荆州市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
荆州市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

a
b2
第 4 页,共 14 页
荆州市第三中学校 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】D 【解析】 试题分析:因为直线 a P平面 ,直线 b 平面 ,所以 a // b 或与异面,故选 D. 考点:平面的基本性质及推论. 2. 【答案】 B 【解析】 【专题】二项式定理. 【分析】由已知得到展开式的通项,得到第 6 项系数,根据二项展开式的系数性质得到 n,可求常数项. 【解答】解:由已知( + )2n(n∈N*)展开式中只有第 6 项系数为 最大,
画出函数 y=tanx 与 y=x 的部分图象,如图所示; 在(0, )内,两函数的图象有交点, f(x)dx=0 成立,①满足条件; (ex+x)dx=(ex+ x2) =ea﹣e﹣a;
即存在 a>0,使
对于②,f(x)=ex+x, 对于③,f(x)=ln(
令 ea﹣e﹣a=0,解得 a=0,不满足条件; ﹣x)是定义域 R 上的奇函数, 且积分的上下限互为相反数, 所以定积分值为 0,满足条件; 综上,∃a>0,使 故选:B. 【点评】本题主要考查了定积分运算性质的应用问题,当被积函数为奇函数且积分区间对称时,积分值为 0, 是综合性题目. 10.【答案】D 【解析】解:模拟执行程序,可得程序的功能是计算并输出 y= 当 x<0,时﹣x=10,解得:x=﹣10 当 x≥0,时 x=10,解得:x=10 的值, f(x)dx=0 的函数是①③.
第 6 页,共 14 页
对于 D.取 y=﹣ 故选:C.
π,x=
,但是 sinx= ,siny=
,sinx>siny 不成立,不正确.
【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题. 9. 【答案】B 【解析】解:对于①,f(x)=xsinx, ∵(sinx﹣xcosx)′=xsinx, ∴ xsinxdx=(sinx﹣xcosx) =2sina﹣2acosa, 令 2sina﹣2acosa=0, ∴sina=acosa, 又 cosa≠0,∴tana=a;
荆州市第三中学2018-2019学年高三上学期11月月考数学试卷含答案

荆州市第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞2. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1 B.3⎛⎝ C.()1,33⎛⎫⎪ ⎪⎝⎭D .( 3. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.4. 在△ABC 中,已知D 是AB 边上一点,若=2,=,则λ=()A .B .C .﹣D .﹣5. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为()A. B . C .D .6. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 27. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.8. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A .100 B .150 C .200 D .2509. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .3110.与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A11.设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(-12.已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )A .f (x )=sin (3x+)B .f (x )=sin (2x+)C .f (x )=sin (x+)D .f (x )=sin (2x+)二、填空题13.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .14.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 .15.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 .16.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.17.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .18.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.三、解答题19.已知函数f (x )=|2x+1|,g (x )=|x|+a (Ⅰ)当a=0时,解不等式f (x )≥g (x );(Ⅱ)若存在x ∈R ,使得f (x )≤g (x )成立,求实数a 的取值范围.20.已知椭圆G :=1(a >b >0)的离心率为,右焦点为(2,0),斜率为1的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (﹣3,2). (Ⅰ)求椭圆G 的方程; (Ⅱ)求△PAB 的面积.21.已知函数f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3.(Ⅰ)当x ∈[0,]时,求函数f (x )的值域;(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,=2+2cos (A+C ),求f (B )的值.22.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.23.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.24.已知命题p :x 2﹣3x+2>0;命题q :0<x <a .若p 是q 的必要而不充分条件,求实数a 的取值范围.荆州市第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 2. 【答案】C 【解析】1111]试题分析:由直线方程1:L y x =,可得直线的倾斜角为045α=,又因为这两条直线的夹角在0,12π⎛⎫⎪⎝⎭,所以直线2:0L ax y -=的倾斜角的取值范围是03060α<<且045α≠,所以直线的斜率为00tan30tan 60a <<且0tan 45α≠1a <<或1a << C. 考点:直线的倾斜角与斜率. 3. 【答案】D4. 【答案】A【解析】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.5.【答案】B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x值为∴=,其中k∈Z取k=1,得φ=因此,f(x)的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin(ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.6.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B7.【答案】D.第Ⅱ卷(共110分)8.【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.9.【答案】C【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.10.【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.故选D.11.【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数, ,,,在是减函数,所以由得,,即,故选12.【答案】D【解析】解:由图象知函数的最大值为1,即A=1,函数的周期T=4(﹣)=4×=,解得ω=2,即f (x )=2sin (2x+φ),由五点对应法知2×+φ=,解得φ=,故f (x )=sin (2x+), 故选:D二、填空题13.【答案】()0,2x π∃∈,sin 1≥【解析】试题分析:“(0,)2x π∀∈,sin 1x <”的否定是()0,2x π∃∈,sin 1≥考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.14.【答案】 7+【解析】解:如图所示, 设∠APB=α,∠APC=π﹣α. 在△ABP 与△APC 中,由余弦定理可得:AB 2=AP 2+BP 2﹣2AP •BPcos α,AC 2=AP 2+PC 2﹣2AP •PCcos (π﹣α),∴AB 2+AC 2=2AP 2+,∴42+32=2AP 2+,解得AP=.∴三角形ABP 的周长=7+.故答案为:7+.【点评】本题考查了余弦定理的应用、中线长定理,考查了推理能力与计算能力,属于中档题.15.【答案】 [,4] .【解析】解:由题意知≤log2x ≤2,即log 2≤log 2x ≤log 24,∴≤x ≤4.故答案为:[,4].【点评】本题考查函数的定义域及其求法,正确理解“函数y=f (x )的定义域是[,2],得到≤log 2x ≤2”是关键,考查理解与运算能力,属于中档题.16.【答案】或 【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数是或. 考点:等差数列的性质.【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出150a d +=,所以60a =是解答的关键,同时结论中自然数是或是结论的一个易错点.17.【答案】 .【解析】解:∵=1﹣bi ,∴a=(1+i )(1﹣bi )=1+b+(1﹣b )i ,∴,解得b=1,a=2.∴|a ﹣bi|=|2﹣i|=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.18.1【解析】三、解答题19.【答案】【解析】解:(Ⅰ)当a=0时,由f(x)≥g(x)得|2x+1|≥x,两边平方整理得3x2+4x+1≥0,解得x≤﹣1 或x≥﹣∴原不等式的解集为(﹣∞,﹣1]∪[﹣,+∞)(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,即h(x)=,故h(x)min=h(﹣)=﹣,故可得到所求实数a的范围为[﹣,+∞).【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题.20.【答案】【解析】解:(Ⅰ)由已知得,c=,,解得a=,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.21.【答案】【解析】解:(Ⅰ)f(x)=4sinxcosx﹣5sin2x﹣cos2x+3=2sin2x﹣+3=2sin2x+2cos2x=4sin(2x+).∵x∈[0,],∴2x+∈[,],∴f(x)∈[﹣2,4].(Ⅱ)由条件得sin(2A+C)=2sinA+2sinAcos(A+C),∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),化简得sinC=2sinA,由正弦定理得:c=2a,又b=,由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA,解得:cosA=,故解得:A=,B=,C=,∴f(B)=f()=4sin=2.【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.22.【答案】【解析】解:(1)将点(0,4)代入椭圆C的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C 的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x ﹣3),… 设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y=(x ﹣3)代入椭圆C 方程,整理得x 2﹣3x ﹣8=0,…由韦达定理得x 1+x 2=3,y 1+y 2=(x 1﹣3)+(x 2﹣3)=(x 1+x 2)﹣=﹣.…由中点坐标公式AB 中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.23.【答案】(1)证明见解析;(2)弦长为定值,直线方程为1x =. 【解析】(2 ,进而得1a =时为定值.试题解析:(1)设直线AB 的方程为2my x =-,由22,4,my x y x =-⎧⎨=⎩得2480y my --=,∴128y y =-, 因此有128y y =-为定值.111](2)设存在直线:x a =满足条件,则AC 的中点112(,)22x y E +,AC =,因此以AC 为直径圆的半径12r AC ===E 点到直线x a =的距离12||2x d a +=-,所以所截弦长为===.当10a -=,即1a =时,弦长为定值2,这时直线方程为1x =.考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题. 24.【答案】【解析】解:对于命题p:x2﹣3x+2>0,解得:x>2或x<1,∴命题p:x>2或x<1,又∵命题q:0<x<a,且p是q的必要而不充分条件,当a≤0时,q:x∈∅,符合题意;当a>0时,要使p是q的必要而不充分条件,需{x|0<x<a}⊊{x|x>2或x<1},∴0<a≤1.综上,取并集可得a∈(﹣∞,1].【点评】本题考查必要条件、充分条件与充要条件的判断方法,考查了一元二次不等式的解法,是基础题.。
荆州市一中2018-2019学年高三上学期11月月考数学试卷含答案

荆州市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .42. 已知等差数列的公差且成等比数列,则( ) A .B .C .D .3. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 34. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )A. B. C. D.5. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%6. 复数z 满足(1+i )z=2i ,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.若,则等于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A. B. C. D.8. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .39. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cm B. C. D .26cm10.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A .2,3B .3,4C .3,5D .2,511.点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A. B. C. D.12.已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅二、填空题13.设椭圆E:+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 .14.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .15.在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD,则AD的长为.16.设函数f(x)=,则f(f(﹣2))的值为.17.经过A(﹣3,1),且平行于y轴的直线方程为.18.已知面积为的△ABC中,∠A=若点D为BC边上的一点,且满足=,则当AD取最小时,BD的长为.三、解答题19.已知等差数列{a n}的前n项和为S n,公差d≠0,S2=4,且a2,a5,a14成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)从数列{a n}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{b n},记该数列的前n项和为T n,求T n的表达式.20.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.21.已知矩阵A =,向量=.求向量,使得A 2=.22.已知集合A={x|>1,x ∈R},B={x|x 2﹣2x ﹣m <0}.(Ⅰ)当m=3时,求;A ∩(∁R B );(Ⅱ)若A ∩B={x|﹣1<x <4},求实数m 的值.23.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.24.如图,AB 是⊙O 的直径,C ,F 为⊙O 上的点,CA 是∠BAF 的角平分线,过点C 作CD ⊥AF 交AF 的延长线于D 点,CM ⊥AB ,垂足为点M . (1)求证:DC 是⊙O 的切线; (2)求证:AM •MB=DF •DA .荆州市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13..14.V15.5.16.﹣4.17.x=﹣3.18..三、解答题19.20.21.=22.23.24.。
北安市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

北安市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.函数的定义域是( )A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)2. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( ) A.B.C.D .23. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .44. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 5. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤6. 已知偶函数f (x )满足当x >0时,3f (x )﹣2f()=,则f (﹣2)等于( )A.B.C.D.7.若,,且,则λ与μ的值分别为( )A.B .5,2 C.D .﹣5,﹣28. 已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧qC .p ∧¬qD .¬p ∧¬q班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .1010.已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)11.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .12.用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .π B .2πC .4πD .π二、填空题13.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .14.若全集,集合,则15.函数f (x )=(x >3)的最小值为 .16.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e exx f x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.18.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .三、解答题19.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=. (1)求数列{}n a 的通项公式n a ;(2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .20.圆锥底面半径为1cm ,其中有一个内接正方体,求这个内接正方体的棱长.21.已知函数f (x )=﹣x 2+ax ﹣lnx (a ∈R ).(I )当a=3时,求函数f (x )在[,2]上的最大值和最小值; (Ⅱ)函数f (x )既有极大值又有极小值,求实数a 的取值范围.22.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.23.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围;⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.24.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .北安市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A【解析】解:由题意得:2x ﹣1≥0,即2x ≥1=20, 因为2>1,所以指数函数y=2x为增函数,则x ≥0.所以函数的定义域为[0,+∞)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.2. 【答案】B【解析】解:抛物线y 2=4x 的准线l :x=﹣1.∵|AF|=3, ∴点A 到准线l :x=﹣1的距离为3∴1+x A =3 ∴x A =2,∴y A =±2,∴△AOF 的面积为=.故选:B .【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A 的坐标是解题的关键.3. 【答案】C【解析】解:随机变量x 1~N (2,1),图象关于x=2对称,x 2~N (4,1),图象关于x=4对称,因为P (x 1<3)=P (x 2≥a ), 所以3﹣2=4﹣a , 所以a=3, 故选:C .【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.4. 【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x a f x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1考点:导数与函数的单调性. 5. 【答案】 D【解析】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D.6.【答案】D【解析】解:∵当x>0时,3f(x)﹣2f()=…①,∴3f()﹣2f(x)==…②,①×3+③×2得:5f(x)=,故f(x)=,又∵函数f(x)为偶函数,故f(﹣2)=f(2)=,故选:D.【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x>0时,函数f(x)的解析式,是解答的关键.7.【答案】A【解析】解:由,得.又,,∴,解得.故选:A .【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.8. 【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p :∀x ∈R ,2x <3x为假命题,则¬p 为真命题.令f (x )=x 3+x 2﹣1,因为f (0)=﹣1<0,f (1)=1>0.所以函数f (x )=x 3+x 2﹣1在(0,1)上存在零点, 即命题q :∃x ∈R ,x 3=1﹣x 2为真命题.则¬p ∧q 为真命题. 故选B .9. 【答案】【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p2=2,∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,由⎩⎪⎨⎪⎧y 2=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.10.【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf (x )<0的解为:或解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D .11.【答案】 A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.12.【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为:=4π故选:C.二、填空题13.【答案】12【解析】考点:球的体积与表面积.【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.14.【答案】{|0<<1}【解析】∵,∴{|0<<1}。
湖北省荆州市沙市2024-2025学年高三上学期11月月考数学试题含答案

2024—2025学年度上学期2022级11月月考数学试卷(答案在最后)命题人:考试时间:2024年11月26日考试时间120分钟试卷满分150一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,3,4A =,(){}2|log 12B x x =-≤,则A B 的元素个数为A .1B .2C .3D .42.已知复数z 在复平面内对应的点为(2,-1),则4iz z =-()A.1i+ B.3i+ C.1i- D.3i-3.等比数列{}n a 的各项均为正数,若1237a a a ++=,4322a a a =+,则789a a a ++=A .588B .448C .896D .2244.设等差数列{}n a 的前n 项和为n S ,已知774721S a =-,则3a =()A.-2B.-1C.1D.25.已知a ∈R ,函数()()e ,0,ln 1,0x a x f x x a x ⎧-≤⎪=⎨-+->⎪⎩在R 上没有零点,则实数a 的取值范围A .()0,+∞B .()1,+∞C .[){}1,0+ ∞D .(){}1,0+ ∞6.已知θ为第一象限角,且tan tan 03⎛⎫++= ⎪⎝⎭πθθ,则1cos21cos2+=-θθA .9B .3C .13D .197.已知等腰梯形的上底长为1,腰长为1,若以等腰梯形的上底所在直线为轴,旋转一周形成一个几何体,则该几何体表面积的最大值为()A. B.(2π+ C.(1π+ D.(3π8.若函数()()()sin cos 10f x x ωω=->在区间()0,2π恰有2个零点,则ω的取值范围是()A.π0,2⎛⎫ ⎪⎝⎭B.π3π,22⎛⎫ ⎪⎝⎭ C.π5π,22⎛⎫⎪⎝⎭ D.π,2⎛⎫+∞⎪⎝⎭二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()cos sin f x x x =⋅,则A .()f x 是偶函数B .()f x 的最小正周期为πC .()f x 的最大值为12D .()f x 在0,2⎡⎤⎢⎥⎣⎦π上单调递增10.记等比数列{}n a 的前n 项积为n T ,且63*,a a ∈N ,若5106T =,则36a a +的可能取值为()A.-7B.5C.6D.711.如图,圆锥SO 的底面直径和母线长均为,其轴截面为SAB △,C 为底面半圆弧AB 上一点,且2AC CB =,SM SC = λ,(01,01)SN SB =<<<<μλμ,则A .存在()0,1∈λ,使得BC AM ⊥B .当23=μ时,存在()0,1∈λ,使得//AM 平面ONCC .当13=λ,23=μ时,四面体SAMN D .当AN SC ⊥时,57=μ三、填空题:本题共3小题,每小题5分,共15分.12.已知点(),4A a 在抛物线24y x =上,F 为抛物线的焦点,直线AF 与准线相交于点B ,则线段FB 的长度为______.13.已知数列{}n a 是单调递增数列,其前n 项和为2n S An Bn =+(A ,B 为常数),写出一个有序数对(),A B =________,使得数列是等差数列.14.定义在R 上的函数()g x 满足()212y g x =+-是奇函数,则()g x 的对称中心为________;若()*123211111n n a g g g g n n n n n +⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+∈ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭N ,则数列{}n a 的通项公式为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数()ln f x ax x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当1x >时,()1f x <-,求a 的取值范围;16.(15分)如图,在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin sin sin sin A B B Cc a b++=-.(1)求A ;(2)若3,0BC BD AB AD =⋅=,2AD = ,将ABC V 沿AD 折成直二面角B AD C '--,求直线AB '与平面B CD '所成角的正弦值.17.(15分)已知*n ∈N ,数列{}n a 前n 项和为n S ,且满足21n n S a =-;数列{}n b 满足12b =,112n nb b +=-.(1)求数列{}n a 的通项公式;(2)是否存在实数λ,使得数列1n b ⎧⎫⎨⎬-⎩⎭λ是等差数列?如果存在,求出实数λ的值;如果不存在,请说明理由;(3)求使得不等式2n n nb a ≥成立的n 的最大值.18.(17分)已知椭圆C :()222210+=>>x y a b a b点()0,1A 在C 上,直线l 与C 交于不同于A 的两点M ,N .(1)求C 的方程;(2)若0AM AN ⋅=,求AMN 面积的最大值;(3)记直线AM ,AN 的斜率分别为1k ,2k ,若12116k k =-,证明:以MN 为直径的圆过定点,并求出定点坐标.19.(本题满分17分)一般地,任何一个复数i a b +(a ,b ∈R )可以写成()cos isin r θθ+,其中r 是复数的模,θ是以x 轴非负半轴为始边,射线OZ 为终边的角,称为复数的辅角.我们规定在02θπ≤<范围内的辅角称为辅角主值,通常记作arg z ,如arg10=,arg i 2π=,()arg 13π=.发现()()()()12111222121212cos sin cos sin cos isin z z r r r r θθθθθθθθ⋅=+⋅+=+++⎡⎤⎣⎦,就是说两个复数相乘,积的模等于各复数模的积,积的辅角等于各复数辅角的和.考虑如下操作:从写有实数0,1的三张卡片中随机抽取两张,将卡片上的两个数依次作为一个复数的实部和虚部.设n 为正整数,重复n 次上述操作,可得到n 个复数,将它们的乘积记为n z .(1)写出一次操作后所有可能的复数;(2)当2n =,记n z 的取值为X ,求X 的分布列;(3)求2n z 为实数的概率n Q .11月月考数学参考答案1.【答案】C 2.【答案】B 3.【答案】B4。
禹会区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

禹会区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10 C .8 D .62. 执行如图的程序框图,若输出i 的值为12,则①、②处可填入的条件分别为( )A .S384,2i i ≥=+ C .S 3840,2i i ≥=+3. 1000人参加考试,其数学考试成绩近似服从正态分布,即~X 150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总10分到110分之间的人数约为( ) (A ) 400 ( B ) 500 (C ) 600 (D ) 800 4. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是( ) A .y=﹣x+4 B .y=x C .y=x+4D .y=﹣x5. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种6. 若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 7. 下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内8. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9.设集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B=()A.{1,2} B.{﹣1,4} C.{﹣1,2} D.{2,4}10.若向量=(3,m),=(2,﹣1),∥,则实数m的值为()A.﹣B.C.2 D.611.若椭圆+=1的离心率e=,则m的值为()A.1 B.或C.D.3或12.如果a>b,那么下列不等式中正确的是()A.B.|a|>|b| C.a2>b2D.a3>b3二、填空题13.已知面积为的△ABC中,∠A=若点D为BC边上的一点,且满足=,则当AD取最小时,BD的长为.14.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有个直角三角形.15.长方体ABCD﹣A1B1C1D1的棱AB=AD=4cm,AA1=2cm,则点A1到平面AB1D1的距离等于cm.16.已知(x2﹣)n)的展开式中第三项与第五项的系数之比为,则展开式中常数项是.17.递增数列{a n}满足2a n=a n﹣1+a n+1,(n∈N*,n>1),其前n项和为S n,a2+a8=6,a4a6=8,则S10=.18.已知函数,则__________;的最小值为__________.三、解答题19.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧的中点;(Ⅱ)求证:BF=FG.20.(本题满分12分)在ABC ∆中,已知角,,A B C 所对的边分别是,,a b c ,边72c =,且tan tan tan 3A B A B +=-ABC ∆的面积为ABC S ∆=a b +的值.21.设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式 (2)设,数列的前项和为,求证:(3)设数列满足(),若数列是递增数列,求实数的取值范围。
荆州市民族中学2018-2019学年高三上学期11月月考数学试卷含答案
荆州市民族中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .6 2. 与椭圆有公共焦点,且离心率的双曲线方程为()A .B .C .D .3. 若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 24. 若如图程序执行的结果是10,则输入的x 的值是()A .0B .10C .﹣10D .10或﹣105. 已知直线与圆交于两点,为直线上任意34110m x y +-=:22(2)4C x y -+=:A B 、P 3440n x y ++=:一点,则的面积为( )PAB ∆A .B.C.D. 6. 已知数列{}满足().若数列{}的最大项和最小项分别为n a nn n a 2728-+=*∈N n n a M 和,则( )m =+m M A . B . C . D .21122732259324357. 已知数列{a n }中,a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .n ≤8?B .n ≤9?C .n ≤10?D .n ≤11?8. 以下四个命题中,真命题的是( )A .2,2x R x x ∃∈≤- B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++< C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+ D .已知,表示两条不同的直线,,表示不同的平面,并且,,则“”是m n αβm α⊥n β⊂αβ⊥ “”的必要不充分条件//m n 【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.9. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为()A .B .C .D .10.已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内11.(+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为()A .120B .210C .252D .4512.α是第四象限角,,则sin α=()A .B .C .D .二、填空题13.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 . 14.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .15.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 . 16.设抛物线的焦点为,两点在抛物线上,且,,三点共线,过的中点作24y x =F ,A B A B F AB M y轴的垂线与抛物线在第一象限内交于点,若,则点的横坐标为 .P 32PF =M 17.幂函数在区间上是增函数,则 .1222)33)(+-+-=m m x m m x f (()+∞,0=m 18.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .三、解答题19.(本小题满分12分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒成立.(1)求cos C 的取值范围;(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.20.已知数列a 1,a 2,…a 30,其中a 1,a 2,…a 10,是首项为1,公差为1的等差数列;列a 10,a 11,…a 20,是公差为d 的等差数列;a 20,a 21,…a 30,是公差为d 2的等差数列(d ≠0).(1)若a 20=40,求d ;(2)试写出a 30关于d 的关系式,并求a 30的取值范围;(3)续写已知数列,使得a 30,a 31,…a 40,是公差为d 3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? 21.【泰州中学2018届高三10月月考】已知函数.()(),,xf x eg x x m m R ==-∈(1)若曲线与直线相切,求实数的值;()y f x =()y g x =m (2)记,求在上的最大值;()()()h x f x g x =⋅()h x []0,1(3)当时,试比较与的大小.0m =()2f x e-()g x 22.如图,在平面直角坐标系xOy 中,以x 为始边作两个锐角α,β,它们的终边分别与单位圆交于A ,B 两点.已知A ,B 的横坐标分别为,.(1)求tan (α+β)的值; (2)求2α+β的值.23.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集;(2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.24.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A 万元,则超出部分按log 5(2A+1)进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出奖金y 关于销售利润x 的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?荆州市民族中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.2.【答案】A【解析】解:由于椭圆的标准方程为:则c2=132﹣122=25则c=5又∵双曲线的离心率∴a=4,b=3又因为且椭圆的焦点在x轴上,∴双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.3.【答案】A【解析】解:∵a<b<0,∴﹣a>﹣b>0,∴|a|>|b|,a2>b2,即,可知:B,C,D都正确,因此A不正确.故选:A.【点评】本题考查了不等式的基本性质,属于基础题.4.【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x <0,时﹣x=10,解得:x=﹣10当x ≥0,时x=10,解得:x=10故选:D . 5. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,之间的距离为,∴C m 1d =||AB ==m n 、3d '=PAB∆的面积为,选C .1||2AB d '⋅=6. 【答案】D 【解析】试题分析:数列,, n n n a 2728-+=112528++-+=∴n n n a 11252722n n n nn n a a ++--∴-=-,当时,,即;当时,,()11252272922n n n n n ++----+==41≤≤n n n a a >+112345a a a a a >>>>5≥n n n a a <+1即.因此数列先增后减,为最大项,,,最...765>>>a a a {}n a 32259,55==∴a n 8,→∞→n a n 2111=a ∴小项为,的值为.故选D.211M m +∴3243532259211=+考点:数列的函数特性.7. 【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n ≤9,故选B .【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.8. 【答案】D【解析】解:F1,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查计算能力.10.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型. 11.【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.【解析】解:∵α是第四象限角,∴sinα=,故选B.【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.二、填空题13.【答案】 .【解析】解:∵=2,由正弦定理可得:,即c=2a.b=2a,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.14.【答案】 (﹣∞,﹣1) .【解析】解:函数的定义域为{x|x>3或x<﹣1}令t=x2﹣2x﹣3,则y=因为y=在(0,+∞)单调递减t=x2﹣2x﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1)15.【答案】 (,+∞) .【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x >log a (log a e )时,f ′(x )>0,f (x )递增;0<x <log a (log a e ),f ′(x )<0,f (x )递减.则x=log a (log a e )时,函数f (x )取到最小值,故有﹣log a (log a e )>0,解得a >.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围. 16.【答案】2【解析】由题意,得,,准线为,设、,直线的方程为2p =(1,0)F 1x =-11(,)A x y 22(,)B x y AB ,代入抛物线方程消去,得,所以,.又(1)y k x =-y 2222(24)0k x k x k -++=212224k x x k ++=121x x =设,则,所以,所以.00(,)P x y 01212112()[(1)(1)]22y y y k x k x k =+=-+-=021x k =212(,P k k 因为,解得,所以点的横坐标为2.0213||112PF x k =+=+=22k =M 17.【答案】【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数是偶函数,则必为偶数.当是分数时,一般将其先化为根式,再判断;(2)若幂函()y xR αα=∈αα数在上单调递增,则,若在上单调递减,则;(3)在比较幂值()y x R αα=∈()0,+∞α0>()0,+∞0α<的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 118.【答案】 ﹣3 .【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f (x )=的函数值.当x=2时,f (x )=1﹣2×2=﹣3故答案为:﹣3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视. 三、解答题19.【答案】【解析】20.【答案】【解析】解:(1)a10=1+9=10.a20=10+10d=40,∴d=3.(2)a30=a20+10d2=10(1+d+d2)(d≠0),a30=10,当d∈(﹣∞,0)∪(0,+∞)时,a30∈[7.5,+∞)(3)所给数列可推广为无穷数列{a n],其中a1,a2,…,a10是首项为1,公差为1的等差数列,当n≥1时,数列a10n,a10n+1,…,a10(n+1)是公差为d n的等差数列.研究的问题可以是:试写出a10(n+1)关于d的关系式,并求a10(n+1)的取值范围.研究的结论可以是:由a40=a30+10d3=10(1+d+d2+d3),依此类推可得a 10(n+1)=10(1+d+…+d n )=.当d >0时,a 10(n+1)的取值范围为(10,+∞)等.【点评】此题考查学生灵活运用等差数列的性质解决实际问题,会根据特例总结归纳出一般性的规律,是一道中档题.21.【答案】(1);(2)当时,;当时,;1m =-1e m e <-()()max 1h x m e =-1e m e ≥-()max h x m =-(3).()()2f x e g x ->【解析】试题分析:(1)研究函数的切线主要是利用切点作为突破口求解;(2)通过讨论函数在定义域内的单调性确定最值,要注意对字母m 的讨论;(3)比较两个函数的大小主要是转化为判断两个函数的差函数的符号,然后转化为研究差函数的单调性研究其最值.试题解析:(1)设曲线与相切于点,()x f x e =()g x x m =-()00,P x y 由,知,解得,()x f x e '=01x e =00x =又可求得点为,所以代入,得.P ()0,1()g x x m =-1m =-(2)因为,所以.()()x h x x m e =-()()()()[]1,0,1x x x h x e x m e x m e x =+-=∈'--①当,即时,,此时在上单调递增,10m -≤1m ≤()0h x '≥()h x []0,1所以;()()()max 11h x h m e ==-②当即,当时,单调递减,011m <-<12m <<()0,1x m ∈-()()0,h x h x '<当时,单调递增,.()1,1x m ∈-()()0,h x h x '>()()()0,11h m h m e =-=-(i )当,即时,;()1m m e -≥-21e m e ≤<-()()max 0h x h m ==-(ii )当,即时,;()1m m e -<-11e m e <<-()()()max 11h x h m e ==-③当,即时,,此时在上单调递减,11m -≥2m ≥()0h x '≤()h x []0,1所以.()()min 0h x h m ==-综上,当时,;1e m e <-()()max 1h x m e =-当时,.1e m e ≥-()max h x m =-(3)当时,,0m =()()22,x f x e e e g x x --==①当时,显然;0x ≤()()2f x eg x ->②当时,,0x >()()222ln ln ,ln ln x f x e x e e e g x x ---===记函数,()221ln ln x x x e x e x eφ-=-=⨯-则,可知在上单调递增,又由知,在()22111x x x e e e x x φ-=⨯-=-'()x φ'()0,+∞()()10,20φφ''()x φ'上有唯一实根,且,则,即(*),()0,+∞0x 012x <<()020010x x e x φ--'==0201x e x -=当时,单调递减;当时,单调递增,()00,x x ∈()()0,x x φφ'<()0,x x ∈+∞()()0,x x φφ'>所以,()()0200ln x x x ex φφ-≥=-结合(*)式,知,0201x e x -=002ln x x -=-所以,()()()2200000000121120x x x x x x x x x φφ--+≥=+-==>则,即,所以.()2ln 0x x ex φ-=->2ln x e x ->2x e e x ->综上,.()()2f x e g x ->试题点睛:本题综合考查了利用导数研究函数的单调性、最值基本思路,当比较两个函数大小的时候,就转化为两个函数的差的单调性,进一步确定最值确定符号比较大小.22.【答案】【解析】解:(1)由已知得:.∵α,β为锐角,∴.∴.∴.(2)∵,∴.∵α,β为锐角,∴,∴. 23.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎭U ,,.【解析】试题分析:(1)由于122a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭,;(2)由()()274144227lg 241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<g .设()44lg lg 128a g x x a =+g ,原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎭U ,,.考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158x <;第二小题利用数学结合思想和转化思想,将原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩ ,进而求得:()11128a ⎫∈⎪⎪⎭U ,,.24.【答案】【解析】解:(1)由题意,当销售利润不超过8万元时,按销售利润的1%进行奖励;当销售利润超过8万元时,若超出A 万元,则超出部分按log 5(2A+1)进行奖励,∴0<x ≤8时,y=0.15x ;x >8时,y=1.2+log 5(2x ﹣15)∴奖金y 关于销售利润x 的关系式y=(2)由题意知1.2+log 5(2x ﹣15)=3.2,解得x=20.所以,小江的销售利润是20万元.【点评】本题以实际问题为载体,考查函数模型的构建,考查学生的计算能力,属于中档题.。
荆州市高级中学2018-2019学年高三上学期11月月考数学试卷含答案
荆州市高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如果对定义在上的函数,对任意,均有成立,则称R )(x f n m ≠0)()()()(>--+m nf n mf n nf m mf 函数为“函数”.给出下列函数:)(x f H ①;②;③;④()ln 25x f x =-34)(3++-=x x x f )cos (sin 222)(x x x x f --=.其中函数是“函数”的个数为( )⎩⎨⎧=≠=0,00|,|ln )(x x x x f H A .1B .2C .3D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.2. 定义运算,例如.若已知,则=()A .B .C .D .3. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .44. 下列命题中正确的是()A .若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为真命题B .命题“若xy=0,则x=0”的否命题为:“若xy=0,则x ≠0”C .“”是“”的充分不必要条件D .命题“∀x ∈R ,2x >0”的否定是“”5. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是()A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)6. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A .2B .3C .7D .97. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值8. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )A .点A 处B .线段AD 的中点处C .线段AB 的中点处D .点D 处9. 若复数z 满足=i ,其中i 为虚数单位,则z=()A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i10.直径为6的球的表面积和体积分别是( )A .B .C .D .144,144ππ144,36ππ36,144ππ36,36ππ11.设x ∈R ,则x >2的一个必要不充分条件是( )A .x >1B .x <1C .x >3D .x <312.已知集合,,则满足条件的集合的2{320,}A x x x x R =-+=∈{05,}B x x x N =<<∈A C B ⊆⊆C 个数为 A 、B 、C 、D 、234二、填空题13.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则= .14.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .15.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .16.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有 种(用数字作答).A B C D 17.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 . 18.当时,函数的图象不在函数的下方,则实数的取值范围是0,1x ∈()()e 1x f x =-2()g x x ax =-a ___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.三、解答题19.设函数f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x+2)=﹣f (x ),当x ∈[0,2]时,f (x )=2x ﹣x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)求f (0)+f (1)+f (2)+…+f (2015)的值.20.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈(1)当时,求的单调区间;1m =()f x (2)令,区间,为自然对数的底数。
荆州市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
荆州市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为()A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)2. 下列函数中,在其定义域内既是奇函数又是减函数的是()A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )3. 函数f (x )=xsinx 的图象大致是()A .B .C .D .4. 设函数f (x )=的最小值为﹣1,则实数a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≥﹣D .a >﹣5. 如图所示,程序执行后的输出结果为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .﹣1B .0C .1D .26. 如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=()A .﹣6B .﹣2C .2D .67. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .08. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A .64B .32C .D .6433239. 函数f (x )=,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )kx +b x +1A .-1B .1C .2D .410.如图,长方形ABCD 中,AB=2,BC=1,半圆的直径为AB .在长方形ABCD 内随机取一点,则该点取自阴影部分的概率是()A .B .1﹣C .D .1﹣11.已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个12.如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等()A .B .C .D .二、填空题13.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个. 14.已知圆的方程为,过点的直线与圆交于两点,若使C 22230x y y +--=()1,2P -C ,A B AB 最小则直线的方程是.15.已知平面向量,的夹角为,,向量,的夹角为,与a rb r 3π6=-b ac a -r r c b -r r 23πc a -=r r a 的夹角为__________,的最大值为.ca c ⋅r r 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.16.抛物线C 1:y 2=2px (p >0)与双曲线C 2:交于A ,B 两点,C 1与C 2的两条渐近线分别交于异于原点的两点C ,D ,且AB ,CD 分别过C 2,C 1的焦点,则= .17.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线) 18.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 . 三、解答题19.已知函数f (x )=.(1)求f (f (﹣2));(2)画出函数f (x )的图象,根据图象写出函数的单调增区间并求出函数f (x )在区间(﹣4,0)上的值域.20.【海安县2018届高三上学期第一次学业质量测试】已知函数,其中,是()()2x f x x ax a e =++a R ∈e 自然对数的底数.(1)当时,求曲线在处的切线方程;1a =()y f x =0x =(2)求函数的单调减区间;()f x (3)若在恒成立,求的取值范围.()4f x ≤[]4,0-a 21.已知定义在区间(0,+∞)上的函数f (x )满足f ()=f (x 1)﹣f (x 2).(1)求f(1)的值;(2)若当x>1时,有f(x)<0.求证:f(x)为单调递减函数;(3)在(2)的条件下,若f(5)=﹣1,求f(x)在[3,25]上的最小值.22.已知等差数列{a n}的前n项和为S n,公差d≠0,S2=4,且a2,a5,a14成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)从数列{a n}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{b n},记该数列的前n项和为T n,求T n的表达式.23.如图,已知边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点(Ⅰ)试在棱AD上找一点N,使得CN∥平面AMP,并证明你的结论.(Ⅱ)证明:AM⊥PM.24.本小题满分12分已知椭圆2.C Ⅰ求椭圆的长轴长;C Ⅱ过椭圆中心O 的直线与椭圆交于A 、B 两点A 、B 不是椭圆的顶点,点M 在长轴所在直线上,且C C C ,直线BM 与椭圆交于点D ,求证:AD AB 。
荆州市实验中学2018-2019学年高三上学期11月月考数学试卷含答案
荆州市实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列命题的说法错误的是( )A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0” 2. 记,那么ABC D3. O 为坐标原点,F为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B.C.D .24. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( ) A.B.C.D.5. 设复数z 满足z (1+i )=2(i 为虚数单位),则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i6. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( )A .﹣2B .±2C .0D .27. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .988. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数 B.平均数C.中位数D.标准差10.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为()A.80+20πB.40+20πC.60+10πD.80+10π11.如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.12.设集合M={x|x>1},P={x|x2﹣6x+9=0},则下列关系中正确的是()A.M=P B.P⊊M C.M⊊P D.M∪P=R二、填空题13.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .14.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.15.设函数f (x )=若f[f (a )],则a 的取值范围是 .16.已知f (x )=x (e x +a e -x )为偶函数,则a =________. 17.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .18.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 .三、解答题19.已知函数f (x )=aln (x+1)+x 2﹣x ,其中a 为非零实数. (Ⅰ)讨论f (x )的单调性;(Ⅱ)若y=f (x )有两个极值点α,β,且α<β,求证:<.(参考数据:ln2≈0.693)20.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣) (1)当x ∈[2,4]时,求该函数的值域;(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.21.(本小题满分10分) 已知函数()|||2|f x x a x =++-.(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.22.设函数f (x )=lnx+,k ∈R .(Ⅰ)若曲线y=f (x )在点(e ,f (e ))处的切线与直线x ﹣2=0垂直,求k 值; (Ⅱ)若对任意x 1>x 2>0,f (x 1)﹣f (x 2)<x 1﹣x 2恒成立,求k 的取值范围;(Ⅲ)已知函数f (x )在x=e 处取得极小值,不等式f (x)<的解集为P ,若M={x|e ≤x ≤3},且M ∩P ≠∅,求实数m 的取值范围.23.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.111](1)求{}n a ,{}n b 的通项公式; (2)求数列{}nna b 的前项和n S .24.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1ln 1f x a x x=+-. (1)当2a =时,求函数()f x 在点()()11f ,处的切线方程;(2)讨论函数()f x 的单调性;(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x aa x +⎛⎫+< ⎪⎝⎭.荆州市实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;B.由x2﹣3x+2=0,解得x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确;C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确;D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”,正确.故选:A.2.【答案】B【解析】【解析1】,所以【解析2】,3.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),又P为C上一点,|PF|=4,可得y P=3,代入抛物线方程得:|x|=2,P∴S△POF=|0F|•|x P|=.故选:C.4.【答案】D【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.5.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.6. 【答案】C【解析】解:∵复数(2+ai )2=4﹣a 2+4ai 是实数,∴4a=0, 解得a=0. 故选:C .【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.7. 【答案】A【解析】解:因为f (x+4)=f (x ),故函数的周期是4 所以f (7)=f (3)=f (﹣1), 又f (x )在R 上是奇函数,所以f (﹣1)=﹣f (1)=﹣2×12=﹣2,故选A .【点评】本题考查函数的奇偶性与周期性.8. 【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值. 9. 【答案】D【解析】解:A 样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.10.【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r×2r+12)×2+5×2r×2+5×2r+πr×5=92+14π,2πr即(8+π)r2+(30+5π)r-(92+14π)=0,即(r-2)[(8+π)r+46+7π]=0,∴r=2,∴该几何体的体积为(4×4+12)×5=80+10π.2π×211.【答案】D【解析】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.12.【答案】B【解析】解:P={x|x=3},M={x|x>1};∴P⊊M.故选B.二、填空题13.【答案】[5,+∞).【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.【解答】解:由题意可得f(x)=x6=x3.由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,由于x2在区间[,]上的最大值为5,故m≥5,即m的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.14.【答案】649【解析】111]考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.15.【答案】或a=1.【解析】解:当时,.∵,由,解得:,所以;当,f(a)=2(1﹣a),∵0≤2(1﹣a)≤1,若,则,分析可得a=1.若,即,因为2[1﹣2(1﹣a)]=4a﹣2,由,得:.综上得:或a=1.故答案为:或a=1.【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题.16.【答案】【解析】解析:∵f (x )是偶函数,∴f (-x )=f (x )恒成立, 即(-x )(e -x +a e x )=x (e x +a e -x ), ∴a (e x +e -x )=-(e x +e -x ),∴a =-1. 答案:-1 17.【答案】2- 【解析】1111]试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值18.【答案】 [4,16] .【解析】解:直线l :(t 为参数),化为普通方程是=,即y=tan α•x+1;圆C 的参数方程(θ为参数),化为普通方程是(x ﹣2)2+(y ﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.三、解答题19.【答案】【解析】解:(Ⅰ).当a﹣1≥0时,即a≥1时,f'(x)≥0,f(x)在(﹣1,+∞)上单调递增;当0<a<1时,由f'(x)=0得,,故f(x)在上单调递增,在上单调递减,在上单调递增;当a<0时,由f'(x)=0得,,f(x)在上单调递减,在上单调递增.证明:(Ⅱ)由(I)知,0<a<1,且,所以α+β=0,αβ=a﹣1..由0<a<1得,0<β<1.构造函数.,设h(x)=2(x2+1)ln(x+1)﹣2x+x2,x∈(0,1),则,因为0<x<1,所以,h'(x)>0,故h(x)在(0,1)上单调递增,所以h(x)>h(0)=0,即g'(x)>0,所以g(x)在(0,1)上单调递增,所以,故.20.【答案】【解析】解:(1)f(x)=(log2x﹣2)(log4x﹣)=(log2x)2﹣log2x+1,2≤x≤4令t=log2x,则y=t2﹣t+1=(t﹣)2﹣,∵2≤x ≤4, ∴1≤t ≤2.当t=时,y min =﹣,当t=1,或t=2时,y max =0. ∴函数的值域是[﹣,0].(2)令t=log 2x,得t 2﹣t+1>mt 对于2≤t ≤4恒成立.∴m<t+﹣对于t ∈[2,4]恒成立, 设g (t )=t+﹣,t ∈[2,4], ∴g (t )=t+﹣=(t+)﹣, ∵g (t )=t+﹣在[2,4]上为增函数, ∴当t=2时,g (t )min =g (2)=0,∴m <0.21.【答案】(1){|1x x ≤或8}x ≥;(2)[3,0]-. 【解析】试题解析:(1)当3a =-时,25,2()1,2325,3x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩,当2x ≤时,由()3f x ≥得253x -+≥,解得1x ≤; 当23x <<时,()3f x ≥,无解;当3x ≥时,由()3f x ≥得253x -≥,解得8x ≥,∴()3f x ≥的解集为{|1x x ≤或8}x ≥.(2)()|4||4||2|||f x x x x x a ≤-⇔---≥+,当[1,2]x ∈时,|||4|422x a x x x +≤-=-+-=, ∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,故满足条件的的取值范围为[3,0]-. 考点:1、绝对值不等式的解法;2、不等式恒成立问题. 22.【答案】【解析】解:(Ⅰ)由条件得f ′(x )=﹣(x >0),∵曲线y=f (x )在点(e ,f (e ))处的切线与直线x ﹣2=0垂直, ∴此切线的斜率为0, 即f ′(e )=0,有﹣=0,得k=e ;(Ⅱ)条件等价于对任意x 1>x 2>0,f (x 1)﹣x 1<f (x 2)﹣x 2恒成立…(*)设h (x )=f (x )﹣x=lnx+﹣x (x >0),∴(*)等价于h (x )在(0,+∞)上单调递减.由h ′(x )=﹣﹣1≤00在(0,+∞)上恒成立,得k ≥﹣x 2+x=(﹣x ﹣)2+(x >0)恒成立,∴k ≥(对k=,h ′(x )=0仅在x=时成立),故k 的取值范围是[,+∞); (Ⅲ)由题可得k=e ,因为M ∩P ≠∅,所以f (x )<在[e ,3]上有解,即∃x ∈[e ,3],使f (x )<成立,即∃x ∈[e ,3],使 m >xlnx+e 成立,所以m >(xlnx+e )min ,令g (x )=xlnx+e ,g ′(x )=1+lnx >0,所以g (x )在[e ,3]上单调递增, g (x )min =g (e )=2e , 所以m >2e .【点评】本题考查导数的运用:求切线的斜率和单调区间,主要考查函数的单调性的运用,考查不等式存在性和恒成立问题的解决方法,考查运算能力,属于中档题.23.【答案】(1)2,2==q d ;(2)12326-+-=n n n S . 【解析】(2)1212--=n n n n b a ,………………6分 122121223225231---+-++++=n n n n n S ,①n n n n n S 212232252321211321-+-++++=- .②……………8分 ①-②得nn n n n S 2122222222212`1221--+++++=-- 23112222211222222n n nn S --=++++-,…………10分所以12326-+-=n n n S .………………12分 考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {nnb 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S . 24.【答案】(1)10x y --=;(2)见解析;(3)见解析. 【解析】试题分析:(1)当2a =时,求出导数易得()'11f =,即1k =,利用点斜式可得其切线方程;(2)求得可得()21'ax f x x -=,分为0a ≤和0a >两种情形判断其单调性;(3)当102a <<时,根据(2)可 得函数()f x 在()12,上单调递减,故()11a f f x ⎛⎫+< ⎪⎝⎭,即ln 1a a a x x a ⎛⎫+<⎪+⎝⎭,化简可得所证结论. 试题解析:(1)当2a =时,()12ln 1f x x x =+-,()112ln1101f =+-=,()221'f x x x =-,()221'1111f =-=,所以函数()f x 在点()10,处的切线方程为()011y x -=⨯-,即10x y --=. (2)()1ln 1f x a x x =+-,定义域为()0+∞,,()2211'a ax f x x x x-=-=. ①当0a ≤时,()'0f x <,故函数()f x 在()0+∞,上单调递减;②当0a >时,令()'0f x =,得1x =综上所述,当0a ≤时,()f x 在()0+∞,上单调递减;当0a >时,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递增. (3)当102a <<时,由(2)可知,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,显然,12a >,故()1120a ⎛⎫⊆ ⎪⎝⎭,,,所以函数()f x 在()12,上单调递减,对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有01a x <<,所以112a x <+<.所以()11a f f x ⎛⎫+< ⎪⎝⎭,即1ln 1101a a a x x⎛⎫++-< ⎪⎝⎭+,所以ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭,即1ln 1a x x a ⎛⎫+< ⎪+⎝⎭,所以()ln 11a x a x ⎛⎫++< ⎪⎝⎭,即ln 11x aa x +⎛⎫+< ⎪⎝⎭,所以1e x aa x +⎛⎫+< ⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荆州市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件2. 若复数z 满足i 1i z =--,则在复平面内,z 所对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若a 是f (x )=sinx ﹣xcosx 在x ∈(0,2π)的一个零点,则∀x ∈(0,2π),下列不等式恒成立的是()A .B .cosa≥C .≤a ≤2πD .a ﹣cosa ≥x ﹣cosx4. 过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1C .﹣=1D .﹣=15. 过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB|=10,则AB 的中点到y 轴的距离等于( )A .1B .2C .3D .46. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 设,,a b c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b>8. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( )A .20B .24C .30D .369. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( )A .720B .270C .390D .30010.若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( )A .﹣1B .0C .1D .﹣1或111.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________甲校:分组[70,80[80,90[90,100[100,110频数34815分组[110,120[120,130[130,140[140,150]频数15x32乙校:分组[70,80[80,90[90,100[100,110频数1289分组[110,120[120,130[130,140[140,150]频数1010y3则x ,y 的值分别为 A 、12,7 B 、 10,7 C 、 10,8D 、 11,912.已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是()A .(1,+∞)B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)二、填空题13.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .14.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ .15.设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为1362722=+y x ,则此双曲线的标准方程是.)4,15(16.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 .17.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .18.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .三、解答题19.已知函数f (x )=(Ⅰ)求函数f (x )单调递增区间;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a ﹣c )cosB=bcosC ,求f (A )的取值范围.20.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时) 2.534 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b==,a=﹣b.21.已知,数列{a n}的首项(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为S n,求使S n>2012的最小正整数n.22.从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?23.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.24.已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4.(Ⅰ)椭圆C的标准方程.(Ⅱ)已知P、Q是椭圆C上的两点,若OP⊥OQ,求证:为定值.(Ⅲ)当为(Ⅱ)所求定值时,试探究OP⊥OQ是否成立?并说明理由.荆州市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.2.【答案】B【解析】3.【答案】A【解析】解:f′(x)=xsinx,当x∈(0,π),f′(x)>0,函数f(x)单调递增,当x∈(π,2π),f′(x)<0,函数f(x)单调递减,又f(0)=0,f(π)>0,f(2π)<0,∴a∈(π,2π),∴当x∈(0,a),f(x)>0,当x∈(a,2π),f(x)<0,令g(x)=,g′(x)=,∴当x∈(0,a),g′(x)<0,函数g(x)单调递减,当x∈(a,2π),g′(x)>0,函数g(x)单调递增,∴g(x)≥g(a).故选:A.【点评】本题主要考查零点的存在性定理,利用导数求最值及计算能力.4.【答案】A【解析】解:设所求双曲线方程为﹣y2=λ,把(2,﹣2)代入方程﹣y2=λ,解得λ=﹣2.由此可求得所求双曲线的方程为.故选A.【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.5.【答案】D【解析】解:抛物线y2=4x焦点(1,0),准线为l:x=﹣1,设AB的中点为E,过A、E、B分别作准线的垂线,垂足分别为C、G、D,EF交纵轴于点H,如图所示:则由EG为直角梯形的中位线知,EG====5,∴EH=EG﹣1=4,则AB的中点到y轴的距离等于4.故选D.【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想.6.【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(﹣x)=﹣f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数.由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0””的充分不必要条件.故选:A.7.【答案】D【解析】考点:不等式的恒等变换.8. 【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r •x 12﹣3r ,令12﹣3r=3,求得r=3,故展开式中含x 3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x 3项的系数之和为20,故选:A .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 9. 【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: ++=390.故选:C .10.【答案】A【解析】解:∵(m 2﹣1)+(m+1)i 为实数,∴m+1=0,解得m=﹣1,故选A . 11.【答案】B 【解析】 1从甲校抽取110×=60人,1 2001 200+1 000从乙校抽取110×=50人,故x =10,y =7.1 0001 200+1 00012.【答案】D【解析】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x=3x (ax ﹣2),f (0)=1;①当a=0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立;③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f (x )=ax 3﹣3x 2+1在(﹣∞,0)上没有零点;而当x=时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上取得最小值;故f ()=﹣3•+1>0;故a <﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.二、填空题13.【答案】 38 .【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=2×3+4×8=6+32=32,故答案为:3814.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.15.【答案】15422=-x y 【解析】试题分析:由题意可知椭圆的焦点在轴上,且,故焦点坐标为由双曲1362722=+y x y 927362=-=c ()3,0±线的定义可得,故,,故所求双()()()()4340153401522222=++---+-=a 2=a 5492=-=b 曲线的标准方程为.故答案为:.15422=-x y 15422=-x y 考点:双曲线的简单性质;椭圆的简单性质.16.【答案】 .【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a 和b ,基本事件的总个数是6×6=36,即(a ,b )的情况有36种,事件“a+b 为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b 为偶数的条件下,|a ﹣b|>2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是P==故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.17.【答案】 25 【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km ,由正弦定理可得AC==25km ,故答案为:25.【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键. 18.【答案】 2 .【解析】解:如图所示,连接A1C1,B1D1,相交于点O.则点O为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣A1B1C1D1的体积V==2.故答案为:2.三、解答题19.【答案】【解析】解:(Ⅰ)∵f(x)=sin cos+cos2=sin(+),∴由2k≤+≤2kπ,k∈Z可解得:4kπ﹣≤x≤4kπ,k∈Z,∴函数f(x)单调递增区间是:[4kπ﹣,4kπ],k∈Z.(Ⅱ)∵f(A)=sin(+),∵由条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB,∴则sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,又sin(B+C)=sinA≠0,∴cosB=,又0<B<π,∴B=.∴可得0<A<,∴<+<,∴sin(+)<1,故函数f(A)的取值范围是(1,).【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题.20.【答案】【解析】解:(1)作出散点图如下:…(3分)(2)=(2+3+4+5)=3.5,=(2.5+3+4+4.5)=3.5,…(5分)=54,x i y i=52.5∴b==0.7,a=3.5﹣0.7×3.5=1.05,∴所求线性回归方程为:y=0.7x+1.05…(10分)(3)当x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).∴加工10个零件大约需要8.05个小时…(12分)【点评】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题. 21.【答案】【解析】解:(Ⅰ),,.数列是以1为首项,4为公差的等差数列.…,则数列{a n}的通项公式为.…(Ⅱ).…①.…②②﹣①并化简得.…易见S n为n的增函数,S n>2012,即(4n﹣7)•2n+1>1998.满足此式的最小正整数n=6.…【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用. 22.【答案】【解析】解:(1)男、女同学各2名的选法有C42×C52=6×10=60种;(2)“男、女同学分别至少有1名”包括有“一男三女”,“二男二女”,“三男一女”,故选人种数为C41×C53+C42×C52+C43×C51=40+60+20=120.男同学甲与女同学乙同时选出的种数,由于已有两人,故再选两人即可,此两人可能是两男,一男一女,两女,故总的选法有C32+C41×C31+C42=21,故有120﹣21=99.23.【答案】【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2,在[80,100)之间的试卷中任取两份的基本事件为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.24.【答案】【解析】(I)解:由题意可设椭圆的坐标方程为(a>b>0).∵离心率为,且椭圆C上一点到两个焦点的距离之和为4.∴,2a=4,解得a=2,c=1.∴b2=a2﹣c2=3.∴椭圆C的标准方程为.(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=﹣x(k≠0),P(x,y).联立,化为,∴|OP|2=x2+y2=,同理可得|OQ|2=,∴=+=为定值.当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立.因此=为定值.(III)当=定值时,试探究OP⊥OQ是否成立?并说明理由.OP⊥OQ不一定成立.下面给出证明.证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则===,满足条件.当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=k′x(k≠k′,k′≠0),P(x,y).联立,化为,∴|OP|2=x2+y2=,同理可得|OQ|2=,∴=+=.化为(kk′)2=1,∴kk′=±1.∴OP⊥OQ或kk′=1.因此OP⊥OQ不一定成立.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.。