Infosecurity杂志上的ZigBee的文章
基于ZigBee无线传感器网络的数据安全传输

Zg e 安全规范是对 IE 21.安全规范的补充和增强 , i e B E E8 . 4 0 5 它定义了设备入网认证 、 数据传输 、 密 钥建立、 密钥传递以及设备管理等安全服务 , 这些安全服务共 同构成 了 Z B e i e 设备 的安全体系。z邸e g i e 安全体系结构所提供的安全级别取决于对称密钥 的保管、 保护机制的运用以及密码机制和相关安全策略 的正确执行。 对安全体系结构 的信任最终简化为对安全的初始化和处理 , 以及密钥材料的安装和存储 。 然
层 cZg e 则 定义 了网络 层 ( wK) 2 iBe 1 , N 和应 用层 ( P )Zg e 技术适 用 于工业控 制 自动 化 、 线远程 监控 、 A S 。 iB e 无
医疗健康和智能建筑等领域 , 2 H 下它具有 20 bs 在 .G z 4 5 p 的最大传输速率圆 在低耗 电待 机模式下 , k , 2 节5 号干电池可支持 1 个节点工作 6 2 个月, 4 甚至更长时间嘲 。
而 ,i e 安全的实现需要很多资源 , Zg e B 其代价较高。在一些普通的应用 中, 尤其在无硬件 A S加密保护 E
时, 使用一些简单的加密算法可减少用于安全的计算量 , 使传输数据更及时。因此 , 本文提 出一种简单高
效的方法用来保护应用层数据的安全传输 。
1 Zg e i e安 全 服务 B
Zg e 协议栈提供的安全服务有数据加密、 i e B 完整性校检和鉴权等功能。 它的安全是基 于 A S 18 E 一2 加 密技术建立在协议栈的网络层和应用支持子层 ,定义了一系列的安全机制来保证数据 的完整性和真实 性。Z Be i e 提供的安全机制基于三个原则 : g 第一是简单性, 发送数据帧的层负责对该帧的安全处理 ; 第二
外文原文

基于ZigBee技术农业无线温湿度传感器网络与农业生产实践相结合,提出了农业无线和湿度传感器网络设计,它基于ZigBee技术。
我们使用基于CC2530 ZigBee协议作为数据的采集,传输和显示的传感器节点和协调器节点的芯片,目的是实现农业生产自动化和精确农业。
关键词:农业,生产,温度和湿度,无线网络,传感器。
1.简介目前,生产和生活的许多方面都需要提取和加工周围环境的温度和湿度信息。
在过去的技术是收集温度和湿度传感器的温湿度信息,并通过RS-485总线或现场总线再次发送数据到监控中心,所以你需要铺设大量的电缆来收集温度和湿度信息。
传统农业主要使用孤立的机械设备,没有沟通能力,主要依靠的人来监控作物生长状况。
然而,如果使用ZigBee无线传感器网络技术,农业将逐步转变为信息和生产的为主的生产模式,使用更加自动化,网络化,智能化的耕作方式,实现远程无线控制设备。
传感器可以收集信息,如土壤水分,氮浓度,pH值,降水,温度,空气湿度,空气压力等。
采集到的上述信息和所收集信息的位置被传递到中央控制设备用于通过ZigBee网络的决策和参考,所以我们可以提前和准确地识别用于帮助维持和提高作物产量的问题。
在许多面向数据的无线网络传输,低成本和复杂性的无线网络被广泛地使用。
2. ZigBee的技术特点ZigBee技术是一种短距离,低复杂度,低功耗,低数据速率,和低成本,双向无线通信技术,主要是采用在自动控制和远程控制的领域中,可以嵌入各种设备中,以实现他们的自动化[1]。
对于现有的各种无线通信技术,ZigBee技术将是最低功耗和成本的技术。
ZigBee的数据传输速率低,在10KB/ s到250KB/ s的范围内,并主要集中在低速率传输。
在低功耗待机模式下,两个普通的5号电池可以持续6至24个月。
ZigBee的数据传输速率低,并且它的协议很简单,所以它大大降低了成本。
而它的网络容量大,可容纳65000设备。
延迟时间很短,一般在15毫秒〜30毫秒。
ZigBee传感网的一种新型安全方案

ZigBee传感网的一种新型安全方案施鹏;赵华伟【摘要】For the ZigBee sensor network is still not safe enough, this article proposes a simple feasible security solution. It contains two parts. First, with the frame series number as the initial vector, using the AES algorithm encrypts /decrypts the cor responding PANID. Second, judge the validity of the frame received according to the series number. Actually,this solution has a significant effect on ensuring PANID security and preventing disguised attack.%研究了目前传感网存在的安全隐患,针对主要攻击手段提出一种简单可行的安全方案.该方案包括两部分:1.以帧的序列号为初始向量,采用AES算法对相应的PANID(个人区域网络标识符)进行加解密;2.根据接受帧的序列号对接收帧的有效性进行判断.由此,该方案在保证PANID的机密性、防止伪装攻击方面有着比较显著的效果.【期刊名称】《计算机系统应用》【年(卷),期】2011(020)008【总页数】4页(P204-207)【关键词】ZigBee;传感网;伪装攻击;安全方案;AES【作者】施鹏;赵华伟【作者单位】山东财政学院计算机信息工程学院,济南250014;山东财政学院计算机信息工程学院,济南250014【正文语种】中文1 引言近十年来,随着半导体技术和无线通信技术的不断发展,无线传感网的研究和应用正在世界各地蓬蓬勃勃地展开,具有成本低、体积小、功耗低的ZigBee技术无疑成为目前无线传感网络中,作为无线通信应用的首选技术之一。
值得关注的智蜂(ZigBee)技术

值得关注的智蜂(ZigBee)技术
程正
【期刊名称】《《集成电路应用》》
【年(卷),期】2005(000)001
【摘要】一种新的无线网络技术正悄然兴起,那就是ZigBee。
【总页数】3页(P69-71)
【作者】程正
【作者单位】上海贝岭股份有限公司
【正文语种】中文
【相关文献】
1.“紫蜂”(ZigBee)通信技术分析 [J], 吕海燕;马旭光
2.与蜂共舞——ZigBee技术一瞥 [J], 华中田
3.紫蜂(Zigbee)技术在海警部队舰艇设备保养和检修过程中的应用探索 [J], 马俊
4.基于ZigBee技术的病房环境智控系统设计 [J], 朱珍林
5.值得关注的智蜂(ZigBee)技术 [J], 程正
因版权原因,仅展示原文概要,查看原文内容请购买。
基于Zig Bee技术的无线火灾报警系统构建,带原文的外文翻译

原文Construction of Wireless Fire Alarm System Based onZigBee TechnologyMA Shu-guangDepartment of Fire Commanding, The Armed Police Academy, Langfang, 065000, ChinaAbstractThis paper points out the defect of wired automatic fire alarm system in used, and the necessity and possibility of constructing wireless fire alarm system. ZigBee technology based on IEEE802.15.4 and its characteristics are introduced. We also give out a method of constructing wireless fire alarm system based on ZigBee, including the design of construction, hardware and software.© 2011 Published by Elsevier Ltd.Keywords: ZigBee; wireless sensor; automatic fire alarm1. IntroductionMost fire sensor networks are built based on CAN bus in currently used automatic fire alarm system, in which signals and data are transferred through cable. Compared to traditional distributed cable network, bus network have greatly improved in expansibility and difficulty of construction and maintenance. But there are still some defects. The cables are easily to be eroded, bitten by rats, frayed, causing to high fault rate and high false alarm rate. The cable transmission distance is limited, usually no more than 1km, otherwise the attenuation and interference will lead to failure of system.We may conceive that, constructing automatic fire alarm system in wireless transmission way, can avoid above problems. A new way of wireless signal relay also can increase alarm signal transmission distance. With microelectronics and wireless communication technology development in recent years, this can become a reality. This paper introduces a method of constructing automatic fire alarm system based on ZigBee technology.2. ZigBee TechnologyZigBee is an alternative name of IEEE 802.15.4, a wireless network protocol released in 2005. ZigBee technology is a two-way radio communication technology, mainly suitable for automatic control and remote controlbased on wireless communication. It can be embedded in various consuming electronics, family and building automation equipment, industrial control equipment, various sensors equipment, also supporting the geographical location function. ZigBee has the following features:Low power dissipation. Due to short working cycle, it has low power dissipation in sending and receiving messages, and adopts a sleep mode. Two 5# dry batteries can support a node work for 6 to 24 months, or even longer.Low cost. Dramatically simplifying the protocol and reducing the requirement of communication controller, causes very low cost. The modules are cheap, and ZigBee protocol patent is free.Low transmission rate. It works at 250kbps rate, satisfying the application requirements oflow data transmission rate.Short distance. The transmission distance between adjacent nodes is usually 10 ~ 100m. If increase transmitting power of RF, the distance can be 1-3km. If through the routing and communication relay, the distance will be even more.Short time delay. ZigBee has optimization in time delay sensitive application, the communication delay and activated delay from dormancy is very short. Generally, from sleeping to working, just needs 15ms, and the nodes connecting to network needs only30ms.High capacity. ZigBee network can be constructed in different types. A master node can manage 254 nodes, still can extend to bigger network by each node. Total network can have 65535 nodes in theory.High security. ZigBee provides a three-level safe mode, including data integrity checking and authenticating, using Access Control List (ACL) to prevent illegal data acquisition, using Advanced Encryption Standard (AES128) symmetrical passwords to determine the security attribute flexibly.Free frequency band. It uses direct sequence spread spectrum technology, working at global free ISM 2.4GHz frequency band. Usually, application accord with the following conditions can consider using ZigBee technology:[2]the equipment cost low, transmitting data volume is smallequipment is small in size, unfit to place big battery or power moduleunfit to replace batteries frequently or inconvenience for charging repeatedlycover a wide range of communication, many equipment in network , but only for monitoring and controlling Automatic fire alarm system has almost all of the above characteristics, so it’s very suitable to be built based on ZigBee technology.3. System Designing3.1. System StructureFig.1 System structureThe system uses ZigBee wireless network to achieve fire monitoring and automatic alarming, mainly includes three parts: the data acquisition nodes, data sink nodes and fire control center, [3] as shown in Fig. 1.Data acquisition node is an embedded wireless sensor module integrating sensors, main control unit (MCU) and radio frequency (RF) communication functions. After preprocessing thefire signals detected by the sensors, itchooses an optimal path to send them to the data sink node. The data sink nodes sends the data from the sensor network to the fire control center. When necessary, the data may also be sent to the fire control center by external network, such as Internet. Fire control center consists of supervision host and server. The server is used to store fire control data, electronic map, etc. The supervision host is used for data processing and statistical evaluation, displaying alarm information through peripheral equipment, and for data management, data query and interaction with the user.3.2. System hardwareThe system hardware mainly consists of data collector and data receiver. Data collector consists of sensors, MCU, RF chips, etc. MCU and RF chips are connected by PCI bus, they constitute the wireless transmission module. With the same kind of wireless module, data receiver communicates with the PC through RS232 asynchronous serial interface. In one direction, the control signals are emitted from the host to the data collector in wireless way, in another direction, the collected data is uploaded to the host. When fire signal is detected by the sensors, the fire control center will process and statistically evaluate the data, and convert it to suitable alarming indicator according with the pre-set rules, then send out alarm signals.Diagram of the system hardware structure is shown in Fig. 2.Fig.2 System hardware structureMCU can choose 8 or 16-bit single-chip microcomputer with on-chip integrated ROM, such as MCS51 series, HCS08 series or MSP430 series MCU., Taking MC9S08GT60 for example, one type of HCS08 series, it works at 1.8V voltage, integrated 4KB RAM and 60KB Flash ROM, and integrated 8 channels 10-bit ADC, 2 SCI interface and 1 SPI interface. It also has corresponding internal clock module and background debug interface. [4] The MCU of the data collector receives the signal sent by the sensor, then sends it to RF chip after A/D conversion. While the MCU of the data receiver receives the data sent from the RF chip, and send it through RS232 interface to the up computer for further analysis. When necessary, it may also directly drive simple audible or visual alarm devices such as buzzer, LED, etc.RF chip can choose ZigBee wireless transceiver series, CC series of TI or MC series of Freescale. They both work at 2.4 GHz band. Taking MC13192 for example, it is a low cost, low power consumption, high performance RF chip accord with ZigBee standard. It mainly consists of analysis receiving-transmission unit, digital modems, onchip frequency synthesizer, power manager and MCU interface. It’s working band is 2.405 ~ 2.480 GHz, data transfer rate is250kbps, working frequency band can be divided into 16 channels, each channel bandwidth5MHz. Due to the low transmission rate and the large bandwidth of the channel, so the SNR is very high, anti-jamming capability is strong.External crystal provides the clock needed by MC13192, and the on-chip frequency synthesizer output signals provide the clock for MCU. Read-write operation on MC13192 is achieved through a standard four-wire SPI by the MCU. It should be pointed out that, most MCUs and RF chips produced by different companies can be collocated flexibly, but in practical engineering, it is suggested to use the products from same company in order to ensure the stability of the system. Also, embedded chips integrated MCU and RF chip can be adopted.3.3. System softwareSystem software includes three parts: wireless sensor node procedures, data sink node procedures and center monitoring procedures.Wireless sensor nodes periodically detect environmental parameters. When the system begins to work, MCUs and RF chips are initialized firstly, then chooses the channel, opens interrupt for receiving data. Then initialize ADC and collect data to process. If there is an alarm signal, the signal, sensor node address and the collected data will be combined as alarm data, and translated into ZigBee communication protocol packets. Selecting an optimal communication path, the packets are sent to the data sink node, and waiting for the returned confirmation. Thus, a whole ZigBee wireless communication is completed. After receiving the confirmation returned from the sink node, the sensor node will stay at low power mode automatically. In addition, when the sensor node receiving a request from the sink node, it can collect data immediately, in order to realize real-time, active monitoring. The sensor node procedure is shown in Fig.3.The sink node procedure is mainly to receive data from wireless sensor, confirming, then send it to the supervision host through RS232 interface.Located in the fire control center, the supervision host is used for receiving the data sent by the sink nodes, monitoring , alarming, and controlling working condition of the sensor nodes. The monitoring procedure in upper computer is designed based on serial communication.VC++ provides serial communication ActiveX can easily operate on serial port. Software sends request through serial port, indicating the data receiving process by a progress bar, and can display the data waveform through a display interface instantly, and save data to database for further analysis or inquiry at the same time.Fig. 3 Flow chart of sensor node procedure4. ConclusionThe wireless automatic fire alarm system constructed based on ZigBee overcomes the limitations of the cable alarm system and avoids high power consumption of the other wireless communications technology. Compared with existing wireless sensor network, it has some advantages such as low cost, high network capacity, long life. And system installation does less damage to buildings, conveniently to place nodes and maintenance. Avoiding the unsafe factors of fire, lightning strike in cable systems, it is suitable for various occasions, especially for fire control in museums, ancient building group , with a wide application prospect.翻译基于Zig Bee技术的无线火灾报警系统构建MA Shu-guang摘要本文指出了有线火灾自动报警系统在应用中的缺陷,以及构建无线火灾报警系统的必要性和可能性。
带认证的ZigBee密钥分配方案 - 电子与信息学报201209

第34卷第9期电子与信息学报Vol.34No.9 2012年9月 Journal of Electronics & Information Technology Sept. 2012带认证的ZigBee密钥分配方案郁滨杨同豪*(信息工程大学电子技术学院郑州 450004)摘要:针对ZigBee节点组网时缺乏身份认证,密钥分配安全性不足的问题,该文提出一种基于身份的无双线性对运算的ZigBee节点身份认证及密钥分配方案。
该方案继承了基于身份的认证方案的优点,在实现身份认证的同时完成了ZigBee密钥分配过程,具有较高的安全性和可扩展性。
实验结果表明,该文方案具有存储开销小、能耗低等优势。
关键词:身份认证;密钥分配;ZigBee;基于身份中图分类:TP309.1 文献标识码:A 文章编号:1009-5896(2012)09-2277-05 DOI: 10.3724/SP.J.1146.2012.00104A Key Distribution Scheme with Authentication for ZigBeeYu Bin Yang Tong-hao(Institute of Electronic Technology, Information Engineering University, Zhengzhou 450004, China)Abstract: ZigBee nodes are deficient in identity authentication and key distribution security. For purpose of solving those issues, an identity-based ZigBee identity authentication and key distribution scheme without weil pairing is proposed. This scheme bears the strongpoint of identity-based authentication scheme. The completion of ZigBee key distribution can be simultaneous with identity authentication implementation with high security and extensibility. Experiments show that the proposed scheme has the advantage of limited storage cost, low energy consumption etc..Key words: Identity authentication; Key distribution; ZigBee; Identity-based1引言ZigBee规范中采取的安全措施[1,2]能够满足一般网络通信的安全需求,但ZigBee网络在节点身份认证和密钥分配等方面仍存在诸多安全缺陷。
基于Modbus协议的ZigBee无线传感网络的研究
无线传感器网络,2009年,1,1-60,2009年4月在Sci Res在线发表(ht tp://w ww.Sci /jo urn al/wsn/)基于Modbus协议的ZigBee无线传感网络的研究远程测控研究所,重庆工学院,中国,重庆国家农业信息化工程技术研究中心,中国,北京电子邮件:yuchengbo@2009年1月17日接收,2009年3月3日修订,2009年3月5日接受摘要对于ZigBee无线传感网络的用户来说,它的信息传递缺乏互动性和自我约束的能力是显而易见的。
ZigBee无线传感器网络中的信息不能在一个友好的界面进行实时查看。
但如果把Modbus协议嵌入到ZigBee协议栈,这种方式下我们可以实现良好的互动并且信息也可以在一个友好的界面中查看,这种芯片包含地址的绑定机制、信息集中存储和灵活的监测,通过这些我们可以实时监测来自ZigBee无线网络信息,并在一个友好的界面中使用一些指令控制远程设备,这些可应用在中小型的ZigBee监测的无线传感器网络。
同时我们也可以把它应用在植物生理生态监测系统。
关键词: ModBus协议、ZigBee协议栈、监测1、引言无线ZigBee是一种低成本,低功耗的消费,双向无线通信技术[1,2],可广泛应用于电子消费产品、家庭和楼宇自动化、工业控制、PC外设、医用传感器的应用、玩具和游戏[3,4]。
现在ZigBee技术还可以用在农业监测和控制中[5]。
ZigBee无线通信对用户是透明的,这不方便用户知道实时系统的连续数据信息。
我们需要一个友好的界面观察无线网络的信息。
ModBus协议被广泛应用于工业监测和测试,这是一个应用层的消息传递协议,定位在OSI模型的第7层,为连接在不同类型的总线或网络[6]设备之间提供客户机/服务器通信。
在植物生理生态监测系统中,信息通过Modbus协议在协调器和PC之间进行传输,我们可以很容易地观察来自远程现场设备的实时数据。
本文主要介绍的是实现基于TI ZigBee协议栈的Modbus协议的方法,并提出了植物生理生态系统的硬件平台和测试结果。
ZigBee无线传感器网络链路层安全性分析与攻击检测中期报告
ZigBee无线传感器网络链路层安全性分析与攻击检测中期报告1. 前言本报告介绍了链路层安全性分析与攻击检测项目的中期进展。
该项目旨在研究无线传感器网络中链路层安全性问题,并提出有效的攻击检测和防御方案。
2. 工作综述在项目开始阶段,我们主要对ZigBee无线传感器网络的链路层协议进行了深入研究,分析了其中存在的安全隐患,并提出了一些预防措施和攻击检测方法。
具体来说,我们从以下几个方面展开工作:2.1. ZigBee协议分析我们仔细研究了ZigBee协议的链路层规范和安全规范,包括帧格式、帧字段、协议状态机、密钥管理等内容。
通过对协议的仔细分析,我们发现了一些潜在的安全问题,例如:- 伪造帧攻击:攻击者可以利用ZigBee协议中存在的漏洞,伪造有效的帧,将恶意数据注入到网络中去。
- 重放攻击:攻击者通过在网络中拦截和重放数据包,可以使网络发生不一致的状态,破坏其功能和性能。
- 密钥破解攻击:攻击者可以通过猜测密钥等方式,获取网络中的数据,对数据进行篡改和窃取。
这些攻击方式都可以对ZigBee网络的安全性造成较大的影响,因此我们需要采取相应的防御措施。
2.2. 安全隐患分析针对ZigBee网络存在的安全隐患,我们提出了一些预防措施和攻击检测方法,包括:- 使用安全设备:为了保证网络的安全性,首先需要使用可信的设备,这些设备需要实现ZigBee协议的安全规范,并具有可靠的身份验证机制、加密机制和防篡改机制。
- 密钥管理:在ZigBee网络中,密钥管理是关键的安全问题,我们需要采用合适的密钥协商方法,保证密钥的安全性和有效性。
- 数据包检测:针对攻击者可能采用的重放和伪造攻击,我们可以使用数据包检测技术进行检测,例如比较接收到的数据包的序号和时间戳等信息,来判断数据包是否合法。
3. 下一步工作在未来的工作中,我们将继续深入研究ZigBee协议的安全性问题,完善攻击检测和防御方案,计划在实际的网络环境中进行系统测试和评估。
基于ZIGBEE网络的智能家居无线网络课程设计论文
指导教师评阅书
指导教师评价:
一、撰写(设计)过程
1、学生在论文(设计)过程中的治学态度、工作精神
□ 优 □ 良 □ 中 □ 及格 □ 不及格
2、学生掌握专业知识、技能的扎实程度
□ 优 □ 良 □ 中 □ 及格 □ 不及格
3、学生综合运用所学知识和专业技能分析和解决问题的能力
作者签名:日期: 年 月 日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
由于智能家居是一个多行业交叉覆盖的系统工程,各个设备厂商按照不同的接口标准与协议生产设备,其结果是:不同设备之间的互连、互通变得非常困难。这种问题实际上就是由家居设备的通信协议标准没有统一造成的。在整个智能家居控制系统中,家庭网络是智能家居实现通信的基础,是住宅内部的神经系统,而通信协议又是其精髓所在,因此在智能居家系统的设计中,采用具有良好发展前景的通信协议具有重要的意义。
作者签名:日 期:
学位论文原创性声明
本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。
3、论文(设计说明书)所体现的整体水平
□ 优 □ 良 □ 中 □ 及格 □ 不及格
评定成绩:□优□良□中□及格□不及格
Zigbee课程设计论文
武汉工商学院信息工程学院物联网工程系项目名称:基于ZigBee的温度监控系统设计与实现学生姓名:牛超学号:********班级:15物联本2班指导教师:**2017年12月20日Zigbee应用课程设计目录摘要 (I)关键词 (I)1 绪论 (1)2 温度控制系统总体设计与实现 (1)2.1 系统整体结构 (1)2.2 系统实现功能 (1)2.3 方案具体流程 (1)3 温度检测系统工作原理 (4)3.1 Zigbee技术简介 (4)3.2 Zigbee协议栈结构 (4)3.3 Zstack协议栈结构 (5)3.4 串口工作原理 (6)3.5 单播广播原理 (6)3.6 无线温度数据采集原理 (6)3.7 OSAL工作原理 (7)4 系统硬件设计 (7)4.1 Zigbee硬件设计 (7)4.2 协调器节点设计 (8)4.3 终端节点设计 (9)4.3.1 温度传感器 (9)4.3.2 电机 (9)4.4 电源电路设计 (9)4.5 A/D转换电路设计 (10)4.6 RS232串口电路设计 (10)5 系统软件设计 (11)5.1 协调器相关程序分析 (11)5.2 终端相关程序分析 (12)5.2.1 温度传感器相关程序分析 (12)5.2.2 电机相关程序分析 (12)6 系统实现 (12)7 总结 (13)参考文献 (13)摘要本方案基于ZigBee技术设计了监测环境温度的无线传感网系统。
采用集成了无线射频芯片 CC2530 以及高集成度的数字温度传感器构建节点硬件,并实现了节点软件。
该系统由三部分组成:温度传感器,风扇,协调器。
温度传感器监测环境温度,若温度过高,启动风扇。
测试结果表明,本系统具有低功耗、低成本、易于维护扩展等优点。
该系统可以应用到智能家居领域从而节省人力和能源,具有非常广阔的应用前景和研究价值。
关键词:无线传感网;ZigBee;CC2530;温度采集1 绪论在生产和科学研究过程中的很多场合对环境的温湿度有较高的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Infosecurity Volume 4, Issue 3, April 2007, Pages 32–35
The need to accommodate resource and energy constrained nodes has resulted in a number of vulnerabilities and adversaries .... Hopefully, these shortcomings will be addressed in future versions of 802.15.4 and ZigBee standards.
ZigBee: A long way to go? The introduction of IEEE 802.15.4 low rate wireless personal area network (LR-WPAN) standard [1] was implemented for three reasons: the need for low-cost, low-power and short-range communication. While the 802.15.4 standard goes into great detail when describing the functionality of the physical (PHY) and medium access control (MAC) layer, security related issues received much less attention. Jelena Mišic explains… The standard outlines some basic security services at the MAC (or, more precisely, data link) layer that can be combined with advanced techniques from upper layers to implement a comprehensive security solution. For example, the recent ZigBee specification 【10】 implements a number of protocols— including security reated ones—that can be deployed in an 802.15.4 network.
The 802.15.4 specification In an IEEE 802.15.4 compliant WPAN, a central controller device (commonly referred to as the PAN coordinator) builds a WPAN with other devices within the personal operating space. The standard allows two topologies. The first is the peer-to-peer topology in which nodes can directly communicate with one another. The second is star topology, in which all communications, even those between the devices themselves, must go through the PAN coordinator. While the former topology may appear better suited to sensing tasks, it was recently shown that such networks with identical devices are not optimal in terms of power consumption 【4】. Therefore, we consider only sensor clusters that use the star topology in this analysis.
How does it work? The 802.15.4 networks with star topology operate in beacon enabled mode - channel time is divided into super-frames, bounded by beacon transmissions from the PAN coordinator 【1】. All communications in the cluster take place during the active portion of the superframe; the inactive portion may be used to switch to conserve power by switching devices to a low power mode. The active portion of each superframe is divided into equal slots which are further subdivided into backoff periods. Channel access is regulated through the CSMA-CA mechanism similar to 802.11 【1】. Since both packet transmissions and clear channel access (CCA) checks must be synchronized to the slot boundaries of backoff periods, this mechanism is designated as slotted CSMA-CA Data transfers in the downlink direction, from the coordinator to a node, must first be announced by the coordinator. The beacon frame contains the list of nodes that have pending downlink packets (Fig. 1b). When the node learns there is a data packet to be received, it transmits a request. The coordinator acknowledges the successful reception of the request and the coordinator then sends the packet using the slotted CSMA-CA. The recipient node will listen for the data packet for the period of a maximum frame response time, during which the coordinator must send the data frame.. The services listed in the box are typically implemented in hardware for performance reasons. Their use is optional. Individual security services may be combined into the so-called security suites, as a ‗set of operations to perform on MAC frames that provide security services‘ 【1】.
Figure 1. Data transfers in 802.15.4 PAN in beacon enabled mode. How does it operate? A device can choose to operate in unsecured mode, secured mode, and ACL mode. In unsecured mode, none of the services mentioned are available. In secured mode, the device may use one of the security suites supported by the standard 【1】, all of which use the Data Encryption service. A device operating in ACL mode can maintain a list of trusted devices from which it expects to receive packets. The access control service enables the receiver to filter received frames according to the source address listed in the frame. Without encryption, it is not possible to authenticate the true source of the data packet or to ascertain that the packet payload has not been modified in any way. While these services are useful, they are by no means sufficient. In particular, procedures for key management, device authentication, and freshness protection are not specified by the 802.15.4 standard. Hence, they must be implemented by the applications, or perhaps by another layer of network protocols running on top of 802.15.4 itself. A viable alternative for this task is the ZigBee protocol suite 【10】 developed by the ZigBee Alliance, an industry consortium working on developing network and Application Programming Interfaces (API) for wireless ad hoc and sensor networks. The ZigBee APIs include security extensions at different networking layers, using both symmetric and asymmetric key exchange protocols. Asymmetric key exchange protocol, which mainly rely on public key cryptography, are computationally intensive and their application in wireless sensor networks is only possible with devices that are resource rich in computation and power and connected through high bandwidth links. As many wireless sensor networks require extended low power operations which favor the use of simple, resource-constrained nodes, the protocols that rely on symmetric key exchange (which is computationally much simpler) are preferred. One such protocol is known as the Symmetric-Key Key Establishment (SKKE) protocol. In this protocol, the application support sublayer of the ZigBee specification defines the mechanism by which a ZigBee device may derive a shared secret key (link key) with another ZigBee device. Key establishment involves two entities, an initiator device and a responder device, and should be prefaced by a trust provisioning step in which trust information (a master key) provides a starting point for establishing a link key. The master key may be preinstalled during manufacturing, it may be installed by a trust center, or it may be based on user-entered data (e.g., PIN or password). In the following example, we assume that all the devices, including the PAN coordinator, have pre-installed master keys.