八年级下数学四边形培优8套

合集下载

人教版八年级下学期期末复习 :《平行四边形》 培优训练(附答案)

人教版八年级下学期期末复习 :《平行四边形》 培优训练(附答案)

八年级下学期期末复习:《平行四边形》培优训练一.选择题1.在▱ABCD中,已知AB=6,AD为▱ABCD的周长的,则AD=()A.4 B.6 C.8 D.102.在平行四边形ABCD中,AE与DE交于点E,若AE平分∠BAD,AE⊥DE,则()A.∠ADE=30°B.∠ADE=45°C.∠ADC=2∠ADE D.∠ADC=3∠ADE 3.下列说法中能判定四边形是矩形的是()A.有两个角为直角的四边形B.对角线互相平分的四边形C.对角线相等的四边形D.四个角都相等的四边形4.如图,菱形ABCD的面积为96,正方形AECF的面积为72,则菱形的边长为()A.10 B.12 C.8 D.165.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=26°,则∠BDC的度数是()A.26°B.38°C.42°D.52°6.如图,在正方形ABCD中,G为CD的中点,连结AG并延长,交BC边的延长线于点E,对角线BD交AG于点F,已知AE=12,则线段FG的长是()A.2 B.4 C.5 D.67.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.2cm B.4cm C. cm D.2cm8.将正方形ABCD与正方形BEFG如图摆放,点G恰好落在线段AE上.已知AB=,AG=1,连接CE,则CE长为()A.B.C.D.3.59.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2 B.3 C.3或5 D.4或510.如图,正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,且AB=AE,过点A 作AF⊥BE,垂足为F,交BD于点G.点H在AD上,且EH∥AF.若正方形ABCD的边长为2,下列结论:①OE=OG;②EH=BE;③AH=2﹣2;④AG•AF=2.其中正确的有()A.1个B.2个C.3个D.4个二.填空题11.在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E、F是三边的中点,则△DEF的周长是.12.如图,CE、BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为.13.如图,矩形ABCD中,DE⊥AC于点F,交BC边于点E,已知AB=6,AD=8,则CE的长为.14.如图,在▱ABCD中,AD=2AB,点F是BC的中点,作AE⊥CD于点E,点E在线段CD上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF =S△AEF;④∠BFE=3∠CEF.其中一定正确的是.15.如图,在平行四边形ABCD中,∠ABC=45°,AB=4,BC=9,直线MN平分平行四边形ABCD的面积,分别交边AD、BC于点M、N,若△BMN是以MN为腰的等腰三角形,则BN =.16.如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E作EF⊥CE 交AB的延长线于点F,若AF=8,则正方形ABCD的边长为.17.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC 于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是.18.如图,将边长为13的菱形ABCD沿AD方向平移至DCEF的位置,作EG⊥AB,垂足为点G,GD的延长线交EF于点H,已知BD=24,则GH=.19.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD与于点M,过点D 作DN⊥AB于点N,在DB的延长线上取一点P,PM=DN,若∠BDC=70°,则∠PAB的度数为.20.如图,正方形ABCD中,点E、F分别在AB、CD上,DG⊥EF于点H,交BC于点G,点P 在线段BG上.若∠PEF=45°,AE=CG=5,PG=5,则EP=.三.解答题21.如图,已知△ABC 是等边三角形,点D 、F 分别在线段BC 、AB 上,DC =BF ,以BF 为边在△ABC 外作等边三角形BEF .(1)求证:四边形EFCD 是平行四边形.(2)△ABC 的边长是6,当点D 是BC 三等分点时,直接写出平行四边形CDEF 的面积.22.如图,正方形ABCD 边长为4,点O 在对角线DB 上运动(不与点B ,D 重合),连接OA ,作OP ⊥OA ,交直线BC 于点P .(1)判断线段OA ,OP 的数量关系,并说明理由.(2)当OD =时,求CP 的长.(3)设线段DO ,OP ,PC ,CD 围成的图形面积为S 1,△AOD 的面积为S 2,求S 1﹣S 2的最值.23.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CE=12,∠FCE=60°,∠AFE=90°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD 长为半径做弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△CFE的亲密菱形;(2)求四边形ACDB的面积.24.问题探究:如图①,在正方形ABCD中,点E在边AD上,点F在边CD上,且AE=DF.线段BE与AF相交于点G,GH是△BFG的中线.(1)求证:△ABE≌△DAF.(2)判断线段BF与GH之间的数量关系,并说明理由.问题拓展:如图②,在矩形ABCD中,AB=4,AD=6.点E在边AD上,点F在边CD上,且AE=2,DF=3,线段BE与AF相交于点G.若GH是△BFG的中线,则线段GH的长为.25.老师布置了一个作业,如下:已知:如图1▱ABCD的对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O求证:四边形AECF是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的,请你解答下列问题:(1)能找出该同学错误的原因吗?请你指出来;(2)请你给出本题的正确证明过程.26.如图,在△ABC中,AB=AC,D是BC上任一点,AD=AE且∠BAC=∠DAE.(1)若ED平分∠AEC,求证:CE∥AD;(2)若∠BAC=90°,且D在BC中点时,试判断四边形A DCE的形状,并说明你的理由.27.正方形ABCD,点E在边BC上,点F在对角线AC上,连AE.(1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长;(2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°,求证:EC=HG+FC.28.如图,在平行四边形ABCD中,点H为DC上一点,BD、AH交于点O,△ABO为等边三角形,点E在线段AO上,OD=OE,连接BE,点F为BE的中点,连接AF并延长交BC于点G,且∠GAD=60°.(1)若CH=2,AB=4,求BC的长;(2)求证:BD=AB+AE.参考答案一.选择题1.解:∵四边形ABCD是平行四边形,∴CD=AB=6,AD=BC,∵AD=(AB+BC+CD+AD),∴AD=(2AD+12),解得:AD=8,∴BC=8;故选:C.2.解:∵平行四边形ABCD,∴AB∥CD,∴∠BAD+∠CDA=180°,∵AE⊥DE,∴∠DAE+∠ADE=90°,∴∠BAE+∠EDC=90°,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠ADE=∠EDC,即∠ADC=2∠ADE,故选:C.3.解:A、有3个角为直角的四边形是矩形,故错误;B、对角线互相平分的平行四边形是矩形,故错误;C、对角线相等的平行四边形,故错误;D、四个角都相等的四边形是矩形,故正确;故选:D.4.解:连接EF、BE、DF.∵四边形AECF是正方形,∴∠AEC=90°,∠AEF=45°.又△ABE≌△CBE(SSS),∴∠AEB=∠CEB=(360°﹣90°)÷2=135°.∴∠AEB+∠AEF=180°,∴B、E、F三点共线.同理可证D、F、E三点共线,∴BD过点E、F.∵AC2=72,∴AC=12.又AC•BD=96,∴BD=16.则菱形的边长为=10.故选:A.5.解:∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=26°,∴∠BDC=∠A+∠DCA=26°+26°=52°.故选:D.6.解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=,∴FG=AF,∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AG=AE=6,∴FG=AG=2.故选:A.7.解:∵∠AOD=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴AC=BD,AO=OC=×8=4cm,BO=OD,∴AO=BO=4cm,∴△ABO是等边三角形,∴AB=AO=4cm,故选:B.8.解:如图1所示,分别过点A、C作EB的垂线,交EB的延长线于点K、M,过点B作BH垂直AE,交AE于点H,设BH=GH=a,则有a2+(1+a)2=()2,解得a=1,∴BG=,AE=3,∴AK=EK=,BK=,∵∠AKB=∠M=90°,∠MBC=∠BAK,BC=AB,∴△ABK≌△BCM(AAS),∴CM=,EM=,∴CE=故选:A.9.解:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠ADB=∠MBC,且∠FBM=∠MBC∠ADB=∠FBM∴BF=DF=12cm∴AD=AF+DF=18cm=BC,∵点E是BC的中点∴EC=BC=9cm,∵以点P、Q、E、F为顶点的四边形是平行四边形∴PF=EQ∴6﹣t=9﹣2t,或6﹣t=2t﹣9∴t=3或5故选:C.10.解:①∵四边形ABCD是正方形,∴AC⊥BD,OA=OB,∴∠AOG=∠BOE=90°,∵AF⊥BE,∴∠FGB=90°,∴∠OBE+∠BGF=90°,∠FAO+∠AGO=90°,∵∠AGO=∠BGF,∴∠FAO=∠EBO,在△AFO和△BEO中,,∴△AGO≌△BEO(ASA),∴OE=OG.②∵EH⊥AF,AF⊥BE,∴EH⊥BE,∴∠BEH=90°,如图1,过E作MN∥CD交AD于M,交BC于N,则MN⊥AD,MN⊥BC,∵四边形ABCD是正方形,∴∠ACB=∠EAM=45°,∴△ENC是等腰直角三角形,∴EN=CN=DM,∵AD=BC,∴AM=EM=BN,∵∠NBE+∠BEN=∠BEN+∠HEM=90°,∴∠NBE=∠HEM,∴△BNE≌△EMH(ASA),∴EH=BE,故②正确;③如图2,Rt△ABC中,AB=BC=2,∴AC=2,∴EC=AC﹣AE=2﹣2,∵AC=AB=AE,∴∠AEB=∠ABE,∴∠EBC=∠AEH,由②知:EH=BE,∴△BCE≌△EAH(SAS),∴AH=CE=2﹣2;故③正确;④Rt△AME中,AE=2,∠EAM=45°,∴AM=BN=,∵∠NBE=∠BAF,∠AFB=∠ENB=90°,∴△ABF∽△BEN,∴,∴AF•BE=AF•AG=AB•BN=2,故④正确;本题正确的有:①②③④,4个,故选:D.二.填空题(共10小题)11.解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,∵点D、E、F是三边的中点,∴DE=AC,DF=AB,EF=BC,∴△DEF的周长=DE+EF+DF=AC+AB+BC=(AC+AB+BC)=(3+4+5)=6,故答案为:6.12.解:连接EG、FG,∵CE,BF分别是△ABC的高线,∴∠BEC=90°,∠BFC=90°,∵G是BC的中点,∴EG=FG=BC=5,∵D是EF的中点,∴ED=EF=3,GD⊥EF,由勾股定理得,DG==4,故答案为:4.13.解:∵四边形ABCD是矩形,∴CD=AB=6,BC=AD=8,∠B=∠ADC=∠DCE=90°,∴AC==10,∵DE⊥AC,∴∠CFE=90°,∵∠DCF=∠ACD,∴△CDF∽△CAD,∴=,∴CF===3.6,∵∠ECF=∠ACB,∴△CEF∽△CAB,∴=,∴CE==4.5;故答案为:4.5.14.解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠DAF,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF =S△A FM,∴S△ABF <S△AEF,故③错误;④设∠FEA=x,则∠FAE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EFA=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF=90°﹣x,∴∠BFE=3∠CEF,故④正确,故答案为:①②④.15.解:如图,过点C作CE⊥AD于E,过点N作NF⊥AD于F,过点B作BG⊥AD,与DA的延长线交于点G.∵直线MN平分平行四边形ABCD的面积,∴AM=CN,设AM=CN=x,则EF=x,BN=9﹣x∵∠ABC=45°,AB=4,∴GB=GA=4,DE=4,∴MF=5﹣2x,在Rt△BGM中,BM2=42+(4+x)2,在Rt△NFM中,MN2=42+(5﹣2x)2,∵△BMN是以MN为腰的等腰三角形,∴①当MN=MB时,易证Rt△MFN≌Rt△MGB(HL),MF=MG,即5﹣2x=x+4,解得x=,即CN=,∴BN=BC﹣CN=9﹣=②当MN=BN时,MN2=BN2,∴42+(5﹣2x )2=(9﹣x )2,解得x 1=4,x 2=﹣(不符合题意,舍去),MN 2=42+(5﹣2x )2=16+(5﹣2×4)2=25,∴MN =5,∴BN =5故答案为或5.16.解:如图所示:过点E 作EM ⊥BC ,EN ⊥AB ,分别交BC 、AB 于M 、N 两点,且EF 与BC 相交于点H .∵EF ⊥CE ,∠ABC =90°,∠ABC +∠HBF =180°,∴∠CEH =∠FBH =90°,又∵∠EHC =∠BHF ,∴△ECH ∽△BFH (AA ),∴∠ECH =∠BFH ,∵EM ⊥BC ,EN ⊥AB ,四边形ABCD 是正方形,∴四边形ENBM 是正方形,∴EM =EN ,∠EMC =∠ENF =90°,在△EMC 和△ENF 中∴△EMC ≌△ENF (AAS )∴CM =FN ,∵EM ∥DC ,∴△BEM ∽△BDC ,∴.又∵DE=4BE,∴=,同理可得:,设BN=a,则AB=5a,CM=AN=NF=4a,∵AF=8,AF=AN+FN,∴8a=8解得:a=1,∴AB=5.故答案为:5.17.解:由作法得AE平分∠BAD,AB=AF,则∠1=∠2,∵四边形ABCD为平行四边形,∴BE∥AF,∠BAF=∠C=60°,∴∠2=∠BEA,∴∠1=∠BEA=30°,∴BA=BE,∴AF=BE,∴四边形AFEB为平行四边形,△ABF是等边三角形,而AB=AF,∴四边形ABEF是菱形;∴BF⊥AE,AG=EG,∵四边形ABEF的周长为16,∴AF=BF=AB=4,在Rt△ABG中,∠1=30°,∴BG=AB=2,AG=BG=2,∴AE=2AG=4,∴菱形ABEF的面积=BF×AE=×4×4=8;故答案为:8.18.解:连接DE,连接AC交BD于O,如图所示:∵四边形ABCD和四边形DCEF是菱形,∴OA=OC,OB=OD=B D=12,AC⊥BD,AB∥CD∥EF,AB=AD=CD=DF=CE=13,AD∥CE,∴OA===5,∠GAD=∠F,四边形ACED是平行四边形,∴DE=AC=2OA=10,在△ADG和△FDH中,,∴△ADG≌△FDH(ASA),∴DG=DH,∵EG⊥AB,∴∠BGE=∠GEF=90°,∴DE=DG=DH,∴GH=2DE=20,故答案为:20.19.解:在平行四边形ABCD中,∵AB=CD,∵BD=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴∠AMB=∠DNB=90°,在△ABM与△DBN中,∴△ABM≌△DBN(AAS),∴AM=DN,∵PM=DN,∴△AMP是等腰直角三角形,∴∠MAP=∠APM=45°,∵AB∥CD,∴∠ABD=∠CDB=70°,∴∠PAB=∠ABD﹣∠P=25°,故答案为:25°20.解:过点F作FM⊥AB于点M,连接PF、PM,如图所示:则FM=AD,AM=DF,∠FME=∠MFD=90°,∵DG⊥EF,∴∠MFE=∠CDG,∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=DC=AD,∴FM=DC,在△MFE和△CDG中,,∴△MFE≌△CDG(ASA),∴ME=CG=5,∴AM=DF=10,∵CG=PG=5,∴CP=10,∴AM=CP,∴BM=BP,∴△BPM是等腰直角三角形,∴∠BMP=45°,∴∠PMF=45°,∵∠PEF=45°=∠PMF,∴E、M、P、F四点共圆,∴∠EPF=∠FME=90°,∴△PEF是等腰直角三角形,∵∠BEP+∠BPE=90°,∠BPE+∠CPF=90°,∴∠BEP=∠CPF,在△BPE和△CFP中,,∴△BPE≌△CFP(AAS),∴BE=CP=10,∴AB=AE+BE=15,∴BP=5,在Rt△BPE中,由勾股定理得:EP===5;故答案为:5.三.解答题(共8小题)21.证明:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD是平行四边形;(2)解:过E作EH⊥BC交CB的延长线于H,∵△ABC和△BEF是等边三角形,∴∠ABC=∠EBF=60°,∴∠EBH=180°﹣60°﹣60°=60°,∴EH=BE=BF=CD,∵点D是BC三等分点,∴当CD=BC=2时,平行四边形CDEF的面积=2×=2,当CD=BC=4时,平行四边形CDEF的面积=4×2=8,综上所述,平行四边形CDEF的面积为2或8.22.解:(1)OA=OP,理由是:如图1,过O作OG⊥AB于G,过O作OH⊥BC于H,∵四边形ABCD是正方形,∴∠ABO=∠CBO,AB=BC,∴OG=OH,∵∠OGB=∠GBH=∠BHO=90°,∴四边形OGBH是正方形,∴BG=BH,∠GOH=90°,∵∠AOP=∠GOH=90°,∴∠AOG=∠POH,∴△AGO≌△PHO(ASA),∴OA=OP;(2)如图2,过O作OQ⊥CD于Q,过O作OH⊥BC于H,连接OC,∴∠OQD=90°,∵∠ODQ=45°,∴△ODQ是等腰直角三角形,∵OD=,∴OQ=DQ=1,∵AD=CD,∠ADO=∠CDO,OD=OD,∴△ADO≌△CDO(SSS),∴AO=OC=OP,∵OH⊥PC,∴PH=CH=OQ=1,∴PC=2;(3)如图3,连接OC,过O作OG⊥BC于G,OH⊥CD于H,设OH=x,则DH=x,CH=OG=4﹣x,PC=2x,由(2)知:△AOD≌△COD,∴S△AOD =S△COD,∴S1﹣S2=S1﹣S△COD=S△POC===﹣x2+4x=﹣(x﹣2)2+4,当x=2时,S1﹣S2有最大值是4.23.证明:(1)∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA,∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形(2)过点A作AG⊥CE于G∵四边形ACDB是菱形∴AB=AC,AB∥CD∴∠FAB=∠FCE=60°∴∠E=∠FBA=30°∴CE=2CF AB=2AF∵CE=12∴CF=6,CA=4在Rt△ACG中,可得AG=,∴菱形ACDB的面积=CD▪AG=4×=24.(1)证明:∵四边形ABCD是正方形,∴∠BAD=∠D=90°,AB=DA,在△ABE和△DAF中,,∴△ABE≌△DAF(SAS);(2)解:BF=2GH;理由如下:∵△ABE≌△DAF,∴∠ABE=∠DAF,∵∠DAF+∠BAG=∠BAD=90°,∴∠ABE+∠BAG=90°,∴∠BGF=∠ABE+∠BAG=90°,在Rt△BFG中,GH是边BF的中线,∴BF=2GH;问题拓展:解:∵tan ∠ABE ===,tan ∠DAF ===,∴∠ABE =∠DAF , ∵∠DAF +∠BAG =∠BAD =90°,∴∠ABE +∠BAG =90°,∴∠AGB =90°,∴∠BGF =90°,在Rt △BFG 中,GH 是边BF 的中线,∴BF =2GH ,∵四边形ABCD 是矩形,∴∠C =90°,BC =AD =6,CD =AB =4,∴CF =CD ﹣DF =1,∴BF ===,∴GH =BF =;故答案为:. 25.解:(1)能;该同学错在AC 和EF 并不是互相平分的,EF 垂直平分AC ,但未证明AC 垂直平分EF ,需要通过证明得出;(2)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠FAC =∠ECA .∵EF 是AC 的垂直平分线,∴OA =OC .∵在△AOF 与△COE 中,∴△AOF ≌△COE (ASA ).∴EO =FO .∴AC 垂直平分EF .∴EF 与AC 互相垂直平分.∴四边形AECF是菱形.26.解:(1)证明:∵AD=AE,∴∠ADE=∠AED.又∵ED平分∠AEC,∴∠DEC=∠AED.∴∠ADE=∠DEC.∴CE∥AD;(2)四边形ADCE是正方形,理由如下:∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADC=90°.又∵∠DAE=∠BAC=90°,∴∠ADC+∠DAE=180°.∴AE∥CD.又∵∠BAC=90°且D是BC的中点,∴AD=CD.∴AE=AD.∴AE=CD∴四边形ADCE是平行四边形.∵∠ADC=90°,∴四边形ADCE是正方形.27.(1)解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE==2,∴△AEF的周长=AE+EF+AF=2++3=2+4;(2)证明:延长GF交BC于M,连接AG,如图2所示:则△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45°,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AF H=90°,在△ABE和△AFH中,,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,FG=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.28.解:延长AH、BC相交于点M,∵▱ABCD∴CD=AB=4,CD∥AB∵CH=2∴DH=CD=2∵CD∥AB∴∠MHC=∠MAB,∠MCH=∠MBA∴△MCH∽△MBA∴∴=∴MH=AH,BM=2BC∵△ABO为等边三角形∴∠AOB=∠OAB=∠OBA=60°,OA=AB=4∴∠DO H=∠AOB=60°∴∠ODH=∠OBA=60°,∠OHD=∠OAB=60°∴∠DOH=∠ODH=∠OHD∴△DOH是等边三角形∴OH=OD=DH=2∴MH=AH=OA+OH=4+2=6,EM=OE+OH+MH=10 ∵OD=OE=2∴AE=OA﹣OE=4﹣2=2∴点E是OA的中点∵△ABO为等边三角形∴BE⊥OA,∠ABE=30°∴BE=AE=2在Rt△BEM中,∠BEM=90°∴BE2+EM2=BM2∴(2)2+102=BM2∴BM=4∴BC=2(2)∵△ABO为等边三角形∴AB=OB由(1)知,AE=OE=OD∵BD=OB+OD∴BD=AB+AE。

人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学 18.1 平行四边形 培优训练一、选择题(本大题共8道小题)1. 以三角形的三个顶点作平行四边形,最多可以作( ) A .2个 B .3个 C .4个 D .5个2. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°3. 如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( ) A . 3 cm B . 4 cm C . 5 cm D . 8 cm4. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD .△ABO 的面积是△EFO 的面积的2倍5. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .156. (2019▪广西池河)如图,在△ABC中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF7.已知四边形的四条边长分别是a b c d ,,,,其中a b ,为对边,并且满足222222a b c d ab cd +++=+则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形8.(2020·临沂)如图,P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S ,PBC ∆的面积为2S ,则( )A.122SS S +>B.122SS S +<C.212SS S += D.21S S +的大小与P 点位置有关二、填空题(本大题共8道小题)9. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形.10.(2020·牡丹江)如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD 是平行四边形(填一个即可).11. 已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于O 点,AOB ∆的周长比BOC ∆的周长多8cm ,则AB的长度为cm .OD CBA12. 如图所示,在▱ABCD中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________.13. (2020·凉山州)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交AD 于点E .若OA =1,△AOE 的周长等于5,则平行四边形ABCD 的周长等于 .O EDCB A14. 如图,在ABCD 中,E.F 是对角线AC 上两点,AE=EF=CD ,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为__________.15. 如图,在▱ABCD中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD ′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.ABC16. 如图,一个平行四边形被分成面积为1S 、2S 、3S 、4S 四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时.① 14S S 与23S S 的大小关系为.② 已知点C 与点A 、B 不重合时,图中共有 个平行四边形,S 4S 3S 2S 1(3)DCBA三、解答题(本大题共4道小题) 17. (2020·重庆B 卷)如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD 于点E ,F . (1)若∠BCF =60°,求∠ABC 的度数; (2)求证:BE =DF .18. 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .DPCBA19. (2020·泰安)(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC ﹦∠EAD﹦90°.(1)如图(1),点B 是DE 的中点,判断四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF ﹦CD . 求证:①EB ﹦DC ,②∠EBG ﹦∠BFC .GFABCDEABCDE20. 如图,AC 是平行四边形ABCD 较长的一条对角线,点O 是ABCD 内部一点,OE AB ⊥于点E ,OF AD ⊥于点F ,OG AC ⊥于点G ,求证:AE AB AF AD AG AC ⋅+⋅=⋅.人教版 八年级数学 18.1 平行四边形 培优训练-答案一、选择题(本大题共8道小题) 1. 【答案】B2. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.3. 【答案】B【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.4. 【答案】B【解析】∵E,F,G,H分别是AO,BO,CO,DO的中点,在ABCD中,A B=2,AD=4,∴EH=12AD=2,HG=1122CD=AB=1,∴EH≠HG,故选项A 错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=1122AD BC FG==,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF∥AB,∴△OEF∽△OAB,∴214AEFOABS EFS AB⎛⎫==⎪⎝⎭,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选B.5. 【答案】C6. 【答案】B【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE=12 AC.A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选B.7. 【答案】B8. 【答案】C【解析】可以利用割补法对平行四边形进行分割,然后使分割后的图形与PAD ∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.二、填空题(本大题共8道小题) 9. 【答案】AD ∥BC (答案不唯一) 【解析】根据平行四边形的判定,在已有AB ∥DC 的条件下,可再加另一组对边平行即可证得它是平行四边形,即加“AD ∥BC”.10. 【答案】AD=BC【解析】当添加条件AD=BC 时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD 是平行四边形.11. 【答案】19【解析】如图,AOB ∆的周长为AB AO BO ++,BOC ∆的周长为BC BO CO ++ 由平行四边形的对角线互相平分可得()()8AB AO BO BC BO CO AB BC ++-++=-= ∴6082194AB +⨯==.12. 【答案】50°【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA=∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.13. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE =12AD ,OE =12CD .∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +CD =8.∴平行四边形ABCD 的周长=16.故答案为16.14. 【答案】21° 【解析】设∠ADE=x ,∵AE=EF ,∠ADF=90°,∴∠DAE=∠ADE=x ,DE=12AF=AE=EF ,∵AE=EF=CD ,∴DE=CD , ∴∠DCE=∠DEC=2x ,∵四边形ABCD 是平行四边形,∴AD ∥BC , ∴∠DAE=∠BCA=x ,∴∠DCE=∠BCD ﹣∠BCA=63°﹣x ,∴2x=63°﹣x ,解得x=21°,即∠ADE=21°; 故答案为:21°.15. 【答案】36°【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.16. 【答案】①1423S S S S =;②9三、解答题(本大题共4道小题)17. 【答案】(1)解: ∵CF 平分∠BCD ,∴∠BCD =2∠BCF .∵∠BCF =60°,∴∠BCD =2×60°=120°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°. ∴∠ABC =180°-120°=60°.(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∠BAD =∠DCB .∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD =12∠DCB =∠DCF .在△ABE 和△CDF 中,∵∠ABE =∠CDF ,AB =CD ,∠BAE =∠DCF , ∴△ABE ≌△CDF . ∴BE =DF .18. 【答案】如图所示,将PAB ∆平移至QDC ∆的位置,易证DQ AP =,CQ BP =,则四边形DPCQ 恰好是一个以AP 、BP 、CP 、DP 为边的四边形,并且它的对角线恰好等于平行四边形ABCD 的两条邻边.QDPCBA19. 【答案】(1)证明:四边形BEAC 是平行四边形. 理由如下:∵△EAD 为等腰三角形且∠EAD ﹦90°, ∴∠E ﹦45°.∵B 是DE 的中点, ∴AB ⊥DE . ∴∠BAE ﹦45°.∵△ABC 为等腰三角形且∠BAC ﹦90°, ∴∠CBA ﹦45°. ∴∠BAE ﹦∠CBA . ∴BC ∥EA . 又∵AB ⊥DE ,∴∠EBA ﹦∠BAC ﹦90°. ∴BE ∥AC .∴四边形BEAC 是平行四边形.(2)证明:①∵△AED 和△ABC 为等腰三角形, ∴AE ﹦AD ,AB ﹦AC . ∵∠EAD ﹦∠BAC ﹦90°,∴∠EAD +∠DAB ﹦∠BAC +∠DAB .即∠EAB ﹦∠DAC . ∴△AEB ≌△ADC . ∴EB ﹦DC .②延长FG 至点H ,使GH ﹦FG . ∵G 是EC 中点,∴EG ﹦CG .又∠EGH ﹦∠FGC , ∴△EHG ≌△CFG ,∴∠BFC ﹦∠H ,CF ﹦EH . 又∵CF ﹦CD , ∴BE ﹦CF . ∴BE ﹦EH .∴∠EBG ﹦∠H . ∴∠EBG ﹦∠BFC .AB CDEEDCBA FGH20. 【答案】如图所示,,分别过点B 、C 、D 作直线AO 的垂线,EG CP DL ∥∥、Q 、N 为垂足;分别过B 、D 作AC 的垂线,L 、K 为垂足. 显然,A 、E 、O 、G 、F 五点共圆,AO 是直径.由DN AO ⊥,CQ AO ⊥,BM AO ⊥,DC AB ∥且DC AB =可知NQ AM =. 已知AF AD AN AO ⋅=⋅,AE AB AM AO ⋅=⋅, 则AF AD AE AB ⋅+⋅ AN AO AM AO =⋅+⋅ ()AO AN AM =+ ()AO AN NQ =+ AO AQ =⋅ AG AC =⋅故AE AB AF AD AG AC ⋅+⋅=⋅.点评:ab cd ef +=类型的问题一般要转化为ab mn =型的问题(当然,如果能够使用勾股定理、余弦定理等,大家也可以踊跃尝试),把握了这一点,就能及时调整思路,确保解题不会误入歧途.图(1)图(2)。

人教版八年级下册 第18章《平行四边形》解答题培优专题练习(含答案解析)

人教版八年级下册 第18章《平行四边形》解答题培优专题练习(含答案解析)

人教版八年级下册第18章《平行四边形》解答题培优专题练习1.如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF ⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形(2)已知DE=8,FN=6,求BN的长.2.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF ∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.3.如图,在四边形ABCD中,AD∥BC,E为AD的中点,延长CE交BA的延长线上于点F,CE=EF.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,若CE⊥AD,连接AC、DF,请直接写出图中和线段CD相等的所有线段.4.已知:如图,M为平行四边形ABCD边AD的中点,且MB=MC.求证:四边形ABCD 是矩形.5.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.6.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.7.四边形ABCD的对角线AC和BD交于点O,AB=BC,AD=CD,分别过点C、D作CE ∥BD.DE∥AC,CE和DE交于点E.(1)如图1.求证:四边形ODEC是矩形;(2)如图2.连接OE,AD∥BC时.在不添加任何辅助线及字母的情况下.请直接写出图中所有的平行四边形.8.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.9.如图,在▱ABCD中,AB=AD,DE平分∠ADC,AF⊥BC于点F交DE于G点,延长BC至H使CH=BF,连接DH.(1)证明:四边形AFHD是矩形;(2)当AE=AF时,猜想线段AB、AG、BF的数量关系,并证明.10.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.11.如图,已知四边形ABCD为正方形,点E为对角线AC上的一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)判断CE,CG与AB之间的数量关系,并给出证明.12.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.13.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,F A.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有与AE相等的线段(除AE外).14.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.15.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连结BG、CG、DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.16.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?参考答案一.解答题(共16小题)1.【解答】(1)证明:∵AE⊥BD,CF⊥BD,∴AM∥CN,∵四边形ABCD是平行四边形,∴CM∥AN∴四边形CMAN是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE与△CBF中,∠ADE=∠CBF,∠AED=∠CFB,AD=BC,∴△ADE≌△CBF(AAS);∴DE=BF=8,∵FN=6,∴.2.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.3.【解答】(1)证明:∵E是AD的中点,∴DE=AE,在△DEC和△AEF中,,∴△DEC≌△AEF(SAS),∴∠D=∠EDF,∴CD∥AB,又∵AD∥BC,∴四边形ABCD是平行四边形;(2)解:图中和线段CD相等的所有线段为AC、AF、DF、AB,理由如下:∵四边形ABCD是平行四边形,CE⊥AD,∴AB=CD,四边形ABCD是菱形,∴AC=AF=DF=CD,∴AC=AF=DF=CD=AB.4.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠A+∠D=180°,在△ABM和△DCM中,,∴△ABM≌△DCM(SSS),∴∠A=∠D=90°,即可得出平行四边形ABCD是矩形.5.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==4,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=4.6.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BO,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.7.【解答】(1)证明:∵AB=BC,AD=CD,∴BD垂直平分AC,∴∠COD=90°,∵CE∥BD,DE∥AC,∴四边形ODEC是平行四边形,∵∠COD=90°,∴四边形ODEC是矩形;(2)解:∵AB=BC,AD=CD,∴BD垂直平分AC,∴AO=OC,∠BOC=∠AOD,∵AD∥BC,∴∠BCO=∠DAO,∴△AOD≌△COB(ASA),∴AD=BC,∴四边形ABCD是平行四边形,∵CE∥BD.DE∥AC,∴四边形ODEC是平行四边形,∴DE=CO,∴DE=AO,∴四边形AOED是平行四边形,∴AD=OE,AD∥OE,∴BC=OE,BC∥OE,∴四边形OECB是平行四边形,综上所述,四边形ABCD,四边形ODEC,四边形AOED,四边形OECB是平行四边形.8.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△DAE和△BCF中,∴△DAE≌△BCF(SAS),∴DE=BF,∵AB=CD,AE=CF,∴AB﹣AE=CD﹣CF,即DF=BE,∵DE=BF,BE=DF,∴四边形DEBF是平行四边形;(2)解:∵AB∥CD,∴∠DF A=∠BAF,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠DAF=∠AFD,∴AD=DF,∵四边形DEBF是平行四边形,∴DF=BE=5,BF=DE=4,∴AD=5,∵AE=3,DE=4,∴AE2+DE2=AD2,∴∠AED=90°,∵DE∥BF,∴∠ABF=∠AED=90°,∴AF===4.9.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CH=BF,∴FH=BC,∴AD=FH,∴四边形AFHD是平形四边形,∵AF⊥BC,∴∠AFH=90°,∴平行四边形AFHD是矩形;(2)猜想:AB=BF+AG,证明:如图,延长BF到M,使HM=AG,连接DM,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2,∵DE平分∠ADC,∴∠2=∠3,∴∠1=∠3,∴AE=AD,∵AE=AF,∴AF=AD,四边形AFHD是正方形,∴AD=DH,∠GAD=∠DHM=90°,在△DAG和△DHM中,∴△DAG≌△DHM(SAS),∴∠2=∠3=∠HDM,∠AGD=∠M,∵AF∥DH,∴∠AGD=∠HDG=∠2+∠CDH=∠MDH+∠CDH,∴∠M=∠CDM,∴CD=CM=CH+HM,∵BC=AD=FH,∴BC﹣CF=FH﹣CF,∴BF=CH,∵AB=CD,HM=AG,∴AB=BF+AG.10.【解答】解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.11.【解答】证明:(1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形;(2)∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∴AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴在Rt△ABC中,,∴12.【解答】证明:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF,∵EF∥BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC,又OE=OF,∴四边形DECF是平行四边形,∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=∠BCD,∠DCF=∠DCG∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,即∠ECF=90°,∴四边形DECF是矩形.13.【解答】(1)证明:如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD,∴∠ABF=∠CDF=36°,∵AF=EF,∴∠F AE=∠FEA=72°,∵∠AEF=∠EBA+∠EAB,∴∠EBA=∠EAB=36°,∴EA=EB,同理可证CF=DF,∵AE=CF,∴与AE相等的线段有BE、CF、DF.14.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.15.【解答】解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.16.【解答】解:(1)证明:∵四边形ABCD为正方形,∴AB⊥BC,∠B=90°.∵EF⊥AB,EG⊥BC,∴EF∥GB,EG∥BF.∵∠B=90°,∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm,∴AB=40÷4=10cm.∵四边形ABCD为正方形,∴△AEF为等腰直角三角形,∴AF=EF,∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形,只需EF=BF,∵AF=EF,AB=10cm,∴当AF=5cm时,四边形BFEG是正方形.。

2020年八年级数学下册四边形综合题重难点培优练习(含答案)

2020年八年级数学下册四边形综合题重难点培优练习(含答案)

2020年八年级数学下册四边形综合题重难点培优练习1.如图,在矩形ABCDK AB=4cm BC=8cm点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm∕s ,连结PQ AQ CP设点P、Q运动的时间为t (S).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.2.如图,在Rt△ ABC中,∠ ACB=90 ,过点C的直线m∕/ AB, D为AB边上一点,过点D作DE⊥BC,交直线m于点E,垂足为点F,连接CD BE(1)求证:CE=AD(2)当点D是AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)当∠ A的大小满足什么条件时,四边形BECD是正方形?(不需要证明)3.如图1 ,在矩形ABC中,动点P从点A出发,沿A→ D→ C→ B的路径运动.设点P运动的路程为X,△ PAB的面积为y.图2反映的是点P在A→D→C运动过程中,y与X的函数关系•请根据图象回答以下问题:(1) ______________________________ 矩形ABC啲边AD= , AB= ;(2)写出点P在C→B运动过程中y与X的函数关系式,并在图2中补全函数图象.4.在图1 , 2, 3中,已知?ABCD/ ABC=120 ,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG且∠ EAG=120 .⑴ 如图1,当点E与点B重合时,∠ CEF ___________ ° ;⑵如图2,连接AF.①填空:∠ FAD ________ ∠EAB填“>”,“<“,“=”);②求证:点F在∠ ABC的平分线上;⑶ 如图3,连接EG DG并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时, 求丄“的值.5∙如图,两个全等的△ ABC和^ DEF重叠在一起,固定△ ABC将厶DEF进行如下变换:(1)如图1, △ DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、AD BD,请直接写出S△ABC与S四边形AFBD的关系(2)如图2,当点F平移到线段BC的中点时,若四边形AFBD为正方形,那么△ ABe应满足什么条件:请给出证明;(3)在(2)的条件下,将△ DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG请你画出图形,此时CG与CF有何数量关系.6.菱形ABCD中,点P为CD上一点,连接BP.(1)如图1,若BP⊥ CD菱形ABCD边长为10, PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC BD相交于点Q点N为BP的中点,过P作PM⊥ AC于M连接ON MN.试判断△ MON勺形状,并说明理由.7∙如图,在Rt△ ABC中,∠ ACB=90 ,过点C的直线MN/ AB D为AB边上一点,过点D作DE⊥ BC交直线MN于E,垂足为F,连接CD BE.(1)求证:CE=AD(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理3第4页共26页8.如图,在在四边形ABCD中,AD// BC, ∠ B=90°,且AD=12cm AB=8cm DC=IoCm 若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB 向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t 秒,回答下列问题:(1) ____________ BC= cm;(2)当t= _________ 秒时,四边形PQBA成为矩形•(3)当t为多少时,PQ=CD(4)是否存在t ,使得△ DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.9∙如图1 ,已知正方形ABCD点E、F、G H分别在边AB BC CD DAh 若EGL FH则易证:EG=FH(1)如果把条件中的“正方形”改为“长方形”,并设AB=2, BC=3(如图2),试探究EG FH之间有怎样的数量关系,并证明你的结论;(2)如果把条件中的“ EGL FH'改为“ EG与FH的夹角为45°”,并假设正方形ABC啲边长为1,FH的长为(如图3),试求EG勺长度.10.如图,P为正方形ABC啲边BCh—动点(P与B C不重合),连接AP,过点B乍BQLAP交CD于点0,将厶BQ(沿Bc所在的直线对折得到△ BQC ,延长QC交BA的延长线于点M(1)试探究AP与Be的数量关系,并证明你的结论;(2)当AB=3, BP=2PC 求QM勺长;(3)当BP=m PC=n寸,求AM勺长.第6 页共26 页11.如图,在矩形ABC中,点E为CE上一点,将△ BCE沿BE翻折后点C恰好落在AD⅛上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.⑴证明:四边形CEF是菱形;⑵ 若AB=8 BC=10,求四边形CEFG勺面积;⑶ 试探究当线段AB与BC满足什么数量关系时,BG=CG请写出你的探究过程.12.四边形ABCD是正方形,点E在边BC上(不与端点B C重合),点F在对角线AC上,且EF 丄AC,连接AE,点G是AE的中点,连接DF、FG2)求证: DF=(3)将图1中的△ CEF 绕点C 按顺时针旋转,使边CF 的顶点F 恰好在正方形 ABCD 勺边BC 上(如 图2),连接AE 、点G 仍是AE 的中点,猜想BF 与FG 之间的数量关系,并证明你的猜想.1)若 AB=7 BE= ,求FG 的长;FG ;13.△ ABC^n△ DEF都是边长为6cm的等边三角形,且A D B、F在同一直线上,连接CD BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm △ ABC沿着AF的方向以每秒Icm的速度运动,设△ ABC运动的时间为t 秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可第10 页共26 页13.△ ABC^n△ DEF都是边长为6cm的等边三角形,且A D B、F在同一直线上,连接CD BF.能,说明理由.第11 页共26 页14.已知E,F分别为正方形ABCD勺边BC,CD上的点,AFQE相交于点G,当E,F分别为边BC,CD的中点时,有AF=DE,AF⊥ DE成立.试探究下列问题:(1)如图①,若点E不是边BC的中点,F不是边CD的中点,且CE=DF上述结论是否仍然成立?(请直接回答“成立”或“不成立”,不需要证明)(2)如图②,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF此时,上述结论是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;⑶如图③,在⑵ 的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQl “矩形、菱形、正方形”中的哪一种,并证明你的结论.15.如图,在Rt△ ABCK∠ B=90°, AC=60cm ∠ A=60°,点D从点C出发沿CA方向以4cm∕s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm∕s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E运动的时间是ts .过点D乍DF⊥ BC于点F,连接DE EF.(1)用t的代数式表示:AE= ____ ; DF= ______ ;(2)四边形AEFD^够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△ DE为直角三角形?请说明理由.1∙解:(1) 当四边形 ABQP 是矩形时,BQ=AP 即:t=8 - t ,解得t=4 .答:当t=4时,四边形 ABQR 是矩形;(2) 设t 秒后,四边形 AQCPl 菱形当AQ=CQ 即F =8- t 时,四边形AQCP 为菱形.解得:答:当t=3时,四边形 AQCPl 菱形;2∙ ( 1)证明:T 直线 m∕/ AB ∙∙∙ EC// AD又 τ∠ ACB=90 ,∙∙∙ BC⊥ AC 又 τ DEL BC, ∙ DE// AC.∙∙∙ EC / AD, DE// AC,:四边形 ADEC 是 平行四边形.∙ CE=AD(2) 当点D 是AB 中点时,四边形 BECDl 菱形.证明:T D 是AB 中点,DE// AC (已证),∙ F 为BC 中点,∙ BF=CF•••直线 m∕/ AB,∙∙∙∠ ECF=∠ DBF T ∠ BFDg CFE •△ BFD^△ CFE ∙ DF=EF V DEL BC, ∙ BC 和DE 垂直且互相平分.•••四边形 BECDl 菱形.(3) 当∠ A 的大小是45°时,四边形 BECD 是正方形.理由是:T ∠ ACB=90 , ∠ A=45°,∙∠ ABC 玄A=45°,∙ AC=BCT D 为 BA 中点,∙ CDL AB,∙∙∙∠ CDB=90 ,T 四边形BECD 是菱形,•四边形 BECDl 正方形,即当∠ A=45°时,四边形 BECDI 正方形.3.解:(1)根据题意得:矩形 ABC 啲边AD=2, AB=4;故答案为:2; 4;(2)当点P 在C →B 运动过程中,PB=8-x,∙∙∙ y=&× 4×( 8 — x ),即 y=-2x+16 (6≤ X ≤ 8), 正确作出图象,如图所示:参考答案t=3 .(3)当t=3时,CQ=5则周长为:4CQ=20cm 面积为: 4× 8 — 2×-- 2 × 3× 4=20 APB-4∙解: (1) V 四边形AEFG是菱形,∙∙∙∠AEF=180 - ∠ EAG=60 ,∙∙∙∠ CEF=Z AEC-∠ AEF=60 ,故答案为:60 ° ;⑵ ①V四边形ABCE是平行四边形,∙∠DAB=180 -∠ ABC=60 ,V四边形AEFG是菱形,∠ EAG=120 , ∙∠ FAE=60 ,∙∠FAD=Z EAB②作FM⊥ BC于M FN丄BA交BA的延长线于N,则∠ FNB=Z FMB=90 , ∙∠NFM=60 ,又∠ AFE=60 ,∙∠ AFN=Z EFMV EF=EA ∠ FAE=60 AEF为等边三角形,∙FA=FE[2ΛFN=ZEΨIB在△ AFN和△ EFM中,__ ji ∙. _. L ,•••△ AFN^△ EFM(AAS)IFA-FE•FN=FM 又FMI BC FN丄BA•点F在∠ ABC的平分线上;⑶ V四边形AEFG是菱形,∠ EAG=120 ,•∠ AGF=60 ,∙∠ FGE玄AGE=30 ,•四边形AEGH为平行四边形,•GE// AH•∠ GAH∠ AGE=30 , ∠ H=∠ FGE=30 ,∙∠ GAN=90 ,又∠ AGE=30 , ∙GN=2AN• ∠ DAB=60 , ∠ H=30° ,∙∠ ADH=30 , ∙AD=AH=GJE•四边形ABCD为平行四边形,∙BC=AD∙BC=GE•四边形ABEH为平行四边形,∠ HAE∠ EAB=30 , •平行四边形ABEN为菱形,∙AB=AN=NE ∙GE=3ABBCAB:■解:(1) S∆ABc=S 四边形AFBD)理由:由题意可得:AD// EQ则S^ ADF=S△ABD,故S^ ACF=SX ADl=S△ABD,贝S^ ABt=S 四边形AFBD(2)△ ABC为等腰直角三角形,即:AB=AC ∠ BAC=90 ,理由如下:∙∙∙ F 为BC的中点,∙∙∙CF=BF I CF=AD ∕∙ AD=BF又∙∙∙AD// BF, ∙四边形AFBD为平行四边形,∙∙∙ AB=AC F为BC的中点,∙AF⊥ BC, ∙平行四边形AFBD为矩形τ∠ BAC=90 , F 为BC的中点,∙AF=BC=BF∙四边形AFBD为正方形;(3)如图3所示:由(2)知,△ ABC为等腰直角三角形,AF⊥ BQ设CF=k,则GF=EF=CB=2K由勾股定理得:CG= k,∙∙∙ CG= CF.6.解:(1)如图1 中,•••四边形ABCD是菱形,∙∙∙AB=BC=CD=AD=10AB∕/ CD第17 页共26 页∙∙∙ PD=4,∙∙∙ PC=6 I PB 丄 CDPB⊥ AB ∕∙∠ CPB=∠ ABP=90 ,在 RT△ PCB 中,τ∠ CPB=90 P C=6, BC=IQ ∙ PB=J 昭?代唧]O J ? =8,在 RT △ ABP 中,∙∙∠ ABP=90 , AB=1Q PB=8,∙ PA ^^i ^P 2 =^Ll . (2)△ OMN 是等腰三角形•理由:如图2中,延长PM 交BC 于E.∙四边形 ABCD 是菱形,• AC ⊥ BD, CB=CD∙ CP=CE CML PE, ∙ PM=ME ∙ PN=NB7∙ ( 1)证明:∙ DEL Bq ∙∠ DFB=90 ,∙∠ ACB=90 , ∙∠ ACB ∠ DFB ∙ AC// DE∙ MIN/ AB 即CE// AD ∙四边形 ADEC 是平行四边形,∙ CE=AD(2) 解:四边形 BECD 是菱形,理由是:∙ D 为AB 中点,∙ AD=BD∙ CE=AD ∙ BD=CE ∙ BD// CE ∙四边形 BECD 是平行四边形, ∙∠ ACB=90 , D 为 AB 中点,∙ CD=BD ∙ ?四边形 BECD 是菱形;(3) 当∠ A=45时,四边形 BECD 是正方形,理由是:解:∙∠ ACB=90 , ∠ A=45°, ∙∠ ABC ∠ A=45°, ∙ AC=BC∙ D 为 BA 中点,∙ CDLAB ∙∠ CDB=90 ,∙四边形BECD 是菱形,∙菱形 BECD 是正方形,即当∠ A=45时,四边形 BECD 是正方形• 8∙ 解:抿据题胃得;P42lp c ς=3i,则FRAD PA=IS 儿CI)如虱 过D 点、作DE 丄EC 于E,则四边形ABED 为拒册…-DE=AB=乱血,Jω=BE=12cκ,⅛ RtΔθE 中』', + ZCED=90-"・ DC=IQE it. DE=Scm 3 /-EC=Λ∕-D .∖0C=BE+EO18cm τ故答秦为 18;⑵IAD "DC, ZB=9C o 二当FEQ 时,四边形咖A 为矩形, PCCECD I CB∙ PE ⊥ AC, ∙ PE// BD ,∙ CP=CE ∙ PD=BE∙ BO=OD BN=NP ∙ ON=PD, ∙ ON=MN OMN 是等腰三角形^2t=lS-3t,解得t=^jb 故当伕晋秒时,四边形PQB 直为柜形』故答乘为普』C3)①当P"Q 3 "CD 时,如團,7AD //K J /.四边形CDrQ J ⅛∏亍四边形, 121'.P J Q J =CD, DP j=Cζ∖ .∖12-Ξt=3t, /.t=-⅛S⅛②如團」梯形PDCQ 是等腰梯形BL PQ6 易证」四边形PDEF 星矩形,/.EI ⅛I)P=12- 2t,易证,∆CDE ⅛≤∆QPF j .'.I TQ=CE=S J241∖(X=Fq ⅛Γ-KΓ=6+12- Ξt -⅛=3t j 二 t=千5〔4 4QC 杲等腰三角形时‘分三种情况讨论?① 3 QC=IIC 时,即 31=10, Λl=~f‰J ,St② 当 MJ=W? IFJ,专=G f .∙.i=Λjg o ς③ 当QD=QC 时「航■存 J 「■苦牛,丄罚 n9. ( 1)结论:EG FH=3: 2证明:过点A 作AM/ HF 交BC 于点M 作AN// EG 交CD 勺延长线于点N,如图1:∙∙∙ AM=HF AN=EG T 长方形 ABCD ∙∙∙∠ BAD 玄 ADN=90 ,∙∙∙ EG 丄 FH,∙∙∙∠ NAM=90 , ∙∠ BAM ∠ DAN •△ ABMhA ADN ∙ AM:AN=AB:AD T AB=2BC=AD=3 ∙ EG:FH=1.5;(2)解:过点A 作AM/ HF 交B(于点M 过点A 作AN// EG 交CDF 点N,如图2:,∙∙∙在 Rt △ ABM 中,BM=0.5将厶∙∙∙ AB=1, AM=FH=ANt绕点A旋转到△ APB∙∙∙ EG与FH的夹角为45°,∙∠ MAN=45 , ∙∠ DAN+∠ MAB=45即∠ PAM∠ MAN=45 ,从而△ APM^△ ANM ∙PM=NM设DN=X 贝U NC=I— x, NM=PM=0.5+在Rt△ CMN^, (0.5 +x) 2=0.25+(1 - x)2,解得x=1∕3 ,,答:EG的长为∙EG=AN=第20 页共26 页10.11.⑴ 证明:根据翻折的方法可得EF=EC ∠ FEG=/ CEG又V GE=GE EFG^△ ECG√∙ FG=GC.•••线段FG是由EF绕F旋转得到的,∙∙∙ EF=FG.∙∙∙ EF=EC=FG=GC t四边形FGC是菱形.(2)连接FC交GE于O点•根据折叠可得BF=BC=IO.:AB=8∙在Rt △ ABF中 ,根据勾股定理得AF=6. ∙FD=AD- AF=IO- 6=4.设EC=X 则DE=8- X, EF=x,在Rt△ FDE中, FD2+ DE=EF,即42+ (8-x) 2=X2.解得x=5.即CE=5.S菱形CEFG=CE∙ FD=5× 4=20.3)当时,BG=CG理由:由折叠可得BF=BC ∠ FBE=∠CBE,•••在Rt△ABF中,,∙∙∙BF=2AF.∙∙∙∠ ABF=30又τ∠ ABC=90 ,∙∠ FBE=Z CBE=30 , EC=0.5BE.∙∙∙∠ BCE=90 ,∙∠ BEC=60 .又':GC=CE •△ GC为等边三角形. ∙GE=CG=CE=O∙5BE∙∙ G为BE的中点.∙CG=BG=Q.5BE.12.13.(1)证明:•••△ ABC和^ DEF是两个边长为6cm的等边三角形,∙∙∙ BC=DE ∠ ABC=/ FDE=60 ,二BC// DE 二四边形BCDE是平行四边形;(2)解:(a)当t=2秒时,?BCDE是菱形,此时A与D重合,∙CD=DE∙?ADEC是菱形;(b)若平行四边形BCDE是矩形,则∠ CDE=90 ,如图所示:∙∠CDB=90 - 60° =30° 同理∠ DCA=30 =∠ CDB ∙AC=AD 同理FB=EF, ∙ F 与B重合,∙t= (6+2)÷ 1=8秒,∙当t=8秒时,平行四边形BCDE是矩形.14.解:⑴成立.⑵成立•理由:I四边形ABCD为正方形,∙AD=DC∠ BCD∠ ADC=90 . 在△人。

八年级下四边形培优题

八年级下四边形培优题

四边形培优题一.选择题1.如图,将ABC △沿DE 折叠,使点A与BC 边的中点F 重合,下列结论中:①EF ∥AB 且AB EF 21=;②∠BAF=∠CAF ;③DE AF S ADFE ⋅=21四边形④∠BDE+∠FEC=2∠BAC ,正确的个数是( ) A .1B .2C .3D .42.如图,在Rt ABC ∆中,,AB AC =D E 、是斜边BC 上两点,且45,DAE ∠=将ADC∆绕点A 顺时针旋转90°后,得到,AFB ∆连接,EF 下列结论:①;AED AEF ∆≅∆ ②△ABE ≌△ACD ③ABC ∆的面积等于四边形AFBD 的面积;④222DE DC BE =+ ⑤BE+DC=DE 其中正确的是( )A .①②④B .③④⑤C .①③④D .①③⑤3.如图,分别以Rt ABC ∆的斜边AB 、直角边AC 为边向外作等边ABD ∆和,ACE ∆F 为AB的中点,连接DE,EF, EF 与AC 交于点,O DE 与AB 交于点,G 连接,OG 若 30,BAC ∠=下列结论:①;DBF EFA ∆≅∆②;AD AE =③;EF AC ⊥④4;AD AG =⑤AOG ∆与EOG ∆的面积比为1:4.其中正确结论的序号是( ) A .①②③ B .①④⑤ C .①③⑤ D .①③④4.如图,在正方形ABCD 中,对角线AC 、BD 交于点D ,CE 平分,AC D ∠分别交AD 、BD 于,//E G EF AC 、交CD 于F ,连接OE 下列结论:①EF=AE,②∠AOE=∠AEO,③AE OG 21=,④DCE ACE S S ∆∆=2,⑤AB=()12+DG 其中正确的是( )A.①③⑤B.①②④ C .①③④ D.②③⑤5、如图,在Rt △ABC 中,∠C=90°,AC=BC ,AB=8,点D 为AB MDN绕点D 旋转,分别交AC 于点E ,交BC 于点F ①AE=CF ②EC+CF=24 ③DE=DF ④若△ECF 的面积为一个定值,则EF 的长也是一个定值 A . ①②B .①③C .①②③D .①②③④B C F AB C D E F3题E O FA DB C G4E6.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45o;②GF ∥DE;③2OH+DH=BD;④⑤213:+=∆∆BGC BEC S S .其中正确的结论是( ) A.①②③ B.①②④ C.①②⑤ D.②④⑤ 7、如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC=2DG ;②GDH GHD ∠=∠;③DHGE CDG S S 四边形=∆;④图中有8个等腰三角形。

第18章平行四边形(解答题培优)2022—2023学年人教版数学八年级下册

第18章平行四边形(解答题培优)2022—2023学年人教版数学八年级下册

人教版八年级下册数学:平行四边形(解答题培优)姓名:得分:日期:1、如图,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,并且DE⊥AB,若AB=4,求:(1)∠ABC的度数;(2)对角线AC的长;(3)菱形ABCD的面积.2、如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=40∘,求∠A的度数;(2)若AB=10,BC=16,CE⊥AD,求▱ABCD的面积.3、如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度F(0∘<F<90∘),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△FFF≌△FFF;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,当G点在何位置时四边形AEBD是矩形?请说明理由并求出点H的坐标.4、如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立;(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.5、如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,求图中阴影部分的面积.6、一位同学拿了两块45∘的三角尺△FFF、△FFF做了一个探究活动:将△FFF的直角顶点M放在△FFF的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△FFF,则重叠部分的面积为 ______ ,周长为 ______ ;(2)将图1中的△FFF绕顶点M逆时针旋转45∘,得到图2,此时重叠部分的面积为 ______ ,周长为 ______ ;(3)如果将△FFF绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.7、如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,EF=6,求:①BO的长;②菱形AFCE的面积.8、如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:AC=BE;(2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形.9、如图,已知矩形ABCD的两条对角线相交于O,∠FFF=30∘,AB=2.(1)求AC的长.(2)求∠AOB的度数.(3)以OB、OC为邻边作菱形OBEC,求菱形OBEC的面积.10、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,FF=√2,求EB的长.FF,E是AC的中点,11、如图,FF//FF,且FF=12(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△FFF添加什么条件,为什么?12、如图,在△FFF中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.(3)在(2)的条件下,要是四边形ADCF为正方形,在△FFF中应添加什么条件,请直接把补充条件写在横线上______ (不需说明理由).13、如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且AB=4,BC=8.理解与作图:(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.14、已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,EF=6,求菱形AFCE的面积.15、如图,在△FFF中,∠FFF=90∘,FF⊥FF,FF平分∠BAC交CD于F,EG⊥AB于G,求证:四边形CEGF是菱形.16、如图,△FFF中,点O是边AC上一个动点,过O作直线FF//FF,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△FFF满足什么条件时,四边形AECF是正方形?17、已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.求证:AP=EF.。

人教版-八年级数学下册-第18章-平行四边形培优练习(含答案)

人教版八年级数学下册第18章平行四边形培优练习(含答案)一、单选题(共有9道小题)1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三角形是否都为直角2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()…A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AD=2,则AC的长是()《A.2 B.4 C..4.下列说法正确的是()A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形,D.对角互补的平行四边形是矩形5.下列命题是假命题的是()A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形6.在Rt△ABC中,∠ACB=90°,AC=BC,CD是斜边AB的中线,若AB=,则点D到BC的距离为()D.27.下列命题是真命题的有()①对顶角相等;%ODBA②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。

A .1个 B .2个 C .3个 D .4个8.如图,已知点P 是矩形ABCD 内一点(不含边界),设1=PADθ∠,2=PBA θ∠,3=PCB θ∠,4=PDC θ∠,若∠APB =80°,∠CPD =50°,则( )A .1423()()30+-+=θθθθ︒B .2413()()40+-+=θθθθ︒>C .1234()()70+-+=θθθθ︒D .1234()()180+++=θθθθ︒9.如图,四边形ABCD 是矩形,AB=6cm ,BC=8cm ,把矩形沿直线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,连接AE.下列结论中结论正确的个数有 ( ) ①△FBD 是等腰三角形; ②四边形ABDE 是等腰梯形; ③图中有6对全等三角形; ④四边形BCDF 的周长为532; ⑤AE 的长为145cm.|A .2个B .3个个D .5个二、填空题(共有8道小题)10.如图,□ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使□ABCD 是矩形.11.如图,在矩形ABCD 中,AB <BC ,AC,BD 相交于点O ,则图中等腰三角形的个数是__。

八年级数学下《四边形》培优练习卷

八年级数学下《四边形》培优练习卷一、选择题1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形2.如图,在△ABC,∠ACB=90°中,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形A CEB的周长。

A.4 B.10+ 4 C. 10+2 D. 23.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE= ( )A.30° B.22.5° C.15° D.以上都不对4.如图,将矩形ABCD沿AE折叠,若∠BAD'=30°,则∠AED' 等于 ( )A.30° B.45° C.60° D.75°第6题5.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是 ( ) A.1.6 B.2.5 C.3 D.3.46.平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD五等分点,点B1,B2和D1,D2分别是BC和DA三等分点,若四边形A4B2C4D2面积为1.则平行四边形ABCD面积为 ( )A.2 B.35C.53D.157.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EB的长为()A.1 B.4C.4﹣2D.4﹣4第7题二、填空题8.在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为______.9.矩形的两条对角线的夹角为60°,一条对角线与较短边的和为15,则较长边的长为_______.10.已经△ABC中,∠C=90°,C=10,a:b=3:4 ,则a= b=11.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为度时,四边形ABFE为矩形.第11题第12题第13题第14题12.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F.连接CE,则CE的长是_______.13.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_______厘米.14.如图,△ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③CEBFSSCEDBFD=∆∆;④EF∥BC.其中正确的是_______.15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,7=∆ABCS,DE=2,AB=4,则AC长为.三、解答题16.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.17.已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=8,CD=1,求ED的长.18.如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、CD分别交于点E、F.求证:∠BEN=∠NFC. (提示:连结AC并取中点)19.如图,在Rt⊿ABC中,∠B=90°,AC=100cm,BC=80cm,点P从点A开始沿边AB向点B以1cm/s的速度运动,同时,另一点Q由点B开始沿边BC向点C以1.5cm/s的速度运动.(1)20s后,点P与点Q相距 cm.(2)在(1)的条件下,若P、Q两点同时在直线PQ上相向而行,多少秒后,两点相遇?(3)多少秒后,AP=CQ?20.△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线..AC、直线..BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),①试判别△DEF的形状,并说明理由;②判断四边形ECFD的面积是否发生变化,并说明理由.(2)设直线..ED交直线..BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;D DEADEDA。

八年级初二数学 数学平行四边形的专项培优练习题(含答案

八年级初二数学 数学平行四边形的专项培优练习题(含答案一、解答题1.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.2.如图1,ABC ∆是以ACB ∠为直角的直角三角形,分别以AB ,BC 为边向外作正方形ABFG ,BCED ,连结AD ,CF ,AD 与CF 交于点M ,AB 与CF 交于点N .(1)求证:ABD FBC ∆≅∆;(2)如图2,在图1基础上连接AF 和FD ,若6AD =,求四边形ACDF 的面积.3.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC 的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.4.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.5.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.6.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.7.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.8.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.9.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .(1)①求证:四边形BFDE是菱形;②求∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.10.已知三角形纸片ABC的面积为48,BC的长为8.按下列步骤将三角形纸片ABC进行裁剪和拼图:第一步:如图1,沿三角形ABC的中位线DE将纸片剪成两部分.在线段DE上任意..取一点F,在线段BC上任意..取一点H,沿FH将四边形纸片DBCE剪成两部分;第二步:如图2,将FH左侧纸片绕点D旋转180°,使线段DB与DA重合;将FH右侧纸片绕点E旋转180°,使线段EC与EA重合,再与三角形纸片ADE拼成一个与三角形纸片ABC 面积相等的四边形纸片.图1 图2(1)当点F,H在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)112;(2)112或4;(3)四边形PBQD不能成为菱形【分析】(1)由∠B=90°,AP∥BQ,由矩形的判定可知当AP=BQ时,四边形ABQP成为矩形;(2)由(1)可求得点P 、Q 与点A 、B 为顶点的四边形为平行四边形;然后由当PD=CQ 时,CDPQ 是平行四边形,求得t 的值;(3)由PD ∥BQ ,当PD=BQ=BP 时,四边形PBQD 能成为菱形,先由PD=BQ 求出运动时间t 的值,再代入求BP ,发现BP≠PD ,判断此时四边形PBQD 不能成为菱形;设Q 点的速度改变为vcm/s 时,四边形PBQD 在时刻t 为菱形,根据PD=BQ=BP 列出关于v 、t 的方程组,解方程组即可求出点Q 的速度.【详解】(1)如图1,∵∠B=90°,AP ∥BQ ,∴当AP=BQ 时,四边形ABQP 成为矩形,此时有t=22﹣3t ,解得t=112. ∴当t=112时,四边形ABQP 成为矩形; 故答案为112; (2)如图1,当t=112时,四边形ABQP 成为矩形, 如图2,当PD=CQ 时,四边形CDPQ 是平行四边形,则16﹣t=3t ,解得:t=4, ∴当t=112或4时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形; 故答案为112或4; (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD=BQ=BP 时,四边形PBQD 能成为菱形.由PD=BQ ,得16﹣t=22﹣3t ,解得:t=3,当t=3时,PD=BQ=13,,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为vcm/s 时,能够使四边形PBQD 在时刻ts 为菱形,由题意,得162216t vtt -=-⎧⎪⎨-=⎪⎩62t v =⎧⎨=⎩. 故点Q 的速度为2cm/s 时,能够使四边形PBQD 在某一时刻为菱形.【点睛】此题属于四边形的综合题.考查了矩形的判定、菱形的判定以及勾股定理等知识.注意掌握分类讨论思想与方程思想的应用是解此题的关键.2.(1)详见解析;(2)18【分析】(1)根据正方形的性质得出BC=BD ,AB=BF ,∠CBD=∠ABF=90°,求出∠ABD=∠CBF ,根据全等三角形的判定得出即可;(2)根据全等三角形的性质得出∠BAD=∠BFC ,AD=FC=6,求出AD ⊥CF ,根据三角形的面积求出即可.【详解】解:(1)四边形ABFG 、BCED 是正方形,AB FB ∴=,CB DB =,90ABF CBD ∠=∠=︒,ABF ABC CBD ABC ∴∠+∠=∠+∠,即ABD CBF ∠=∠在ABD ∆和FBC ∆中,AB FB ABD CBF DB CB =⎧⎪∠=∠⎨⎪=⎩()ABD FBC SAS ∴∆≅∆;图1 图2(2)ABD FBC ∆≅∆,BAD BFC ∴∠=∠,6AD FC ==,180AMF BAD CNA ∴∠=︒-∠-∠ 180()BFC BNF =︒-∠+∠1809090=︒-︒=︒AD CF ∴⊥-ACD ACF DFM ACM ACDF S S S S S ∆∆∆∆∴=++四边形11112222AD CM CF AM DM FM AM CM =⋅+⋅+⋅-⋅ 1133(6)(6)1822CM AM AM CM AM CM =++---⋅= 【点睛】本题考查了正方形的性质,全等三角形的性质和判定,三角形的面积等知识点,能求出△ABD ≌△FBC 是解此题的关键.3.(1)ΔDPM,ΔFPG ;等腰直角;(2)线段PG 与PC 的位置关系是PG ⊥PC ;PG PC =3;(3)213【分析】(1)延长GP 交DC 于点M ,由Р是线段DF 的中点,//DC CF ,可得∠MDP=∠GFP ,DP=FP ,利用ASA 可证明△DPM ≌△FPG ;可得DM=GF ,MP=GP ,根据正方形的性质可得CM=CG ,即可证明△CMG 是等腰直角三角形,即可得答案;(2)如图,延长GP 交DC 于点H ,利用ASA 可证明△GFP ≌△HDP ,可得GP =HP ,GF =HD ,进而根据菱形的性质可证明△CHG 是等腰三角形,根据等腰三角形“三线合一”的性质可得PG ⊥PC ,∠HCP=∠GCP ,由∠ABC=60°可得∠HCG=120°,进而可得∠CGP=30°,根据含30°角的直角三角形的性质及勾股定理即可得答案;(3)利用线段的和差关系可求出图2中CG 的长,由(2)可知∠CGP=30°,根据含30°角的直角三角形的性质即可求出CP 的长;在图3中,延长GP 到N ,使GP=PN ,连接DN 、CN 、CG ,过N 作NK ⊥CD ,交CD 延长线于K ,利用SAS 可证明△FGP ≌△DNP ,可得GF=DN ,∠GFP=∠NDP ,根据角的和差关系可得∠CDN=120°,根据平角的定义可得∠GBC=120°,利用菱形的性质及等量代换可得DN=GB ,利用SAS 可证明△NDC ≌△GBC ,可得CN=CG,∠DCN=∠BCG,根据等腰三角形的性质可得PC⊥GN,根据角的和差关系可得∠NCG=120°,进而可得出∠CNP=30°,可得PC=12CG,根据平角的定义可得∠KDN=60°,即可得出∠KND=30°,根据含30°角的直角三角形的性质可得得出KD的长,利用勾股定理可求出KN的长,再利用勾股定理可求出CN的长,根据含30°角的直角三角形的性质即可得出PC的长.【详解】(1)如图,延长GP交DC于点M,∵Р是线段DF的中点,四边形ABCD、BEFG是正方形,点,,A B E在同一条直线上,∴//DC CF,DP=FP,CD=BC,FG=BG,在△DPM和△FPG中,MDP GFP DP FPDPM FPG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DPM≌△FPG,∴DM=FG,KP=GP,∴CD-DM=BC-BC,即CM=CG,∴△CMG是等腰直角三角形,∴PG⊥PC,PG=PC.故答案为:ΔDPM,ΔFPG;等腰直角(2)猜想:线段PG与PC的位置关系是PG⊥PC;PGPC3.如图,延长GP交DC于点H,∵P是线段DF的中点,∴FP=DP,∵四边形ABCD和四边形BEFG是菱形,∴CD//AB,CF//BE,CD=CB,GF=GB,∵点A B E、、在一条直线上,∴DC∥GF,∴∠GFP=∠HDP,在△GFP和△HDP中,GFP HDP FP DPGPF HPD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△GFP≌△HDP,∴GP=HP,GF=HD,∴CD-DH=CB-GB,即CG=CH,∴△CHG是等腰三角形.∴PG⊥PC,(三线合一),∠HCP=∠GCP,∵∠ABC=∠BEF=60°,∴∠HCG=120°,∴∠CGP=12(180°-120°)=30°,∴CG=2PC,∴PG=2222(2)3CG PC PC PC PC-=-=,∴PGPC=3.(3)如图2,∵AB=6,BE=2,∴CG=AB-BE=4,由(2)可知∠CGP=30°,PG⊥PC,∴PC=12CG=2,如图3,延长GP到N,使GP=PN,连接DN、CN、CG,过N作NK⊥CD,交CD延长线于K,在△DNP和△FGP中,DP FPNPD GPFPN PG=⎧⎪∠=∠⎨⎪=⎩,∴△DNP≌△FGP,∴DN=GF=BG=BE=2,∠NDP=∠GFP,∵四边形ABCD和四边形BEFG是菱形,∴CD//AB,EF//BC,∵点A、B、G在一条直线上,∴DC∥EF,∴∠CDP=∠EFP,∵∠ABC=∠BEF=60°,∴∠EFG=∠CBG=120°,∴∠NDP+CDP=∠GFP+∠EFP=∠EFG=120°,即∠NDC=120°,∴∠KDN=60°,∠KND=30°,∴KD=12DN=1,NK=223DN KD-=,∴CK=CD+KD=7,∴CN=22CK NK+=213,在△CDN和△CBG中,CD BCCDN CBGND BG=⎧⎪∠=∠⎨⎪=⎩,∴CN=CG,∠DCN=∠BCG,∴PC⊥GN,∠DCN+∠NCB=∠BCG+∠NCB=∠DCB=120°,即∠NCG=120°,∴∠CNP=12(180°-∠NCG)=30°,∴PC=12CN=13.故答案为:213【点睛】本题考查正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质及勾股定理,正确作出辅助线、熟记30°角所对的直角边等于斜边的一半的性质及全等三角形的判定定理是解题关键.4.(1)CE=CF且CE⊥CF,理由见解析;(2)见解析;(3)10【分析】(1)根据正方形的性质,可证明△CBE≌△CDF(SAS),从而得出CE=CF,∠BCE=∠DCF,再利用余角的性质得到CE⊥CF;(2)延长AD至M,使DM=BE,连接CM,由△BEC≌△DFC,可得∠BCE=∠DCF,即可求∠GCF=∠GCE=45°,且GC=GC,EC=CF可证△ECG≌△GCF(SAS),则结论可求.(3)过点C作CF⊥AD于F,可证四边形ABCF是正方形,根据(2)的结论可得DE=DF+BE=4+DF,根据勾股定理列方程可求DF的长,即可得出DE.【详解】解:(1)CE=CF且CE⊥CF,证明:如图1,∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,又∵BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF,∠BCE=∠DCF,∵∠BCD=∠BCE+∠ECD=90°,∴∠ECD+∠DCF=90°,即CE⊥CF;(2)延长AD至M,使DM=BE,连接CM,∵∠GCE=45°,∴∠BCE+∠GCD=45°,∵△BEC≌△DFC,∴∠BCE=∠DCF,∴∠DCF+∠GCD=45°,即∠GCF=45°,∴∠GCE=∠GCF,且GC=GC,CE=CF,∴△GCE≌△GCF(SAS),∴GE=GF,∴GE=GD+DF=BE+GD;(3)如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=12,∴四边形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE ,∴DE=4+DF ,在△ADE 中,AE 2+DA 2=DE 2.∴(12-4)2+(12-DF )2=(4+DF )2.∴DF=6,∴DE=4+6=10.【点睛】本题是四边形综合题,考查了正方形的性质,勾股定理,全等三角形的判定与性质,四边形的面积,熟练掌握正方形的性质是解题的关键.5.(1)①证明见详解;②45PAQ ∠=︒,见解析;(2)5.【分析】(1)①只要证明//PB AC 即可解决问题;②如图2中,连接QC ,作DT DQ ⊥交QC 的延长线于T ,利用全等三角形的性质解决问题即可;(2)如图3中,延长EH 交BC 于点G ,设AE=x ,由题意易得AB=BC=CF=EG=3x ,然后可得CG=2x ,HG=3x-3,CH=3x-1,利用勾股定理求解即可.【详解】(1)①证明:四边形ABCD 是正方形,∴//B DP C ,45DAC ∠=︒,∴135PAC ∠=︒45APB ∠=︒,∴+180APB PAC ∠∠=︒,∴//PB AC∴四边形APBC 是平行四边形; ②四边形PADQ 是平行四边形,∴DQ//,//,AP AD PQ AD PQ BC ==,AD//B C ,∴,//PQ BC PQ BC =,∴四边形PQCB 是平行四边形,∴QC//BP ,∴45APQ DQC ∠=∠=︒,90ADC QDT ∠=∠=︒,∴DQ=DT ,45,T DQT ADQ CDT ∠=∠=︒∠=∠,AD=DC ,∴ADQ CDT ≌,∴45AQD T ∠=∠=︒,AP//DQ ,∴45PAQ DQA ∠=∠=︒;(3)CH=5,理由如下:如图3所示:延长EH 交BC 于点G ;四边形ABCD 是正方形,∴AB=BC ,90D ∠=︒, 又EH=3,FH=1,EH ⊥AD ,∴EH//CD ,∴90HGC ∠=︒设AE=x ,1,3AE CF BC CF ==,∴AB=BC=CF=EG=3x , ∴CG=2x ,HG=3x-3,CH=3x-1 在Rt HGC △中,()()22222243331CG HG CH x x x +=+-=-即,解得121,2x x ==当x=1时,AB=3(不符合题意,舍去);当x=2时,AB=6,∴CH=5.故答案为5.【点睛】本题主要考查正方形的综合问题、三角形全等及勾股定理,关键是利用已知条件及四边形的性质得到它们之间的联系,然后利用勾股定理求解线段的长即可.6.(1)见解析;(2)MN 2=ND 2+DH 2,理由见解析;(3)EG=4,MN=52【分析】(1)根据高AG 与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解. (2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设EG=BE=x ,根据正方形的边长得出CE ,CF ,EF ,在Rt △CEF 中利用勾股定理得到方程,求出EG 的长,设MN=a ,根据MN 2=ND 2+BM 2解出a 值即可.【详解】解:(1)在Rt △ABE 和Rt △AGE 中,AB=AG ,AE=AE ,∴Rt △ABE ≌Rt △AGE (HL ).∴∠BAE=∠GAE .同理,∠GAF=∠DAF .∴∠EAF =12∠BAD =45°; (2)MN 2=ND 2+DH 2.∵∠BAM=∠DAH ,∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN ,又∵AM=AH ,AN=AN ,∴△AMN ≌△AHN (SAS ).∴MN=HN ,∵∠BAD=90°,AB=AD ,∴∠ABD=∠ADB=45°,∴∠HDN=∠HDA+∠ADB=90°,∴NH 2=ND 2+DH 2,∴MN 2=ND 2+DH 2;(3)∵正方形ABCD 的边长为12,∴AB=AG=12,由(1)知,BE=EG ,DF=FG .设EG=BE=x ,则CE=12-x ,∵GF=6=DF ,∴CF=12-6=6,EF=EG+GF=x+6,在Rt △CEF 中,∵CE 2+CF 2=EF 2,∴(12-x )2+62=(x+6)2,解得x=4,即EG=BE=4,在Rt △ABD 中, 22AB AD +2,在(2)中,MN 2=ND 2+DH 2,BM=DH ,∴MN 2=ND 2+BM 2.设MN=a ,则a 2=()(2212222a+, 即a 2=()(22232a +, ∴a=52MN =52【点睛】本题考查正方形的性质,四边相等,对角线平分每一组对角,以及全等三角形的判定和性质,勾股定理的知识点等.7.(1)15,8;(2)PE PF CG +=,见解析;(3)53;(4)4 【分析】 解决问题(1)只需运用面积法:ABC ABP ACP S S S ∆∆∆=+,即可解决问题;(2)解法同(1);(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,由等边三角形的性质得出152BM BC ==,由勾股定理得出2253AM AB BM =-=,得出ABC ∆的面积12532BC AM =⨯=,由ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积1111()2532222BC PE AC PF AB PG AB PE PF PG =⨯+⨯+⨯=++=,即可得出答案; (4)过点E 作EQ BC ⊥,垂足为Q ,易证BE BF =,过点E 作EQ BF ⊥,垂足为Q ,由解决问题(1)可得PG PH EQ +=,易证EQ DC =,BF DF =,只需求出BF 即可.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =,∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴358CG PE PF =+=+=.故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===,∴ABC ∆是等边三角形,∵AM BC ⊥, ∴152BM BC ==, ∴222210553AM AB BM =-=-=,∴ABC ∆的面积11105325322BC AM =⨯=⨯⨯=, ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++ 253=,∴22535310PE PF PG ⨯++==. (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒,∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠,∵90C ∠=︒,∴2222534DC DF FC =-=-=,∵EQ BC ⊥,90C ADC ∠=∠=︒,∴90EQC C ADC ∠=︒=∠=∠,∴四边形EQCD 是矩形,∴4EQ DC ==,∵//AD BC ,∴DEF EFB ∠=∠,∵BEF DEF ∠=∠,∴BEF EFB ∠=∠,∴BE BF =,由解决问题(1)可得:PG PH EQ +=,∴4PG PH +=,即PG PH +的值为4.【点睛】本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.8.(1)12;(2)2S 1=36 +S 2.【分析】(1)根据已知条件证得四边形ABOC 是正方形,在点B 左侧取点G ,连接AG ,使AG=AE ,利用HL 证得Rt △ABG ≌Rt △ACE ,得到∠GAB=∠EAC,GB=CE ,再利用45DAE ︒∠=证得△GAD ≌△EAD ,得到DE=GB+BD ,由此求得DOE ∆的周长;(2) 在OB 上取点F ,使AF=AE ,根据HL 证明Rt △ABF ≌Rt △ACE ,得到∠FAE=∠ABC=90︒,再证明△ADE ≌△ADF ,利用面积相加关系得到四边形AEDF 的面积=S △ACE +S 四边形ACOF +S △ODE ,根据三角形全等的性质得到2S △ADE =S 正方形ABOC +S △OD E ,即可得到2S △ADE =36 +S △ODE .【详解】(1)∵点A 的坐标为(6,6)-,AB x ⊥轴,AC y ⊥轴,∴AB=BO=AC=OC=6,∴四边形ABOC 是菱形,∵∠BOC=90︒,∴四边形ABOC 是正方形,在点B 左侧取点G ,连接AG ,使AG=AE ,∵四边形ABOC 是正方形,∴AB=AC ,∠ABG=∠ACE=90︒,∴Rt △ABG ≌Rt △ACE ,∴∠GAB=∠EAC,GB=CE ,∵∠BAE+∠EAC=90︒,∴∠GAB+∠BAE=90︒,即∠GAE=90︒,∵45DAE ︒∠=∴∠GAD=45DAE ︒∠=,又∵AD=AD,AG=AE ,∴△GAD ≌△EAD ,∴DE=GD=GB+BD,∴DOE ∆的周长=DE+OD+OE=GB+BD+OD+OE=OB+OC=6+6=12(2) 2S 1=36 +S 2,理由如下:在OB 上取点F ,使AF=AE ,∵AB=AC ,∠ABF=∠ACE=90︒,∴Rt △ABF ≌Rt △ACE ,∴∠BAF=∠CAE,∴∠FAE=∠ABC=90︒,∵∠DAE=45︒,∴∠DAF=∠DAE=45︒,∵AD=AD ,∴△ADE ≌△ADF ,∵四边形AEDF 的面积=S △ACE +S 四边形ACOF +S △ODE ,∴2S △ADE =S 正方形ABOC +S △OD E ,∴2S △ADE =36 +S △ODE.即:2S 1=36 +S 2【点睛】此题考查三角形全等的判定及性质,根据题中的已知条件证得三角形全等,即可利用性质得到边长相等,面积相等的关系,(2)中需根据面积的加减关系进行推导,这是此题的难点.9.(1)①证明见解析;②60EBF ∠=︒;(2)3IH FH =;(3)222EG AG CE =+. 【分析】(1)①由DOE BOF ∆≅∆,推出EO OF =,OB OD =,推出四边形EBFD 是平行四边形,再证明EB ED =即可.②先证明2ABD ADB ∠=∠,推出30ADB ∠=︒,延长即可解决问题.(2)3IH FH =.只要证明IJF ∆是等边三角形即可.(3)结论:222EG AG CE =+.如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,先证明DEG DEM ∆≅∆,再证明ECM ∆是直角三角形即可解决问题.【详解】(1)①证明:如图1中,四边形ABCD 是矩形,//AD BC ∴,OB OD =,EDO FBO ∴∠=∠, 在DOE ∆和BOF ∆中,EDO FBO OD OBEOD BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE BOF ∴∆≅∆,EO OF ∴=,OB OD =,∴四边形EBFD 是平行四边形,EF BD ⊥,OB OD =, EB ED ∴=,∴四边形EBFD 是菱形.②BE 平分ABD ∠,ABE EBD ∴∠=∠,EB ED =,EBD EDB ∴∠=∠,2ABD ADB ∴∠=∠,90ABD ADB ∠+∠=︒,30ADB ∴∠=︒,60ABD ∠=︒,30ABE EBO OBF ∴∠=∠=∠=︒,60EBF ∴∠=︒.(2)结论:3IH FH =.理由:如图2中,延长BE 到M ,使得EM EJ =,连接MJ .四边形EBFD 是菱形,60B ∠=︒,EB BF ED ∴==,//DE BF ,JDH FGH ∴∠=∠,在DHJ ∆和GHF ∆中,DHG GHF DH GHJDH FGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, DHJ GHF ∴∆≅∆,DJ FG ∴=,JH HF =,EJ BG EM BI ∴===,BE IM BF ∴==,60MEJ B ∠=∠=︒,MEJ ∴∆是等边三角形,MJ EM NI ∴==,60M B ∠=∠=︒在BIF ∆和MJI ∆中,BI MJ B M BF IM =⎧⎪∠=∠⎨⎪=⎩,BIF MJI ∴∆≅∆,IJ IF ∴=,BFI MIJ ∠=∠,HJ HF =,IH JF ∴⊥,120BFI BIF ∠+∠=︒,120MIJ BIF ∴∠+∠=︒,60JIF ∴∠=︒,JIF ∴∆是等边三角形,在Rt IHF ∆中,90IHF ∠=︒,60IFH ∠=︒,30FIH ∴∠=︒,3IH FH ∴=.(3)结论:222EG AG CE =+.理由:如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,90FAD DEF ∠+∠=︒,AFED ∴四点共圆,45EDF DAE ∴∠=∠=︒,90ADC ∠=︒,45ADF EDC ∴∠+∠=︒,ADF CDM ∠=∠,45CDM CDE EDG ∴∠+∠=︒=∠,在DEM ∆和DEG ∆中,DE DE EDG EDM DG DM =⎧⎪∠=∠⎨⎪=⎩,DEG DEM ∴∆≅∆,GE EM ∴=,45DCM DAG ACD ∠=∠=∠=︒,AG CM =,90ECM ∴∠=︒222EC CM EM ∴+=,EG EM =,AG CM =,222GE AG CE ∴=+.【点睛】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.10.28【分析】(1)利用旋转的旋转即可作出图形;(2)先求出ABC 的边长边上的高为12,进而求出DE 与BC 间的距离为6,再判断出FH 最小时,拼成的四边形的周长最小,即可得出结论.【详解】(1)∵DE 是△ABC 的中位线,1DE BC 4,AD BD,AE CE 2∴==== ∴四边形BDFH 绕点D 顺时针旋转,点B 和点A 重合,四边形CEFH 绕点E 逆时针旋转,点C 和点A 重合,∴补全图形如图1所示,(2)∵△ABC的面积是48,BC=8,∴点A到BC的距离为12,∵DE是△ABC的中位线,∴平行线DE与BC间的距离为6,由旋转知,∠DAH''=∠B,∠CAH'=∠C,∴∠DAH''+∠BAC+∠CAH'=180°,∴点H'',A,H'在同一条直线上,由旋转知,∠AEF'=∠CEF,∴∠AEF'+∠CEF'=∠CEF+∠CEF'=180°,∴点F,E,F'在同一条直线上,同理:点F,D,F''在同一条直线上,即:点F',F''在直线DE上,由旋转知,AH''=BH,AH'=CH,DF''=DF,EF'=EF,F''H''=FH=F'H',∴F'F''=2DE=BC=H'H'',∴四边形F'H'H''F''是平行四边形,∴▱F'H'H''F''的周长为2F'F''+2F'H'=4DE+2FH=2BC+2FH=16+2FH,∵拼成的所有四边形纸片中,其周长的最小时,FH最小,即:FH⊥BC,∴FH=6,∴周长的最小值为16+2×6=28,故答案为28.【点睛】此题是四边形综合题,主要考查了旋转的旋转和作图,判断三点共线的方法,平行四边形FH H F是平行四边形是解本题的关键.的判断和性质,判断出四边形'''''。

八下数学《平行四边形》培优试卷-(A4含答案)

《平行四边形》竞赛试题总分120分,时间120分钟一、填空题(共9小题,每小题3分,满分27分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_________.2.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是_________.(填一个即可)3.如图,已知矩形ABCD,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=____.4.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是_________;(2)当△ABC满足条件_________时,四边形ADEF为菱形;(3)当△ABC满足条件_________时,四边形ADEF不存在.1题2题3题4题5.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为________.6.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有_________对四边形面积相等;它们是_________.7.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为_________.8.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE 的度数为_________度.9.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为_________.6题7题8题9题二、选择题(共9小题,每小题3分,满分27分)10.如图,▱ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是()A.60°B.65°C.70°D.75°10题11题12题13题11.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()A.70°B.75°C.80°D.95°12.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A.2B.C.3D.13.如图,平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°14.四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是()A.两组角分别相等的四边形B.平行四边形C.对角线互相垂直的四边形D.对角线相等的四边形15.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.28415题16题16.如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12m B.20m C.22m D.24m17.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则()A.A D>BC B.A D<BCC.A D=BC D.A D与BC的大小关系不能确定18.已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形"这一结论的情况有()A.4种B.9种C.13种D.15种三、解答题(共10小题,满分66分)19.如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD 交于G,求证:GF∥AC.20.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.21.如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.22.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.23.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M 为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.24.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.25.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.26.阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_________S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_________个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_________个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?27.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.28.如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC 的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.参考答案与试题解析一、填空题(共9小题,每小题4分,满分36分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=.考点:矩形的性质;等腰三角形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级四边形数学培优(1)1、 如图,P 为矩形ABCD 内一点,3PA =,4PB =,5PC =,求PD 的长.2、 已知,矩形ABCD ,E 为AD 上一点,F 为CD 上一点,将矩形沿BE 折叠,则点A 恰好与点F 重合,且DEF ∆是等腰三角形,1DF =,求矩形ABCD 的面积.3、 如图,矩形ABCD ,CE BD ⊥,E 为垂足,延长EC 至点F ,使CF BD =,连接AF ,求BAF ∠DCB4、已知:如图,在矩形ABCD 中, E F 、分别是边BC 、AB 上的点,且EF ED =,EF ED ⊥,求证:AE 平分∠BAD5、 如图,点F 是正方形ABCD 的边CD 的中点,AF 交BC 延长线于点G ,点E 是CD 延长线上一点,点H 是AE 的中点.∠EAF=45°.(1)求BG DE FH-的值.(2)如图,点E 是正方形ABCD 的边AD 上一点,BE 的中垂线HF 交BC 的延长线于点F ,EF 交CD 于点G ,连接BG.①求∠EBG 的度数;②若正方形ABCD 的边长是3,求△DEG 的周长.(第23题)HGFE D CB AA BCDEFG H数学培优(2)1、 已知菱形的周长为2P ,两条对角线的和为m ,求菱形的面积.2、 已知菱形ABCD 的两条对角线2AC BD AB ⋅=,求菱形ABCD 中的一个钝角的度数.3、 已知,菱形ABCD 对角线AC BD 、交于O 点,延长到,使1AE AB =,延长DE CA 、交于点F ,求证:12OE DF =4、如图, E 为菱形ABOP 的对角线的交点,C 为AP 上一点,连结BC 交AO 于D ,且AD AC =(1)求证:1()2AE AB AC =+ .(2)若3AC =,5AB =,求三角形ABD 的面积.FOED_ BAPCGPEFD C BA PGFEDC BAPG FEDC BAP G FED C BA5、如图(1),在菱形ABCD 和菱形BEFG 中,点A 、B 、G 在同一条直线上,P 是线段DF 的中点,连接PG 、PC.(1)若∠ABC=∠BEF=60°,探究PG 与PC 的位置关系及PGPC的值。

(2)将图(1)中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰恰相好与菱形ABCD 的边AB 在同一条直线上,原题中的其它条件不变如图(2),问题(1)中的结论还成立吗?(3)将图(1)中的菱形BEFG 绕点B 顺时针旋转任意角度,原问题中其它条件不变,探究PG 与PC 的位置关系。

图(1) 图(2)数学培优(3)1、如图,已知O 为正方形ABCD 内一点,且15OAB OBA ∠=∠= 求证:OCD ∆ 为等边三角形2、如图,由直角三角形ABC 的两条直角边AC 、BC 分别向外作正方形ACDE 、BCFG ,且BE 、AG 分别与AC 、BC 相交于P 、Q ,求证:CP CQ =3、以正方形ABCD 的一边AB 为斜边向外作等腰Rt AEB ∆,O 为正方形ABCD 对角线交点,连接EO (1)求证:BEO AEO ∠=∠(2)若以AB 为斜边向外作任一直角三角形AEB ,连接EO ,是否仍有这样的结论?如果有,请证明;如果没有,请说明理由4、如图,O 为正方形ABCD 对角线交点,AG 平分BAC ∠,DE AG ⊥求证:12OF BE =GE5、已知,如图在正方形OADC 中,点C 的坐标为(0,4),点A 的坐标为(4,O ),CD 的延长线交双曲线32y x=于点B (1)求直线AB 的解析式(2) G 为x 轴的负半轴上一点连结CG ,过G(3)在(2)的条件下,延长DA 交CE 的延长线于F ,当G 在x 的负半轴上运动的过程中,请问 OG GFDF+的值是否为定值,若是,请求出其值;若不是,请说明你的理由y xGFEDCBAOy xG EDCBAO数学培优(4)1、如图,直角梯形ABCD 中,12AB BC ==,E 为BC 上一点,45EAD ∠=,10ED =,求AED ∆的面积2、如图,矩形ABCD 及等腰梯形ABDE ,其中//AE BD ,20BD =,10EA =,求AB 的长3、分别以ABC ∆的边AC 、BC 为一边,在ABC ∆外作正方形ACDE 和CBFG ,点P 为EF 中点,求证:点P 到边AB 的距离等于AB 的一半4、等腰梯形ABCD 中,//DC AB ,10AB =,4DC =,延长BD 到E ,使DE DB =,由E 作EF BA ⊥交BA 的延长线于点F ,求AF 的长C5、在直角梯形ABCD 中,//AD BC ,90ABC ∠=,AB BC =,E 为AB 边上一点,15BCE ∠=,且AE AD =,连接DE 交对角线AC 于H ,连接BH 求证:(1)ACD ACE ∆≅∆(2)CDE ∆为等边三角形 (3)EDC EHC S AHS CH∆∆= (4)求BEEH的值E数学培优(5)1、梯形ABCD ,//AD BC ,8AB =,3AD =,6CD =,90B C ∠+∠=,求梯 形ABCD 的面积2、如图,正方形ABCD 中,//AE BD ,BE BD =,=1AB ,求AE3、ABC ∆中,7AC=,4BC =,D 为AB 中点,E 为AC 上一点,且1902AED C ∠=+∠,求CE 的长4、如图四边形ABCD ,E F 、分别是AD 、BC 的中点,AB CD =,MN EF ⊥交AB 于M ,交CD 于N ,求证:AMN DNM ∠=∠5、如图1,正方形ABCD 中,点M 在AB 上,点N 在CD 上,点P 在BC 上,于,MN AP ⊥于点E (1)求证:AP MN =(2)如图2,点F 在MN 上,EF EA =,连CF ,点G 为CF 中点,连DG ,求证:DE =(3)在(2)的条件下,若DA DE =且32DN =,2BM =,求DG 的长数学培优(6)1、如图,E 为平行四边形ABCD 中BC 的中点,F 为AB 的三等分点,求:BEF ABCD S S ∆∆2、如图,正方形ABCD 中,//BE AC ,CA CE =,延长EC 交BA 的延长线于点F ,求证:AE AF =3、如图,P 点为□ABCD 内一点,过P 分别作AB 、AD 的平行线交平行四边形于E 、F 、G 、H 四点,若3AHPES =四边形,5S =四边形PFCG ,求PBD S ∆4、正方形ABCD 中,点E 为CD 中点,连AE ,点F 在AE 上,CF BC =,连BF (1)求证:BF AE ⊥(2)如图2,CM 平分FCD ∠,交BF 的延长线于M ,连AM ,求证:AM MC ⊥E(3)在(2)的条件下,BM 交AD 于点G ,若4AB =,2AG =,求CM 的长5、如图在平面直角坐标系中正方形OABC 的边OC ,OA 分别在x 轴正半轴上和y 轴的负半轴上,点B 在双曲线4y x=-上,直线y=kx -k (k>0)交y 轴与F (1)求点B 、E 的坐标(2)连结BE ,CF 交于M 点,是否存在实数k ,使得BE ⊥CF ?若存在,求出k 的值;若不存在,请说明理由(3)F 在线段OA 上,连BF ,作OM ⊥CF 于M ,AN ⊥CF 于N ,当F 在线段OA 上运动时(不与O 、A 重合),OM ANBN+的值是否变化;若变化,求出变化的范围;若不变,求其值M F E O C B A yx数学培优(7)1、 如图,四边形ABCD 的对角线AC BD =,E M N 、、分别为DG AD BC 、、的中点,=10DG cm ,求EF 的长度2、如图,ABCD 中,=60ABC∠,AE AD ⊥交BD 于点E ,2DE DC =,求DBC ∠ 的度数3、已知ABC ∆为等边三角形,D 为AB 上一点且//DH BC ,延长DH 到E ,使HE HC =,连接AE EC HB 、、,过点E 作//EF BH 交BC 于F ,连接AF ,25EFC ∠=,求AFB ∠的度数B FEB4、 已知ABCD ,连DB 并延长到点E ,使12BE BD =,过点A 作//AF BD ,交CE 的延长线于F (1) 求证:FE EC =(2) 若DB BC ⊥,2AD =,60DCB ∠=5、 如图,ABC ∆中,90C ∠=,点M 在BC 上,且BM AC =,点N 在AC 上,且AN MC =,AM BN 、相交于点P ,求DN MB数学培优(8)1、如图,ABCD 中,2BC AB =,DE AB ⊥,M 为BC 的中点,50BEM ∠= 求B ∠的度数2、 已知,ABCD 的周长为52,由点D 作DE AB ⊥于E 点,DF BC ⊥于F 点,5DE =,8DF =,求BE BF +的长3、 如图,在等腰ABC ∆中,延长AB 到点D ,延长CA 到点E ,连接DE ,恰好有AD BC CE DE ===,求BAC ∠4、如图,分别以AC BC 、边为腰,A B 、为直角顶点,作等腰Rt ACE ∆ 和Rt BCD ∆,M 为ED 中点,求AMB ∠5、如图,延长 ABCD 的各边,使A B C D 、、、分别为DE AF BG CH 、、、的中点,2ABCDS 四=4cm ,求EFGH S 四EDF。

相关文档
最新文档