨⎧==15y x …………….........................……........................…………2分 ∴AB=713434=⨯+=+y∴6397=⨯=⋅=CD AB S ABCD 长方形…………….......………..……3分 ∴18159639=⨯⨯-=-=小长方形长方形阴S S S ABCD ………..........…4分答:阴影部分的面积是18.……………...........................………………5分22.解:由有理数的乘法法则“两数相除,异号得负”……………………………………1分 有①⎩⎨⎧<->+015023x x 或②⎩⎨⎧>-<+015023x x …………………..............…………………2分解不等式组①,得5132<<-x ………………………....................……………3分 解不等式组②,得不等式组②无解………………………..............……………4分 故原不等式组的解集为:5132<<-x ……………………........………………5分23.解:(1)设购买一个A,B 品牌的足球分别要x 元与y 元,由题意可得:…….........……1分 ⎩⎨⎧+==+3045002550x y y x .........................................................………………………2分解得⎩⎨⎧==8050y x ...................................................................………………………………3分答: 一个A 种品牌和一个B 种品牌的足球分别需要50元与80元..........…………4分 (2)设再次购进A 品牌的足球m 个,购进B 品牌的足球)50(m -辆, 由题意可得: ⎩⎨⎧≥-⨯≤-⨯⨯++2350%704500)50(9.080)450(m m m ………....………6分解得2725≤≤m ………………………................................………7分 ∵m 取自然数∴27,26,25=m ………....................……….....……………………8分 ∴存在以下三种购买方案:①A 种品牌足球25个,B 种品牌足球25个; ②A 种品牌足球26个,B 种品牌足球24个;③A 种品牌足球27个,B 种品牌足球23个…………..……………9分24. (1) )0,8();6,0(….....…................................................…………………2分 (2) ∵t t x OQ S D ODQ 242121=⋅⋅=⋅=∆….....………….......…………3分 t t y OP S D ODP 3123)28(2121-=⋅-⋅=⋅=∆….....……………4分 由t t 3122-=时,4.2=t ….....……………….....................……5分∴存在4.2=t 时,使得△ODP 与△ODQ 的面积相等….........……6分 (3) ∠GOD+∠ACE=∠OHC,理由如下:…................……………………7分 ∵x 轴⊥y 轴∴∠AOC=∠DOC+∠AOD=90° ∴∠OAC+∠ACO=90° 又∵∠DOC=∠DCO ∴∠OAC=∠AOD ∵x 轴平分∠GOD ∴∠GOA=∠AOD ∴∠GOA=∠OAC∴OG ∥AC…................……………......................................………8分 过点H 作HF ∥OG ∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD…................……....................………………9分 ∴∠GOD+∠ACE=∠FHC+∠FHO。
安徽省六安市数学七年级下学期期末考试试卷

安徽省六安市数学七年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)的值等于()A . 4B . -4C . ±4D . ±22. (2分) (2018七上·高阳期末) 小明在解方程时,不小心将方程中的一个数字污染了(式中用⊗表示),被污染的方程是:2y﹣ = y﹣⊗,老师告诉小明此方程的解是y=﹣,他很快补好了这个数字,并迅速地完成了作业.同学们,你们能补出这个数字吗?它应是()A . 1B . 2C . 3D . 43. (2分) (2017九上·江北期中) 下列交通指示标识中,不是轴对称图形的是()A .B .C .D .4. (2分) (2019八下·芜湖期中) 整数部分是()A . 1B . 2D . 45. (2分)(2019·广阳模拟) 将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需()个正五边形A . 6B . 7C . 8D . 96. (2分)用四个完全一样的长方形和一个小正方形拼成如图所示的大长方形的长和宽,已知大正方形的面积是121,小正方形的面积是9,若用x,y(x>y)表示长方形的长和宽,则下列关系中不正确的是()A . x+y=11B . x2+y2=180C . x﹣y=3D . x•y=287. (2分)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A . 35°B . 45°C . 60°D . 100°8. (2分)等腰三角形的两边长分别为6和11,则它的周长为()A . 23C . 23或28D . 25二、填空题 (共6题;共6分)9. (1分)已知a,b,c为三角形的三边,则= ________ 。
2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下学期数学期末考试数学(时间:120分钟满分:120分)一、选择题(本题有10小题,每小题3分,共30分) 1.27的立方根是( )A .3B .±3C .± 3D . 3 2.下列各点中,在第二象限的是( )A .(-1,3)B .(1,-3)C .(-1,-3)D .(1,3) 3.下列式子正确的是( )A .9=±3B .38=-2 C .(-3)2=-3 D .-25=54.要调查城区某所初中学校学生的平均体重,选取调查对象最合适的是( ) A .选该校100名男生 B .选该校100名女生;C .选该校七年级的两个班的学生D .在各年级随机选取100名学生。
5.如图,已知AE ∥BC ,AC ⊥AB ,若∠ACB =50°,则∠F AE 的度数是( ) A .50° B .60° C .40° D .30°6.若关于x 的不等式(2-m )x <1的解为x >12-m,则m 的取值范围是( ) A .m >0 B .m <0 C .m >2 D .m <27.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( ) A .36,8 B .28,6 C .28,8 D .13,38.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,梁湖风景区某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为( )A .120mB .130mC .140mD .150m9.一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第63秒时,这个点所在位置的坐标是( )A .(7,0)B .(0,7)C .(7,7)D .(6,0)10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们共有( )种租住方案.BAFEC第5题图第8题图yx O1231 2 3 第9题图AA .4B .2C .3D .1二、填空题(共6小题,每小题3分,满分18分)11.计算:25+3-8=________;12.点M (2,-1)向上平移3个单位长度得到的点的坐标是________;13.在对45个数据进行整理的频数分布表中,各组的频数之和等于________;14.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打________折。
2017---2018学年度最新人教版七年级数学第二学期期末考试题及答案

2017---2018学年度七年级数学第二学期期末考试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x xC .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:2218x -=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.42 48 52 69686023.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
安徽省六安市七年级下学期期末测试数学试题

安徽省六安市七年级下学期期末测试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 4的算术平方根是A . 2B . -2C .D .2. (2分) (2016七下·青山期中) 下列各式正确的是()A . =±3B . =±4C . + =0D . ﹣ =13. (2分) (2017七下·东城期末) 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A . (﹣3,3)B . (0,3)C . (3,2)D . (1,3)4. (2分)如图.在▱ABCD中,AB=6、AD=9,∠BAD的平分线交BC于点E,DC的延长线于点F, BG⊥AE,垂足为G,若BG=4,则△CEF的面积是()A . 2B .C . 3D . 45. (2分) (2018七下·瑞安期末) 在二元一次方程2x+y=6中,当时,的值是()A . 1B . 2C . -2D . -16. (2分)(2017·宁城模拟) 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A . ac>bcB . |a﹣b|=a﹣bC . ﹣a<﹣b<cD . ﹣a﹣c>﹣b﹣c7. (2分) (2019八下·温州期中) 甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.09.09.09.0方差0.251.002.503.00则成绩发挥最不稳定的是()A . 甲B . 乙C . 丙D . 丁8. (2分)下列各数中,是无理数的是()A . ﹣2B . 0C .D .9. (2分) (2017八下·卢龙期末) 下列命题正确的是()A . 对角线相等的四边形是矩形B . 对角线垂直的四边形是菱形C . 对角线互相垂直平分的四边形是矩形D . 对角线相等的菱形是正方形10. (2分)如图,如果∠1+∠2=180°,那么()A . ∠2+∠4=180°B . ∠3+∠4=180°C . ∠1+∠3=180°D . ∠1=∠4二、填空题 (共6题;共16分)11. (2分) (2017七下·北京期中) 的平方根是________;27的立方根是________.12. (1分) (2019八下·东台月考) 计算 = ________.13. (10分) (2019七下·大名期中) 如图,E点为DF上的点,B为AC 上的点,∠1=∠2,∠C=∠D求证:DF∥AC证明:∵ ∠1=∠2(已知),∠1=∠3 ,∠2=∠4(________),∴ ∠3=∠4( ________),∴ ________∥________( ________ ).∴∠C=∠ABD( ________ ).∵∠C=∠D(________),∴ ∠D =________( ________).∴ DF∥AC(________).14. (1分)点P(m,m﹣2)在第四象限内,则m取值范围是________.15. (1分)(2018·舟山) 分解因式m2-3m=________。
安徽省六安市2017-2018学年七年级数学下学期期末试题 新人教版

安徽省六安市2017-2018学年七年级数学下学期期末试题一、选择题(本题共10小题,每小题4分,满分40分) 1.-8的立方根是( ) A .±2B .-2C .0D .22.下列运算正确的是( ) A .()532a a = B .842a a a =∙ C .236a a a =÷ D .()333b a ab =3.不等式128>-x 的解集是( ) A .x <10 B .x >9 C .x >6 D .x >104.我们的生活离不开氧气,已知氧原子的半径大约是0.000000000074米,那么0.000000000074用科学记数法表示为( ) A.101074.0-⨯ B.11104.7-⨯ C.121074-⨯ D.11104.7⨯5.下列分解因式正确的是( )A .)4(42+-=+-x x x xB .)(2y x x x xy x+=++C .2)()()(y x x y y y x x -=-+- D .)2)(2(442-+=+-x x x x 6. 如图,AB//CD ,EG ⊥AB ,∠1=50°,则∠E 的度数等于( ) A .30°B .40°C .50°D .60°7.化简a 2b -ab 2b -a的结果是( )A .-abB .abC .a 2-b 2D .b 2-a 28.已知x+y=-5,xy=3,则x ²+y ²=( )A .25B .-25C .19D .-199.下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④如果两个角相等,那么这两个角是对顶角.其中正确的结论的个数是( )A .4个B .3个C .2个D .1个10.定义新运算“△”,a△b=ab a +b ,如:2△3=65,则:①a△a=a2;②2△x=1的解是x =2;③若(x +1)△(x-1)的值为0,则x =1; ④1a△1+2a△2+-3a△(-3)=3,上述结论中正确的是( ) A .①②④ B .①③④ C .①②③ D .①②③④ 二、填空题(本题共4小题,每小题5分,满分20分) 11.比较大小:21-5 53; 12.在实数范围内分解因式x 4– 4 = ; 13.若4x ²+kx+9是完全平方式,则k = ; 14.已知关于x 的不等式组⎩⎨⎧≥->+023032x a x a 恰有3个整数解,则a 的取值范围是 .七年级数学学科期末考试答题卷 时间:120分钟 满分:150分一、选择题(本题有10小题,每小题 4分,共40分)二、填空题(本题有4小题,每小题5分,共20分)11.______________________ 12._________________________ 13.______________________ 14._________________________ 三、解答题(本题有9小题,共90分) 15.(8分)计算:20328)2(5-+⨯+--16.(8分)解方程:12111+-=-+x x x17.(8分)解不等式组⎪⎩⎪⎨⎧≥2->21-51-x 43x x x ,并把解集在数轴上表示出来.18.(8分)根据要求画图: (1)过点A 作MN//BC ;(2)过点C 作CD//AB 交MN 于点D ; (3)连接BD 交AC 于点0.19.(10分)化简:⎪⎪⎭⎫⎝⎛+---÷-1121122x x x x x ,并从±2、±1、0中选择一个合适的代入求值.20.(10分)已知,如图,∠1+∠2=180°,∠3=∠B ,猜想∠BAC 和∠DEC 的数量关系,并证明.21.(12分)在正整数中,⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-2112112112,⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-3113113112,⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-4114114112...... 观察上面的算式,并利用规律计算下列各式(要求写出计算过程): (1)⎪⎭⎫ ⎝⎛-2211 × ⎪⎭⎫ ⎝⎛-2311 × ⎪⎭⎫ ⎝⎛-2411 (2)⎪⎭⎫ ⎝⎛-2211 × ⎪⎭⎫ ⎝⎛-2311 × ⎪⎭⎫ ⎝⎛-2411× ...... × ⎪⎭⎫ ⎝⎛-220181122.(12分)六安市在创建全国文明城市过程中,决定购买A、B两种树苗对某路段道路进行绿化改造,已知购买A种树苗11棵,B种树苗5棵,需要1080元.若购买A种树苗6棵,B种树苗10棵,则需要880元.(1)求购买A、B两种树苗每棵各需要多少元?(2)考虑到绿化效果和资金周转,购进A种树苗要多于60棵,且用于购买这两种树苗的资金不能超过6960元,若购进这两种树苗共110棵,则有哪几种购买方案?23.(14分)芳芳同学在完成第10章的学习后,遇到了一些问题,请你帮助她.(1)如图1,已知AB∥CD,你知道∠BAE,∠DCE,∠AEC之间的关系吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAD=m°,∠ABC=n°,求∠BED的度数;(用含m、n的式子表示)(3)将图2中的线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,得到图3,直接写出∠BED的度数是多少?(用含m、n的式子表示).裕安中学2017—2018学年度春学期期末 七年级数学试卷参考答案及评分标准 制定人:胡磊,包发勇,陶光荣一、选择题二、填空题11. > 12.)2)(2)(2(2-++x x x 13. ±12 14.2334≤≤a 三、解答题15.解:原式=1+2+4+(4分)(8分)16..................(8分)17......(8分)18.图略19............(5分)∴当x=2时,原式......................................(10分)20.................................(10分)21.解:(1)原式=(==(6分)(2)原式=(...... ×(1+=(12分)22.23.。
六安市数学七年级下学期期末数学试题题
六安市数学七年级下学期期末数学试题题一、选择题1.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )2.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 3.计算:202020192(2)--的结果是( ) A .40392B .201932⨯C .20192-D .2 4.若一个多边形的每个内角都为108°,则它的边数为( )A .5B .8C .6D .10 5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④ 6.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种B .5种C .6种D .7种 7.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy 8.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=09.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .7210.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106C .3.8×105D .38×104 二、填空题11.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.12.若分解因式221(3)()x mx x x n +-=++,则m =__________.13.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______14.若(2x +3)x +2020=1,则x =_____.15.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .16.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.17.已知2m+5n ﹣3=0,则4m ×32n 的值为____18.已知30m -=,7m n +=,则2m mn +=___________.19.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____.20.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.三、解答题21.如图,D 、E 、F 分别在ΔABC 的三条边上,DE//AB ,∠1+∠2=180º.(1)试说明:DF//AC ;(2)若∠1=120º,DF 平分∠BDE ,则∠C=______º.22.解方程或不等式(组)(1)24231x y x y +=⎧⎨-=⎩ (2)2151132x x -+-≥ (3)312(2)15233x x x x +<+⎧⎪⎨-≤+⎪⎩ 23.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩. 请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩. (2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 24.某公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m 3/件) 质量(吨/件) A 两种型号0.8 0.5 B 两种型号 2 1(1)已知一批商品有A 、B 两种型号,体积一共是20m 3,质量一共是10.5吨,求A 、B 两种型号商品各有几件;(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m 3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元;按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元.25.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.26.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.27.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;(3)画出△ABC 的高CE 所在直线,标出垂足E :(4)在(1)的条件下,线段AA 1和CC 1的关系是28.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解2.C解析:C【分析】根据同底数幂的加法和乘法法则进行计算判断即可.【详解】解:A 、23a a +无法合并,故A 选项错误;B 、23a a +无法合并,故B 选项错误;C 、235a a a =,故C 选项正确;D 、235a a a =,故D 选项错误.故选:C【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.3.B解析:B【分析】将原式整理成2020201922+,再提取公因式计算即可.【详解】解:202020192(2)--=2020201922+=20192(21)⨯+=201932⨯,故选:B .【点睛】此题考查提公因式法进行运算,理解幂是乘方运算的结果是解此题的关键.4.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.5.D解析:D【详解】解:①∵∠1=∠2,∴AB ∥CD ,故本选项正确;②∵∠3=∠4,∴BC ∥AD ,故本选项错误;③∵∠A=∠CDE ,∴AB ∥CD ,故本选项正确;④∵∠A+∠ADC=180°,∴AB ∥CD ,故本选项正确.故选D.6.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.7.D解析:D【分析】根据完全平方公式的运算法则即可求解.【详解】∵(x-2y)2 =(x+2y)2+M∴M=(x-2y)2 -(x+2y)2=x2-4xy+4y2-x2-4xy-4y2=-8xy故选D.【点睛】此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.8.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.9.B解析:B【分析】设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意列出方程求解即可.【详解】解:设原正方形的边长为x ,则新正方形的边长为(1)x +,根据题意可列方程为22(1)6x x +-=, 解得52x =, ∴原正方形的边长为52. 故选:B .【点睛】 此题考查了完全平方公式,找到等量关系列方程为解题关键.10.C解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:380000=3.8×105.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题11.【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】=故答案为.【点睛】此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019【分析】先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.【详解】20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为12019. 【点睛】 此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.12.【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:,∴,解得:,故答案为:.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关 解析:4-【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:2(3)()(3)3x x n x n x n ++=+++,∴3321n m n +=⎧⎨=-⎩, 解得:74n m =-⎧⎨=-⎩, 故答案为:4-.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关键. 13.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,故答案是:−1. 解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.14.﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此解析:﹣2020或﹣1或﹣2【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.【详解】解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此时:(2x+3)x+2020=1,当2x+3=﹣1时,解得x=﹣2,故x+2020=2018,此时:(2x+3)x+2020=1,当x+2020=0时,解得x=﹣2020,此时:(2x+3)x+2020=1,综上所述,x的值为:﹣2020或﹣1或﹣2.故答案为:﹣2020或﹣1或﹣2.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方,正确分类讨论是解题关键.【分析】可分相等的两边的长为1cm,2cm,3cm,4cm,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm,则解析:或 2【分析】可分相等的两边的长为1cm,2cm,3cm,4cm,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm,则第三边为:10-1×2=8(cm),1+1<8,不符合题意;相等的两边的长为2cm,则第三边为:10-2×2=6(cm),2+2<6,不符合题意;相等的两边的长为3cm,则第三边为:10-3×2=4(cm),3+3>4,符合题意;相等的两边的长为4cm,则第三边为:10-4×2=2(cm),2+4>4,符合题意.故第三边长为4或2cm.故答案为:4或2.【点睛】此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.16.10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,解析:10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠CBE=12∠ABC=40°,∴∠BEC=90°-40°=50°;②如图2,当CE⊥AB时,∵∠ABE=12∠ABC=40°,∴∠BEC=90°+40°=130°;③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-90°-40°-40°=10°;综上所述:∠BEC的度数为10°,50°,130°,故答案为:10°,50°,130°.【点睛】本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.17.8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 19.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 094=9.4×10﹣8,故答案是:9.4×10﹣8.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.20.7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x解析:7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.三、解答题21.(1)见解析;(2)60.【分析】(1)根据平行线的性质得出∠A=∠2,求出∠1+∠A=180°,根据平行线的判定得出即可.(2)根据平行线的性质解答即可.【详解】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=120°,∴∠FDE=60°,∵DF平分∠BDE,∴∠FDB=60°,∵DF ∥AC ,∴∠C=∠FDB=60°【点睛】本题考查了平行线的性质和判定定理,解题的关键是能灵活运用平行线的判定和性质定理进行推理.22.(1)21x y =⎧⎨=⎩;(2)1x ≤-;(3)13x -≤< 【分析】(1)根据加减消元法解答;(2)根据解一元一次不等式的方法解答即可;(3)先分别解两个不等式,再取其解集的公共部分即得结果.【详解】解:(1)对24231x y x y +=⎧⎨-=⎩①②, ①×2,得248x y +=③,③-②,得7y =7,解得:y =1,把y =1代入①,得x +2=4,解得:x =2,∴原方程组的解为:21x y =⎧⎨=⎩; (2)不等式两边同乘以6,得()()2216351x x --≥+,去括号,得426153x x --≥+,移项、合并同类项,得1111x -≥,不等式两边同除以﹣1,得1x ≤-;(3)对()312215233x x x x ⎧+<+⎪⎨-≤+⎪⎩①②, 解不等式①,得x <3,解不等式②,得1x ≥-,∴原不等式组的解集为13x -≤<.【点睛】本题考查了二元一次方程组、一元一次不等式和一元一次不等式组的解法,属于基本题型,熟练掌握解二元一次方程组和一元一次不等式的方法是关键.23.(1)32x y =⎧⎨=⎩;(2)15 【分析】(1)把9x ﹣4y =19变形为3x +2(3x ﹣2y )=19,再用整体代换的方法解题;(2)将原方程组变形为22223(4)2472(4)36x y xyx y xy⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组325 9419 x yx y-=⎧⎨-=⎩①②把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.24.(1)A种商品有5件,B种商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元【分析】(1)设A、B两种型号商品各有x件和y件,根据体积一共是20m3,质量一共是10.5吨列出方程组再解即可;(2)分别计算出①按车收费的费用,②按吨收费的费用,③两种方式混合用的花费,进而可得答案.【详解】解:(1)设A、B两种型号商品各有x件和y件,由题意得,0.8220 0.510.5x yx y+=⎧⎨+=⎩,解得:58 xy=⎧⎨=⎩,答:A、B两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×900=3600元;②按吨收费:300×10.5=3150元,③先用3辆车运送A商品5件,B商品7件,共18m3,按车付费3×900=2700(元).剩余1件B型产品,再运送,按吨付费300×1=300(元).共需付2700+300=3000(元).∵3000<3150<3600,∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.【点睛】本题考查二元一次方程组的应用,关键是正确理解题意,找出题中的等量关系.25.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.解:∵AD是BC边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC中,∠ABC=180°-∠BAC-∠C=70°,又∵AE、BF分别是∠BAC 和∠ABC的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°,∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.26.(1)见解析;(2)见解析.【解析】【分析】()1求出1BDC∠=∠,根据平行线的判定得出//AB CF,根据平行线的性质得出C EBC∠=∠,求出A EBC∠=∠,根据平行线的判定得出即可;()2根据角平分线定义求出FDA ADB∠=∠,根据平行线的性质得出FDA C∠=∠,ADB DBC∠=∠,C EBC∠=∠,求出EBC DBC∠=∠即可.【详解】()12180BDC∠+∠=,12180∠+∠=,1BDC∴∠=∠,∴,//AB CF∴∠=∠,C EBCA C∠=∠,∴∠=∠,A EBC∴;//AD BC()2AD平分BDF∠,FDA ADB∴∠=∠,AD BC,//∠=∠,∴∠=∠,ADB DBCFDA C∠=∠,C EBCEBC DBC∴∠=∠,∴平分DBEBC∠.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.27.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A1B1C1即为所作图形;(2)如图,线段AD即为所作图形;(3)如图,直线CE即为所作图形;(4)∵△A1B1C1是由△ABC平移得到,∴A和A1,C和C1是对应点,∴AA1和CC1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.28.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a +•- =121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.。
六安市七年级下学期数学期末试卷
六安市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、精心选一选 (共10题;共32分)1. (2分) (2017七下·平定期中) 下列图形中,周长最长的是()A .B .C .D .2. (2分) (2018八上·龙岗期中) 已知A在第三象限,到x轴的距离为3,到y轴的距离为4,则点A的坐标为()A . (3,4)B . (﹣3,4)C . (﹣4,﹣3)D . (﹣3,﹣4)3. (4分)下列说法中正确的是()A . “打开电视,正在播放《新闻联播》”是必然事件B . 想了解某种饮料中含色素的情况,宜采用抽样调查C . 数据1,1,2,2,3的众数是3D . 一组数据的波动越大,方差越小4. (4分)某段隧道全长9公里,有一辆汽车以每小时60公里到80公里之间的速率通过该隧道.下列何者可能是该车通过隧道所用的时间()A . 6分钟B . 8分钟C . 10分钟D . 12分钟5. (2分) (2019七下·洛阳期末) 下列说法正确的是()A . 无限小数都是无理数B . 9的立方根是3C . 数轴上的每一个点都对应一个有理数D . 平方根等于本身的数是06. (2分)(2018·宣化模拟) 已知a,b为实数,则解可以为﹣2012<x<2012的不等式组是()A .B .C .D .7. (4分)(2019·吉林模拟) 如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2等于()A . 15°B . 20°C . 25°D . 35°8. (4分)若方程组的解是,则a、b的值为()A .B .C .D .9. (4分) (2019七下·成都期末) 如图,直线a、b被直线c所截,下列说法错误的是()A . ∠1与∠5是同位角B . ∠2与∠4是对顶角C . ∠3与∠6是同旁内角D . ∠5与∠6互为余角10. (4分) (2019七下·西湖期末) 某文具店一本练习本和一支水笔的单价合计为3元,小明在该店买了20本练习本和10支水笔,共花了36元.设练习本每本为元,水笔每支为元,则()A .B .C .D .二、精心填一填 (共6题;共22分)11. (4分) (2020八上·沈阳期末) 立方根是________.12. (4分) (2019七下·天河期末) 已知点在轴上,则 ________.13. (4分) (2017七下·陆川期末) 已知一个样本容量为60,在频数分布直方图中,各小长方形的高比为2:4:1:3,那么第二组的频数是________.14. (2分) (2019七下·封开期末) 一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是________.15. (4分) (2019七下·哈尔滨期中) 用不等式表示“x与3的和不小于6”________.16. (4分) (2016七上·禹州期末) 已知线段AB=12cm,点C在线段AB上,且AC= AB,M为BC的中点,则AM的长为________.三、耐心做一做 (共9题;共80分)17. (8分) (2019八上·上海月考) 计算:18. (8分)(2020·上城模拟)(1)先化简÷(1+ ),再从0,﹣1,1这三个数中选一个你喜欢的数代入求值.(2)解不等式组19. (2分)如图,在Rt△ABC中,∠C=90°,(1)求作∠BAC的平分线,与BC交于点D(用尺规作图,保留作图痕迹,不写作法).(2)若CD=4,AB=15,求△ABD的面积.20. (8分)某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?21. (8分)如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,判断∠1=∠2是否成立,并说明理由.22. (10.0分)为了了解1200名学生对学校设置的体操、篮球、足球、跑步、舞蹈等课外体育活动项目的喜爱情况,在全校范围内随机抽取了若干名学生.对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了________名学生;(2)估计该校1200名学生中有________人最喜爱篮球活动;(3)补全频数分布直方图.23. (10分) (2015七下·海盐期中) 解方程组(1)(2).24. (12分) (2019八下·盐湖期中) 如图,△ABC中,AB , AC边的垂直平分线分别交BC于点D , E ,垂足分别为点F , G ,△A DE的周长为6cm .(1)求△ABC中BC边的长度;(2)若∠BAC=116°,求∠DAE的度数.25. (14分) (2016七下·恩施期末) 如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x 轴,且满足(a+b)2+ =0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案一、精心选一选 (共10题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、精心填一填 (共6题;共22分)11-1、12-1、13-1、14-1、15-1、16-1、三、耐心做一做 (共9题;共80分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
2017~2018学年第二学期初一数学期末试卷含答案
2017~2018学年第二学期初一数学期末试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填写在题后的括号内) 1.下列运算中,正确的是( )A .22x x x =⋅B .22)(xy xy = C .632)(x x = D .422x x x =+ 2.如果a b <,下列各式中正确的是( ) A .22ac bc < B .11a b > C .33a b ->- D .44a b > 3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( )4.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .5 5.如图,不能判断l 1∥l 2的条件是( )A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠3 6.下列长度的四根木棒,能与长度分别为2cm 和5cm 的木棒构成三角形的是( ) A .3 B .4 C .7 D .10 7.下列命题是真命题...的是( ) A .同旁内角互补 B .三角形的一个外角等于两个内角的和 C .若a 2=b 2,则a =b D .同角的余角相等8.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断△ABC ≌△DFE 的依据是( )A .SASB .AASC .HLD .ASA9.若关于x 的不等式组0321x m x -<⎧⎨-≤⎩的所有整数解的和是10,则m 的取值范围是( )A .45m <<B .45m <≤C .45m ≤<D .45m ≤≤(第5题图)(第8题图)EDA(第15题图)(第17题图)10.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;……, 依此类推,则S 5的值为( )A .81B 91C .101D .111二、填空题(本大题共有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在题中的横线上)11.肥皂泡额泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm . 12.分解因式:23105x x -= . 13.若4,9nnx y ==,则()nxy = . 14.内角和是外角和的2倍的多边形是 边形.15.如图,A 、B 两点分别位于一个池塘的两端,C 是AD 的中点,也是BE 的中点,若DE =20米,则AB 的长为____________米.16.若多项式9)1(2+-+x k x 是一个完全平方式,则k 的值为 .17.如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO =88°,则∠C 的度数为= .18.若二元一次方程组⎩⎨⎧=++=+m y x m y x 232的解x ,y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为____________.三、解答题(本大题共有8小题,共54分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题共有2小题,满分8分)计算:(1)201701)1()2017(21(---+-π (2)32423)2()(a a a a ÷+⋅-1FEDCB A 20.(本题共有2小题,满分8分)因式分解: (1)a a a +-232 (2)14-x21.(本题共有2小题,满分8分) (1)解方程组:⎩⎨⎧=++=18223y x y x (2)求不等式241312+<--x x 的最大整数解.22.(本题满分5分)先化简,再求值: 22(3)(2)(2)2x x x x +++--,其中1x =-.23.(本题满分5分)已知63=-y x .(1)用含x 的代数式表示y 的形式为 ; (2)若31≤<-y ,求x 的取值范围.24.(本题满分6分)如图,在△ABC 和△DEF 中,已知AB = DE ,BE = CF ,∠B =∠1, 求证:AC ∥DF .25.(本题满分7分)规定两数a ,b 之间的一种运算,记作(a ,b ):如果b a c ,那么(a ,b )=c . 例如:因为23=8,所以(2,8)=3. (1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2,41)=_______. (2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n 所以3x =4,即(3,4)=x , 所以(3n ,4n )=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)25.(本题满分7分)9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.无锡与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~ 1.5米的儿童享受半价票;飞机 (普通舱) 全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:住宿费 (2人一间的标准间) 伙食费 市内交通费 旅游景点门票费 (身高超过1.2米全票)每间每天x 元每人每天100元每人每天y 元每人每天120元假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用. (1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x ,y 的值; (2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14000元,是否够用? 如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?2017~2018学年第二学期初一数学期末试卷答案一、选择题:1.C 2.C 3.B 4.A 5.D 6.B 7.D 8.B 9.B 10.D 二、填空题:11.4107-⨯ 12.)2(52-x x 13.36 14.六 15.20 16.7或-5 17.46° 18.2 三、解答题:19.(1)原式=)1(12--+ (2分) =4 (4分) (2)原式=3854a a a ÷+- (2分) =53a (4分) 20.(1)原式=)12(2+-a a a (2分) =2)1(-a a (4分) (2)原式=)1)(1(22-+x x (2分) = )1)(1)(1(2-++x x x (4分)21.(1)⎩⎨⎧==28y x (解对一个得2分,共4分)(2)20<x (3分),x 的最大整数解是19(4分)22.化简得56+x (2分),求值得1-(4分) 23.(1)63-=x y (2分) (2)335≤<x (5分) 24. 证得:BC=EF (1分)证得:△ABC ≌△DEF (3分)证得:∠ACB =∠F (4分) 证得:AC ∥DF (6分) 25.(1)3,0,-2(每空1分) (2)(具体情况具体给分,满分4分)设(3,4)=x ,(3,5)=y则43=x,y 3=5∴20333=⋅=+y x yx∴(3,20)=x+y∴(3,4)+(3,5)=(3,20) 26.(1)往返高铁费:(524×3+524÷2)×2=3668元 ⎩⎨⎧++++=++⨯⨯=⨯1920202000103668136681920204510052y x y x解得:⎩⎨⎧==54500y x (3分)(2)往返交通费:524×3+524÷2+1240×0.55×3+1240÷2=45004500+5000+2000+1080+1920=14500>14000,不够;(5分) 设预定的房间房价每天a 元则4500+2000+1080+1920+10a ≤14000, 解得a ≤450,答:标准间房价每日每间不能超过450元.(7分)。
2017-2018七年级数学下册期末试卷(有答案)(17).docx
2017-2018 学年七年级(下)期末数学试题一、选择题(将正确答案填写在下列表格中,每题 3 分,共 36 分) 1.若分式 有意义,则 x 应满足的条件是()A .x ≠0B .x ≥ 3C .x ≠3D .x ≤32.下列各式中① ;② ; ③; ④(x ≥1); ⑤ ;⑥ 一定是二次根式的有()个.A .3B . 4C .5D .63.用科学记数法表示﹣ 0.0000027 记为( )A .﹣ 27×10﹣ 7B .﹣ 0.27×10﹣ 4C .﹣ 2.7×10﹣ 6D .﹣ 270× 10﹣8 4.分式的值为 0,则()A .x=2B . x=﹣2C .x=±2D .x=0 5.下列二次根式中,最简二次根式是( )A .B .C .D .6.如图,矩形 OABC 的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A .2.5B . 2C .D .7.下列计算正确的是( )A .2a 5 +a 5=2a 10B .3 ] 2(﹣ ) 6 6. 55 5﹣5C .[ (﹣ a )÷a=a =a =0=a =aD a8.如图是一个圆柱形饮料罐,底面半径是 5,高是 12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为 a ,若直吸管在罐外部分还剩余 3,则吸管的总长度 b (罐壁的厚度和小圆孔的大小忽略不计)范围是( )A.12≤ b≤ 13 B.12≤ b≤15 C.13≤b≤16D. 15≤b≤169.下列计算正确的是()A.B.C.D.10.把根式﹣ a化成最简二次根式为()A.B.C.D.﹣11.甲、乙两地之间的高速公路全长200 千米,比原来国道的长度减少了20 千米.高速公路通车后,某长途汽车的行驶速度提高了45 千米 / 时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意,下列方程正确的是()A.B.C.D.12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点 A 爬到顶点 B 的最短距离为()A.40cm B.60cm C.D.二、填空题(每题 3 分,共 24 分)13.下列分式﹣,的最简公分母为.14.若 y=2++2,则 x﹣y=.15.若直角三角形的两边长为 6 和 8,则第三边长为.16.分解因式:﹣ 3x2y+6xy2﹣3y3=.17.若 5x=2,5y=3,则 53x﹣2y的值为.18.已知关于 x 的方程=3 的解是正数,则 m 的取值范围是.19.如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中正方形D,C,A,B 的面积分别为 1,2,3,4,则正方形 G 的面积为.20.算++⋯的:.+ +三、解答(共 60 分)21.算(1)5x2y2 ?(xy3)x2y?(xy4)(2) 6 +2x.22.解方程:(1)=1(2)= 1..已知x=,y=,求x2+xy+y2的.2324.已知 a2+b2+4a 6b+13=0,分解因式: x2+ax b.25.先化,再求:(1)6a2( 2a 1)(3a+2) +( a+2)( a 2),其中 a=(2)÷(x 2),其中 x=3.26.如,小用一方形片 ABCD行折,已知片 AB 8cm, BC 10cm.折叠点 D 落在 BC上的点 F (折痕 AE),求此 EC的度?27.某服装商一种季衫能市,就用8000元一批衫,面市后果然供不求,服装商又用 17600 元了第二批种衫,所数量是第一批数量的 2 倍,但价了8 元.商家售种衫每件定价都是100 元,最后剩下 10 件按 8 折售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?参考答案与试题解析一、选择题(将正确答案填写在下列表格中,每题 3 分,共 36 分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥ 3C.x≠3 D.x≤3【考点】 62:分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵ x﹣3≠0,∴x≠3.故选 C.2.下列各式中①;②;③;④(x≥1);⑤;⑥一定是二次根式的有()个.A.3 B. 4 C.5D.6【考点】 71:二次根式的定义.【分析】二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.【解答】解:①符合二次根式的定义,故正确.②无意义,故错误.③中的 a2≥0,符合二次根式的定义,故正确.④(x≥1)中的 x﹣1≥0,符合二次根式的定义,故正确.⑤是开 3 次方,故错误.⑥中的x2 2x 1=(x 1)2≥0,符合二次根式的定义,故正确.+ ++故选: B.3.用科学记数法表示﹣0.0000027记为()A.﹣ 27×10﹣7 B.﹣ 0.27×10﹣4C.﹣2.7×10﹣6 D.﹣ 270× 10﹣8【考点】 1J:科学记数法—表示较小的数.﹣ n【分析】绝对值小于 1 的负数也可以利用科学记数法表示,一般形式为 a× 10,与较大数的科个数所决定.﹣6【解答】解:﹣ 0.0000027=﹣ 2.7× 10,4.分式的值为0,则()A.x=2 B. x=﹣2 C.x=±2 D.x=0【考点】 63:分式的值为零的条件.【分析】根据分式的值为零的条件得到x2﹣4=0 且 x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为 0,∴x2﹣ 4=0 且 x+2≠ 0,解x2﹣4=0 得x=±2,而x≠﹣2,∴x=2.故选 A.5.下列二次根式中,最简二次根式是()A.B.C.D.【考点】 74:最简二次根式.【分析】 D 选项的被开方数中,含有能开得尽方的因数2; B、 C 选项的被开方数中含有分母;因此这三个选项都不是最简二次根式; A 它的因式的指数都是1,所以 D 选项符合最简二次根式的要求.【解答】解:∵ B、=,C、=,D、=2x,∴这三个选项都可化简,不是最简二次根式.故选 A.6.如图,矩形 OABC的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B. 2C.D.【考点】 29:实数与数轴.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选 D.7.下列计算正确的是()A.2a5 +a5=2a10 B.3]2(﹣) 6 6.5 5 5﹣50C.[ (﹣ a)÷a=a=a =0=a =a D a【考点】 48:同底数幂的除法; 35:合并同类项; 47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式 =3a5,故 A 错误;(B)原式 =,故B错误;(D)原式 =1,故 D 错误;故选( C)8.如图是一个圆柱形饮料罐,底面半径是5,高是 12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤ b≤ 13 B.12≤ b≤15 C.13≤b≤16D. 15≤b≤16【考点】 KU:勾股定理的应用.【分析】如图,当吸管底部在O 点时吸管在罐内部分 a 最短,此时 a 就是圆柱形的高;当吸管底部在 A 点时吸管在罐内部分 a 最长,此时 a 可以利用勾股定理在Rt△ ABO中即可求出,进而【解答】解:如图,连接BO, AO,当吸管底部在 O 点时吸管在罐内部分 a 最短,此时 a 就是圆柱形的高,即a=12;当吸管底部在 A 点时吸管在罐内部分 a 最长,即线段 AB 的长,在Rt△ABO 中,AB===13,故此时 a=13,所以 12≤ a≤ 13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤ b≤ 16.故选: D.9.下列计算正确的是()A.B.C.D.【考点】 79:二次根式的混合运算.【分析】根据二次根式的加减运算,乘除运算,二次根式的化简,逐一检验.【解答】解: A、与不能合并,本选项错误;B、=÷=,本选项正确;C、5 与不能合并,本选项错误;D、==,本选项错误;10.把根式﹣ a化成最简二次根式为()A.B.C.D.﹣【考点】 74:最简二次根式.【分析】根据二次根式的性质,可得答案.【解答】解:﹣ a化成最简二次根式为,故选 A.11.甲、乙两地之间的高速公路全长 200 千米,比原来国道的长度减少了 20 千米.高速公路通车后,某长途汽车的行驶速度提高了 45 千米 / 时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意,下列方程正确的是()A.B.C.D.【考点】 B6:由实际问题抽象出分式方程.【分析】设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据“甲、乙两地之间的高速公路全长 200 千米,比原来国道的长度减少了20 千米.高速公路通车后,某长途汽车的行驶速度提高了 45 千米 / 时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.【解答】解:设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意得=? .故选: D.12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点 A 爬到顶点 B 的最短距离为()A.40cm B.60cm C.D.【考点】 KV:平面展开﹣最短路径问题.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点 A 和 B 点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段 AB即为最短路线.展开后由勾股定理得: AB2=202+(20+20)2=5×202,故 AB==20cm.故选: C.二、填空题(每题 3 分,共 24 分)13.下列分式﹣,的最简公分母为a( a+b)( a﹣ b).【考点】 69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式﹣,的分母分别是a2﹣ab=a( a﹣ b),a2+ab=a(a+b),故最简公分母是 a(a+b)(a﹣b).故答案是: a(a+b)(a﹣b).14.若 y=2++2,则 x﹣y=.【考点】 72:二次根式有意义的条件.【分析】根据被开方数大于等于0 列式求出 x 的值,再求出 y 的值,然后相加即可得解.【解答】解:由题意得,x﹣5≥0,且 5﹣x≥ 0,解得 x≥ 5 且 x≤5,∴x=5,y=2,∴x﹣y=5﹣2= .故答案为:.15.若直角三角形的两边长为 6和 8,则第三边长为10 或 2.【考点】 KU:勾股定理的应用.【分析】分情况考虑:当较大的数8 是直角边时,根据勾股定理求得第三边长是10;当较大的数 8 是斜边时,根据勾股定理求得第三边的长是=2.【解答】解:①当 6 和 8 为直角边时,第三边长为=10;②当 8 为斜边, 6为直角边时,第三边长为=2 .故答案为: 10 或2 .223216.分解因式:﹣ 3x y+6xy ﹣3y =﹣3y(x﹣y).【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3y(x2﹣2xy+y2)=﹣3y(x﹣y)2,故答案为:﹣ 3y(x﹣y)217.若 5x=2,5y=3,则 53x﹣2y的值为.【考点】 48:同底数幂的除法; 47:幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解: 53x=23=8, 52y=32=9,53x﹣2y=53x÷52y=8÷ 9= ,故答案为:.18.已知关于 x 的方程=3 的解是正数,则m 的取值范围是m>﹣ 6 且 m≠﹣ 4.【考点】 B2:分式方程的解.【分析】首先求出关于x 的方程=3 的解,然后根据解是正数,再解不等式求出m 的取值范围.∵方程的解是正数,∴m+6>0 且 m+6≠2,解个不等式得m> 6 且 m≠ 4.故答案: m> 6 且 m≠ 4.19.如所示,所有四形都是正方形,所有的三角形都是直角三角形,其中正方形 D,C,A, B 的面分1,2,3,4,正方形 G 的面 10 .【考点】 KQ:勾股定理.【分析】根据勾股定理可知正方形A、B 的面之和等于正方形E的面,同法可求正方形F、G的面.【解答】解:正方形的面分A、B、C、D、 E、F、G.根据勾股定理可知: E=A+B=7, F=C+D=3,G=E+F=10,故答案 10.20.算+++⋯+的:1.【考点】 79:二次根式的混合运算.【分析】先分母有理化,然后合并即可.【解答】解:原式 =1+++⋯+=1.故答案1.三、解答(共 60 分)21.算(1)5x2y2 ?(xy3)x2y?(xy4)(2)﹣6+2x.【考点】 78:二次根式的加减法; 49:单项式乘单项式.【分析】(1)利用单项式乘以单项式及单项式除以单项式法则计算,即可得到结果;(2)根据二次根式的加减运算法则进行解答即可.【解答】解:(1)原式 =5×(﹣)x2+1y2+3﹣×(﹣)x2+1y1+4=﹣x3y5+x3 y5=;(2)原式 =×3﹣+2 =(2﹣3+2)=.22.解方程:(1)=1(2)=﹣ 1.【考点】 B3:解分式方程.【分析】(1)分式方程两边同乘( x﹣ 3)去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程两边同乘( x2﹣4)去分母转化为整式方程,求出整式方程的解得到x 的值,检验即可.【解答】(1)解:两边同时乘以( x﹣ 3)得:( 1﹣ x)﹣ 1=x﹣3,整理得, 2x=3,解得: x= ,经检验 x=是原方程的解;2 2 2 (2)解:方程两边同时乘以( x ﹣4)得,﹣( x+2) +16=﹣x +4,整理得, 4x=8,经检验 x=2 是原方程的增根,故原方程无解..已知x=,y=,求x2+xy+y2的值.23【考点】 7A:二次根式的化简求值.【分析】根据题意求出x+y 和 xy 的值,根据完全平方公式把原式变形,代入计算即可.【解答】解:∵ x=,y=,∴x+y=,xy=×=1,则x2+xy+y2=x2+2xy+y2﹣xy=(x+y)2﹣xy=5﹣1=424.已知 a2+b2+4a﹣ 6b+13=0,分解因式: x2+ax﹣b.【考点】 AE:配方法的应用; 1F:非负数的性质:偶次方.【分析】先将已知等式配方,根据非负性求a、b 的值,代入要分解因式的多项式中,利用十字相乘法分解因式即可.【解答】解: a2+b2 +4a﹣6b+13=0,(a2+4a+4)+(b2﹣6b+9)=0,(a+2)2+(b﹣3)2=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴x2+ax﹣b=x2﹣2x﹣ 3=(x+1)(x﹣3).25.先化简,再求值:(1)6a2﹣( 2a﹣1)(3a+2) +( a+2)( a﹣ 2),其中 a=﹣(2)÷(﹣x﹣2),其中x=﹣3.【考点】 6D:分式的化简求值; 4J:整式的混合运算—化简求值.【分析】(1)先去括号,再合并同类项,代入a 的值计算即可;(2)先算括号里面的,再约分,代入 x 的值计算即可.【解答】接:(1)原式 =6a2﹣ 6a2﹣4a+3a+2+a2﹣2a+2a﹣4,=a2﹣a﹣2,当 a=﹣时,原式=;(2)原式 =÷(﹣),=÷=?=,当 x=﹣3时,原式=.26.如图,小红用一张长方形纸片 ABCD进行折纸,已知该纸片宽 AB 为 8cm,长 BC为 10cm.折叠时顶点 D 落在 BC边上的点 F 处(折痕为 AE),求此时 EC的长度?【考点】 PB:翻折变换(折叠问题).【分析】由折叠的性质得 AF=AD=10cm,DE=EF,先在 Rt△ABF中运用勾股定理求 BF,再求 CF,设 EC=xcm,用含 x 的式子表示 EF,在 Rt△CEF中运用勾股定理列方程求 x 即可.【解答】解:∵四边形 ABCD是矩形,∴AB=CD=8cm,AD=CB=10cm,由折叠方法可知: AD=AF=10cm,DE=EF,设EC=xcm,则 EF=ED=(8﹣x)cm, AF=AD=10cm,在 Rt△ABF中, BF===6(cm),则CF=BC﹣BF=10﹣6=4(cm),222在 Rt△CEF中, CF+CE=EF,即 42+x2(﹣)2,= 8 x解得 x=3,即 EC=3cm.27.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用 17600 元购进了第二批这种衬衫,所购数量是第一批购进数量的 2 倍,但单价贵了8 元.商家销售这种衬衫时每件定价都是100 元,最后剩下 10 件按 8 折销售,很快售完.(2)在这两笔生意中,商家共盈利多少元?【考点】 B7:分式方程的应用.【分析】( 1)设第一批进货的单价为x 元/ 件,根据第二批这种衬衫所购数量是第一批购进数量的 2 倍,列出方程即可解决问题.(2)根据题意分别求出两次的利润即可解决问题;【解答】解:(1)设第一批进货的单价为x 元/ 件,由题意 2×=,解得 x=80,经检验, x=80 是原分式方程的解,且符合题意,答:第一次进货单价为80(元 / 件),第二次进货单价为88(元 / 件),(2)第一次进货=100(件),第二次进货量=200(件).总的盈利为:× 100+×+10=4200(元)答:商家总盈利为4200 元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省六安市2017-2018学年七年级数学下学期期末试题
一、选择题(本题共10小题,每小题4分,满分40分) 1.-8的立方根是( ) A .±2
B .-2
C .0
D .2
2.下列运算正确的是( ) A .()
53
2
a a = B .842a a a =∙ C .236a a a =÷ D .()333
b a ab =
3.不等式
12
8
>-x 的解集是( ) A .x <10 B .x >9 C .x >6 D .x >10
4.我们的生活离不开氧气,已知氧原子的半径大约是0.000000000074米,那么0.000000000074用科学记数法表示为( ) A.101074
.0-⨯ B.11104.7-⨯ C.121074-⨯ D.11104.7⨯
5.下列分解因式正确的是( )
A .)4(42+-=+-x x x x
B .)(2
y x x x xy x
+=++
C .2
)()()(y x x y y y x x -=-+- D .)2)(2(442
-+=+-x x x x 6. 如图,AB//CD ,EG ⊥AB ,∠1=50°,则∠E 的度数等于( ) A .30°
B .40°
C .50°
D .60°
7.化简a 2
b -ab 2
b -a
的结果是( )
A .-ab
B .ab
C .a 2
-b 2
D .b 2
-a 2
8.已知x+y=-5,xy=3,则x ²+y ²=( )
A .25
B .-25
C .19
D .-19
9.下列说法:①两条直线被第三条直线所截,内错角相等;②过一点有且只有一条直线与已知直线垂直;③在连接直线外一点与直线上各点的线段中,垂线段最短;④如果两个角相等,那么这两个角是对顶角.其中正确的结论的个数是( )
A .4个
B .3个
C .2个
D .1个
10.定义新运算“△”,a△b=ab a +b ,如:2△3=6
5,则:
①a△a=a
2
;
②2△x=1的解是x =2;
③若(x +1)△(x-1)的值为0,则x =1; ④
1a△1+2a△2+-3a△(-3)
=3,上述结论中正确的是( ) A .①②④ B .①③④ C .①②③ D .①②③④ 二、填空题(本题共4小题,每小题5分,满分20分) 11.比较大小:
2
1
-5 53;
12.在实数范围内分解因式x 4
– 4 = ; 13.若4x ²+kx+9是完全平方式,则k = ; 14.已知关于x 的不等式组⎩⎨
⎧≥->+0
230
32x a x a 恰有3个整数解,则a 的取值范围是 .
七年级数学学科期末考试答题卷 时间:120分钟 满分:150分
一、选择题(本题有10小题,每小题 4分,共40分)
二、填空题(本题有4小题,每小题5分,共20分)
11.______________________ 12._________________________ 13.______________________ 14._________________________ 三、解答题(本题有9小题,共90分) 15.(8分)计算:20
328)2(5-+⨯+
--
16.(8分)解方程:12
1
11+-=-+x x x
17.(8分)解不等式组⎪
⎩⎪
⎨⎧≥2->2
1-51-x 43x x x ,并把解集在数轴上表示出来.
18.(8分)根据要求画图: (1)过点A 作MN//BC ;
(2)过点C 作CD//AB 交MN 于点D ; (3)连接BD 交AC 于点0.
19.(10分)化简:⎪⎪⎭
⎫ ⎝⎛+---÷-112112
2
x x x x x ,并从±2、±1、0中选择一个合适的代入求值.
20.(10分)已知,如图,∠1+∠2=180°,∠3=∠B ,猜想∠BAC 和∠DEC 的数量关系,并证明.
21.(12分)在正整数中,
⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛
-2112112112,⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-3113113112,⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-4114114112...... 观察上面的算式,并利用规律计算下列各式(要求写出计算过程): (1)⎪⎭⎫ ⎝⎛-
2211 × ⎪⎭⎫ ⎝⎛-2311 × ⎪⎭
⎫ ⎝⎛-2411 (2)⎪⎭⎫ ⎝
⎛-2211 × ⎪⎭⎫ ⎝⎛-2311 × ⎪⎭⎫ ⎝⎛-2411× ...... × ⎪⎭
⎫ ⎝⎛-2201811
22.(12分)六安市在创建全国文明城市过程中,决定购买A、B两种树苗对某路段道路进行绿化改造,已知购买A种树苗11棵,B种树苗5棵,需要1080元.若购买A种树苗6棵,B种树苗10棵,则需要880元.
(1)求购买A、B两种树苗每棵各需要多少元?
(2)考虑到绿化效果和资金周转,购进A种树苗要多于60棵,且用于购买这两种树苗的资金不能超过6960元,若购进这两种树苗共110棵,则有哪几种购买方案?
23.(14分)芳芳同学在完成第10章的学习后,遇到了一些问题,请你帮助她.
(1)如图1,已知AB∥CD,你知道∠BAE,∠DCE,∠AEC之间的关系吗?请说明理由;
(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAD=m°,∠ABC=n°,求∠BED的度数;(用含m、n的式子表示)
(3)将图2中的线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,得到图3,直接写出∠BED的度数是多少?(用含m、n的式子表示).
裕安中学2017—2018学年度春学期期末 七年级数学试卷参考答案及评分标准 制定人:胡磊,包发勇,陶光荣
一、选择题
二、填空题
11. > 12.)2)(2)(2(2-++x x x 13. ±12 14.
2
3
34≤≤a 三、解答题
15.解:原式=1+2+4+(4分)
(8分)
16.
.................(8分)
17.
.....(8分)
18.图略
19.
...........(5分)
∴当x=2时,原式......................................(10分)
20.
................................(10分)
21.解:(1)原式=(
=
=(6分)
(2)原式=(...... ×(1+
=
(12分)22.
23.。