苏科版八下数学第二次月考试卷
江西省江西师大附中、育华学校2023-2024学年八年级下学期月考数学试卷

江西省江西师大附中、育华学校2023-2024学年八年级下学期月考数学试卷一、单选题1.下列曲线中能表示y 是x 的函数的是( )A .B .C .D .2( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 3.三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( ). A .::8:16:17a b c =B .222a c b -=C .2()()a b c b c =+- D .::13:5:12a b c = 4.点()15,A y -和()22,B y -都在直线32y x =+上,则1y 与2y 的大小关系是( ) A .12y y > B .12y y = C .12y y < D .无法确定 5.“漏壶”是一种古代计时器,如图所示.在壶内盛一定量的水,水从壶底的小孔漏出,壶内壁画有刻度,人们根据壶中水面的位置计算时间.用x 表示漏水时间,y 表示壶底到水面的高度,不考虑水量变化对压力的影响,下列图象能表示y 与x 的对应关系的是( )A .B .C .D . 6.对于函数31y x =-+,下列结论正确的是( )A .它的图象必经过点(1,3)-B .它的图象经过第一、二、三象限C .当13x >时,0y < D .y 的值随x 值的增大而增大 7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .488.如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是线段OC 上的一动点,DE +AE 的最小值是( )A B .10 C D二、填空题9.一次函数23y x =-+的图象经过点(),1A m ,则m =.10.函数y =21x x -中,自变量x 的取值范围是. 11.直线24y x =+向下平移3个单位长度,求平移后直线的解析式为.12.已知,如图直线y kx b =+与直线y mx n =+交于()1,2点,则不等式kx b mx n +<+的解集为 .13.如图,四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”,如果大正方形面积为25,且直角三角形中较短的直角边的长为3,则中间小正方形面积(阴影部分)为.14.如图,点()0,4A ,点()2,0B ,点()2,2M -,连接AB ,点N 为线段AB 的中点,在射线MN 上有一动点P ,若ABP V 是直角三角形,则写出所有符合要求的点P 的坐标.三、解答题15.计算:(1(2)(33+-16.如图,在平行四边形ABCD 中,E 为AD 边上一点,BE 平分∠ABC ,连接CE ,已知DE =6,CE =8,AE =10.(1)求AB 的长;(2)求平行四边形ABCD 的面积;17.如图,在平面直角坐标系中,已知点()1,0A 、()3,0B 、()3,1C 、()1,1D .请仅用无刻度的直尺,分别在图1、图2中画出满足条件的直线(保留画图痕迹,不写作法)(1)在图1中,画直线m :1y x =-+;(2)在图2中,画直线n :1y x =-.18.已知一次函数的图象经过()1,2A -,()3,2B 两点.(1)求这个一次函数的解析式;(2)若将这个一次函数的图像向上平移2个单位长度,求平移后的直线与两坐标轴围成的三角形的面积.19.某校组织学生从学校出发,乘坐大巴车前往距离学校360千米的基地进行研学活动.大巴车匀速行驶1小时后,学校因事派人乘坐轿车匀速沿同一路线追赶,大巴车降低速度继续匀速行驶,轿车行驶1.5小时后追上大巴车,两车继续匀速行驶到达基地.如图表示大巴车和轿车离学校的距离y (千米)与大巴车出发时间x (时)之间函数关系的部分图象.结合图中提供的信息,解答下列问题:(1)轿车的速度为______千米/时,大巴车行驶1小时后的速度为______千米/时;(2)求大巴车出发1小时后y 与x 的函数解析式,并补全函数图象;(3)轿车到达基地时,大巴车距离基地还有多远?20.如图,在ABC V 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连接BF .(1)线段BD 与CD 有什么数量关系,并说明理由;(2)当ABC V 满足什么条件时,四边形AFBD 是菱形?并说明理由.21.如图1所示,正方形ABCD 中,4AB =,点P 从点A 出发,沿折线A B C D →→→运动,当它到达点D 时停止运动,连接AP DP ,,记点P 运动的路程为()012x x <<,APD △的面积为y .(1)当04x <<时,写出y 与x 之间的函数解析式______.当812x <<时,写出y 与x 之间的函数解析式______.(2)根据自变量x 的取值范围,在如图2所示的平面直角坐标系中画出点P 整个运动过程中的函数图象;(3)请根据函数的图象,写出该函数的一条性质;(4)请根据函数的图象,直接写出当4y >时x 的取值范围.22.如图,正方形ABCD 的边长为4,E 是线段AB 延长线上一动点,连结CE .(1)如图1,过点C 作CF ⊥CE 交线段DA 于点F .①求证:CF =CE ;②若BE =m (0<m <4),用含m 的代数式表示线段EF 的长;(2)在(1)的条件下,设线段EF 的中点为M ,探索线段BM 与AF 的数量关系,并用等式表示.(3)如图2,在线段CE上取点P使CP=2,连结AP,取线段AP的中点Q,连结BQ,求线段BQ的最小值.。
八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)

八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。
江苏省南京市2023-2024学年八年级下学期第一次月考模拟练习数学试卷答案

2023-2024学年江苏省南京市八年级数学第一次月考模拟练习参考答案 1.C2.A3.D4.A5.C【解析】如图,连接AC 、与BD 交于点O ,连接ME ,MF ,NF ,EN ,MN ,∵四边形ABCD 是平行四边形∴OA =OC ,OB =OD∵BE =DF∴OE =OF∵点E 、F 时BD 上的点,∴只要M ,N 过点O ,那么四边形MENF 就是平行四边形∴存在无数个平行四边形MENF ,故①正确;只要MN =EF ,MN 过点O ,则四边形MENF 是矩形,∵点E 、F 是BD 上的动点,∴存在无数个矩形MENF ,故②正确;只要MN ⊥EF ,MN 过点O ,则四边形MENF 是菱形;∵点E 、F 是BD 上的动点,∴存在无数个菱形MENF ,故③正确;只要MN =EF ,MN ⊥EF ,MN 过点O ,则四边形MENF 是正方形,而符合要求的正方形只有一个,故④错误;故选:C6.A【解析】 在边长为4的菱形ABCD 中,120ABC ∠=°,4AB CD ∴==,30BAC DAC ∠=∠=°,将ADC 沿射线AC 的方向平移得到′′′A D C △,∴A D ′′4AD =,A D ′′∥AD ,四边形ABCD 是菱形,AD CB ∴=,AD CB ,120ADC ∴∠=°,∴A D CB ′′=,A D CB ′′∥,∴四边形D A BC ′′是平行四边形,∴A B D C ′′=,【解析】如图1,当点P 在线段由折叠可得:3AB AE ==如图2,当点P 在BC 的延长线上时,由折叠得:3AB AE BP PE B ===∠=,,【解】(1)12÷20%=60(人),C 的人数:故答案为:60;(2)如图,△A2B2C2为所作;若点B的坐标为((3)连接A A,C C,作A A和C C22.【解】(1)证明:连接∵E、F、G、H分别是AB(2)如图②中,高AM即为所求;根据网格与勾股定理得出AF=∴ADF EAH≌,∴EAH ADF∠,∠=(3)如图③中,点N即为所求.(2)如图,连接BM MC ,, ∵90ABC ∠=°,四边形ABCD∵AD GF ∥,AB DF ∥,,∵P 为边FG 的中点,∴1322PF FG ==, ∴222235()222PE PF EF =+=+=, 过A 作AM PE ⊥,∴当A ,M ,B 三点共线时高最大,三角形面积最大如图所示,∵90AEF ∠=°, ∴90FEC AEO AEO OAE ∠+∠=∠+∠=°,∴FEC OAE ∠=∠, ∵3OEEC ==,K 为OA 的中点,OA OC =, ∴AK EC =,OK OE =,∴45OKE ∠=°, ∴135AKE ∠=°, ∵CF 是正方形外角的平分线,∴45DCF ∠=°, ∴135ECF ∠=°, ∴AKE ECF ∠=∠, 在AKE 和ECF 中,AKE ECF AK EC KAE FEC ∠=∠ = ∠=∠,∴()ASA AKE ECF ≌△△,∴AE EF =;②延长CD ,并在延长线上截取DH OE =,连接AH ,如图所示,∵四边形AOCD 是正方形,∴AO AD =,90AOE ADH ∠=∠=°, ∴()SAS AOE ADH ≌△△,∴OAE DAH ∠=∠,AE AH =,AEO AHD ∠=∠, 由①可知AE EF =,∴AEF 为等腰直角三角形,∴45EAF ∠=°, ∴45OAE DAG DAH DAG GAH ∠+∠=∠+∠=∠=°,∴GAH GAE ∠=∠, ∴()SAS AEG AHG ≌△△,∴EGGH DG OE ==+,AGE AGH ∠=∠,AEG AHD ∠=∠, ∴AEO AEG ∠=∠, ∵EN CD ∥,∴AGH GNE AGE ∠=∠=∠,。
新人教版二年级数学下册第二次月考综合试题及答案(八套)

新人教版二年级数学下册第二次月考综合试题及答案说明:本套试卷精心编写了各考点和重要知识点,测试面广,难易兼备,仅供参考。
全套试卷共八卷。
目录:新人教版二年级数学下册第二次月考综合试题及答案(一)新人教版二年级数学下册第二次月考考点题及答案(二)新人教版二年级数学下册第二次月考考试卷及答案(三)新人教版二年级数学下册第二次月考考试及答案(四)新人教版二年级数学下册第二次月考考试及答案(五)新人教版二年级数学下册第二次月考考试及答案(六)新人教版二年级数学下册第二次月考考试及答案(七)新人教版二年级数学下册第二次月考考试及答案(八)新人教版二年级数学下册第二次月考综合试题及答案一班级:姓名:满分:100分考试时间:90分钟一、填空题。
(20分)1、1张可以换(____)张,或换(____)张,或换(____)张。
2、6个4相加的和是________。
3、同学们排队,小丽前面有14名同学,后面有16名同学,她所在的这队共有(____)名同学。
4、6个9相加的和是(____),7个5相加的和是(____)。
5、丽丽用4米长的竹竿量井深,竹竿露出井沿部分是1米.井深_______米.6、35里面有(____)个5,63是7的(______)倍。
从40里连续减去(______)个8,得0。
7、1米=(____)厘米200厘米=(____)米7厘米+6厘米=(____)厘米42米-20米=(____)米8、在一个乘法算式中,积是其中一个因数的12倍,另一个因数是(______)。
9、一根铁丝先用去一半,再用去剩下的一半,还剩9米。
这根铁丝原来长___米。
10、8050读作:(_________________);二千零二写作:(____________)二、我会选(把正确答案前面的序号填在()里)(10分)1、3个人每人做6朵花,共做了多少朵花?列式不正确的为()。
A.3+3+3 B.6+6+6 C.6×32、把一个长方形的框架拉成了一个平行四边形,这个平行四边形的周长与原长方形的周长相比()。
2023-2024学年山东省青岛市胶州市三里河实验学校八年级(下)月考数学试卷(6月份)+答案解析

2023-2024学年山东省青岛市胶州市三里河实验学校八年级(下)月考数学试卷(6月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列式子中:,,,,,分式有()A.1个B.2个C.3个D.4个2.下列从左边到右边的变形,属于因式分解的是()A. B.C.D.3.若代数式有意义,则实数x 的取值范围是()A.且B.C.D.且4.如图,▱ABCD 的对角线AC 与BD 相交于点O ,,,则▱ABCD 的面积是()A. B. C.18 D.365.已知有一个因式为,则k 的值为()A.1B.C.5D.6.关于x 的方程有增根,则k 的值为()A.2 B.C.D.67.已知,,则()A.B.36C.6D.8.若关于x 的分式方程的解是正数,则m 的取值范围是()A.且B.C.D.且9.数学家裴波那契编写的《算经》中有如下问题,一组人平分10元钱,每人分得若干,若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第二次分钱的人数.设第二次分钱的人数为x 人,则可列方程为()A. B. C. D.10.如图,点E、F是平行四边形对角线上两点,在条件:;;;中,添加一个条件,使四边形是平行四边形,可添加的条件是()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。
11.若分式的值为零,则______.12.根据下面的拼图过程,写出一个多项式的因式分解:______.13.如图,在▱ABCD中,,,于E,则______14.若多项式能用完全平方公式进行因式分解,则______.15.如图,在▱ABCD中,对角线AC,BD交于点O,过点O作交AD于点E,连接若的周长为5,则▱ABCD的周长为______.16.常用的分解因式的方法有提取公因式法.公式法,但有一部分多项式只用上述方法就无法分解,如通过观察,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解:,这种分解因式的方法叫分组分解法.利用上述方法分解因式:______.三、解答题:本题共7小题,共72分。
七年级数学第一次月考卷(苏科版2024)(解析版)【测试范围:第一章~第二章】

2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)考前须知:1.本卷试题共24题,单选6题,填空10题,解答8题。
2.测试范围:第一章~第二章(苏科版2024)。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a 一定是负数,其中正确的个数是( )A .1B .2C .3D .4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a 不一定是负数,故④不正确,故选:B .【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.3.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.4.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.5.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A6.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)7.将数据52.93万用科学记数法表示为.【答案】5.293×105【分析】本题主要考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.【详解】解:52.93万=529300=5.293×105.故答案为:5.293×105.8.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.9.绝对值大于1且不大于5的负整数有.【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.10.下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京早的点时数):城市纽约伦敦东京巴黎时差/时―13―8+1―7如果北京时间是9月13日17时,那么伦敦的当地时间是9月日时.【答案】13 9【分析】本题考查了正负数在实际生活中的应用.这是一个典型的正数与负数的实际运用问题,我们应联系现实生活认清正数与负数所代表的实际意义.此题中正数表示在北京时间向后推几个小时,即加上这个正数;负数表示向前推几个小时,即加上这个负数,据此解答即可.【详解】解:17―8=9,∵―8表示向前推8个小时,∴北京时间是9月13日17时,那么伦敦的当地时间是9月13日9时,故答案为:13,9.11.如图,将一刻度尺放在数轴上.若刻度尺上0cm和5cm对应数轴上的点表示的数分别为―3和2,则刻度尺上7cm对应数轴上的点表示的数是.【答案】4【分析】本题考查数轴的概念.由数轴的概念即可求解.【详解】解:∵0cm和5cm对应数轴上的点表示的数分别为―3和2,∴数轴的单位长度是1cm,∴原点对应3cm的刻度,∴数轴上与7cm刻度对齐的点表示的数是4,故答案为:4.12.如图所示是计算机程序计算,若开始输入x=―2,则最后输出的结果是.【答案】16【分析】本题主要考查了与程序流程图有关的有理数计算.先代入x=―2,计算出结果,若结果不大于10,则把计算的结果重新输入计算,如此往复直至计算的结果大于10即可.【详解】解:―2+4―(―2)=―2+4+2=4<10,4+4―(―2)=4+4+2=10,10+4―(―2)=10+4+2=16>0,故答案为:16.13.若(2a―1)2与2|b―3|互为相反数,则a b=.【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a―1)2与2|b―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a,b.【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.若a |a |+b |b |+c |c |+d |d |=2,则|abcd |abcd 的值为 .【答案】-1【分析】先根据a |a |+b |b |+c |c |+d |d |=2,a |a |,b |b |,c |c |,d |d |的值为1或-1,得出a 、b 、c 、d 中有3个正数,1个负数,进而得出abcd 为负数,即可得出答案.【详解】解:∵当a 、b 、c 、d 为正数时,a |a |,b |b |,c |c |,d |d |的值为1,当a 、b 、c 、d 为负数时,a |a |,b |b |,c |c |,d |d |的值为-1,又∵a |a |+b |b |+c |c |+d |d |=2,∴a 、b 、c 、d 中有3个正数,1个负数,∴abcd 为负数,∴|abcd |abcd =-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a 、b 、c 、d 中有3个正数,1个负数,是解题的关键.15.新定义如下:f(x)=|x ―3|, g(y)=|y +2|; 例如:f(―2)=|―2―3|=5,g(3)=|3+2|=5;根据上述知识, 若f(x)+g(x)=6, 则x 的值为 .【答案】72或―52【分析】本题考查了新定义,求代数式的值,化简绝对值,绝对值方程,正确理解新定义是解题的关键.根据f(x)+g(x)=6得出含绝对值的方程,解方程可得答案.【详解】解:由题可得:|x ―3|+|x +2|=6,当x ≥3时,x ―3+x +2=6,解得x =72;当―2<x <3时,3―x +x +2=6,方程无解;当x ≤―2时,3―x ―x ―2=6,解得x =―52;故答案为:72或―52.16.定义一种关于整数n 的“F ”运算:(1)当n 是奇数时,结果为3n +5;(2)当n 是偶数时,结果是n 2k (其中k 是使n 2k 是奇数的正整数),并且运算重复进行.例如:取n =58,第一次经F运算是29,第二次经F 运算是92,第三次经F 运算是23,第四次经F 运算是74,……;若n =9,则第2023次运算结果是 .【答案】8【分析】此题考查的是探索规律题.由题意所给的定义新运算可得当n =9时,第一次经F 运算是32,第二次经F 运算是1,第三次经F 运算是8,第四次经F 运算是1,⋯,由此规律可进行求解.【详解】解:由题意n =9时,第一次经F 运算是3×9+5=32,第二次经F 运算是3225=1,第三次经F 运算是3×1+5=8,第四次经F 运算是823=1,⋯;从第二次开始出现1、8循环,奇数次是8,偶数次是1,∴第2023次运算结果8,故答案为:8.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―(+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)= 1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a|=5,|b|=3,且|a―b|=b―a,可以得到a、b的值,然后代入所求式子计算即可;(2)根据a与b互为相反数,c与d互为倒数,x的绝对值等于2,可以得到a+b=0,cd=1,x=±2,然后代入所求式子计算即可.【详解】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a―b|=b―a,∴b≥a,∴a=―5,b=±3,当a=―5,b=3时,a―b=―5―3=―8,当a=―5,b=―3时,a―b=―5―(―3)=―5+3=―2,由上可得,a+b的值是―8或―2;(2)∵a与b互为相反数,c与d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴当x=2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN 保持长度不变).(1)当t =20时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ =PM 时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t 的代数式表示点运动后所表示的数.(1)当t =20时,根据起点位置以及运动方向和运动速度,即可得点M 表示的数为8、点Q 表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t=18.25或t=19.75,∴重合部分长度为1.5时所对应的t的值是5.5或8.5或18.25或19.75.。
2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷+答案解析 (1)
2023-2024学年江苏省南京市八年级(下)第一次月考数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列汽车标志中既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.为了解我县初中2012级8300名学生的体育成绩,抽查了其中1700名学生的体育成绩进行统计分析.下面叙述正确的是()A.8300名学生是总体B.每名学生是总体的一个个体C.1700名学生的体育成绩是总体的一个样本D.以上调查是普查3.关于矩形的性质,下面说法错误的是()A.矩形的中点四边形是菱形B.两条对角线相等的平行四边形是矩形C.菱形的两条对角线互相垂直平分D.两组对角分别相等且一组邻边也相等的四边形是正方形4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为必然事件的是()A.两枚骰子向上一面的点数和大于1B.两枚骰子向上一面的点数和等于3C.两枚骰子向上一面的点数和等于7D.两枚骰子向上一面的点数和大于125.如图,四边形ABCD是菱形,顺次连接菱形各边的中点E、F、G、,则说法正确的是()A.EFGH是菱形B.EFGH是正方形C.EFGH是矩形D.EFGH是平行四边形6.如图,在正方形OABC中,点B的坐标是,点E、分别在边、上,,若EO 平分则E点的横坐标是()A.2B.3C.D.二、填空题:本题共10小题,每小题3分,共30分。
7.下面调查中,最适合采用普查的是__________填序号①对全国中学生心理健康现状的调查②对菏泽市中学生视力情况的调查③对《新闻联播》节目收视率的调查④对某校七年班同学身高情况的调查8.如图,一张圆桌共有3个座位,甲、乙、丙3人随机坐到这3个座位上,则甲和乙相邻而坐为__________事件填“确定”或“随机”9.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出__________球的可能性最大.10.如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为__________米.11.如图,四边形ABCD中,,要使四边形ABCD为平行四边形,则需添加一个条件,这个条件可以是:__________.12.如图,菱形ABCD的对角线、相交于点O,过点A作于点H,连接若,,则OH的长为__________.13.如图,在四边形ABCD中,,垂足为点若四边形ABCD 的面积为13,则__________.14.如图,在中,,D为AB上不与点A,B重合的一个动点,过点D 分别作于点E,于点F,则线段EF的最小值为__________.15.如图,在矩形ABCD中,,,点E、F分别为AD、CD边上的点,且EF的长为4,点G为EF的中点,点P为BC上一动点,则的最小值为_________________.16.如图,在边长为4的正方形ABCD中,点E为边BC的中点,点F为边AB上的动点,以EF为一边在EF的右上方作等边三角形FEG,当CG最小时,的周长为__________.三、解答题:本题共10小题,共80分。
2022-2023学年山东省日照市东港区新营中学八年级(下)月考数学试卷(3月份)+答案解析(附后)
2022-2023学年山东省日照市东港区新营中学八年级(下)月考数学试卷(3月份)1. 下列式子中,属于最简二次根式的是( )A. B. C. D.2. 代数式有意义的条件是( )A. B. C.且 D.3. 下列计算正确的是( )A. B.C. D.4. 在中,:::1:2,则下列说法错误的是( )A. B. C. D.5. 图中的点均为大小相同的小正方形的顶点,对于所画的两个四边形,下列叙述中正确的是( )A. 这两个四边形的面积和周长都相同B. 这两个四边形的面积和周长都不相同C. 这两个四边形的面积相同,但周长不相同D. 这两个四边形的周长相同,但面积不相同6. 一架5m的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m,若梯子的顶端下滑1m,则梯足将滑动( )A. 0mB. 1mC. 2mD. 3m7. 在中,,AD为BC边上的高,,,则BC的长为( )A. 5B. 7C. 5或7D.8. 在中,,若,,则的面积是( )A. B. C. D.9. 如图,已知,,,,则点C 到BD 的距离为( )A. B. C. D.10. 如图所示,已知圆柱的底面周长为36,高,P 点位于圆周顶面处,小虫在圆柱侧面爬行,从A 点爬到P 点,然后再爬回C 点,则小虫爬行的最短路程为( )A. 26B.C.D.11. 在学习“勾股数”的知识时,爱动脑的小明发现了一组有规律的勾股数,并将它们记录在如下的表格中.则当时,的值为( )a 68101214…b 815243548…c1017263750…A. 100B. 200C. 240D. 36012. 已知a ,b 均为正数,且,则的最小值为( )A. 8B. 9C. 10D. 1213. 你听说过亡羊补牢的故事吗?如图,为了防止羊的再次丢失,小明爸爸要在高,宽的栅栏门的相对角顶点间加一个加固木板,这条木板需______ m 长.14. 有两根木棒,分别长12cm,5cm,要再在14cm的木棒上取一段,用这三根木棒为边做成直角三角形,这第三根木棒要取的长度是______15. 将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是______.16. 如图,矩形纸片ABCD中,,,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为______ .17. 如图,是等腰直角三角形,BC是斜边,将绕点A逆时针旋转到的位置、如果,那么的长等于______ .18. 如图,在中,,,将沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的第13个三角形的直角顶点的坐标为______.19. 计算;;若,求代数式的值.细心观察如图,认真分析各式,然后解答下列问题:,是的面积;,是的面积;,是的面积;①请用含有为正整数的式子填空:______ ,______ .②求的值.20. 如图,每个小正方形的边长都是、B、C、D均在网格的格点上.是直角吗?请证明你的判断.直接写出四边形ABCD的面积找到格点E,并画出四边形一个即可,使得其面积与四边形ABCD面积相等.21. 如图,E、F是平行四边形ABCD的对角线AC上的两点,且,,连接BE、ED、DF、求证:四边形BEDF为平行四边形;若,,求BD的长.22. 图1是超市购物车,图2为超市购物车侧面示意图,测得,支架,两轮中心AB之间的距离为______ dm;若OF的长度为,支点F到底部DO的距离为5dm,试求的度数.23. 如图,在等腰中,垂足为已知,求AC与AB的长.点P是线段AB上的一动点,当AP为何值时,为等腰三角形.答案和解析1.【答案】D【解析】解:A、原式,故A不是最简二次根式,B、原式,故B不是最简二次根式,C、原式,故C不是最简二次根式,故选:根据最简二次根式的定义即可判断.本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.2.【答案】C【解析】解:由题意得,且,即且故选:根据分式和二次根式有意义的条件求出x的取值范围即可.本题考查的是二次根式及分式有意义的条件,熟知以上知识是解题的关键.3.【答案】B【解析】解:,故此选项不符合题意;B.,故此选项符合题意;C.,故此选项不符合题意;D.,故此选项不符合题意;故选:根据算术平方根和二次根式的运算法则去判断即可.此题主要考查了二次根式的性质和运算,熟练掌握二次根式的运算法则是解题的关键.4.【答案】A【解析】解:设、、分别为x、x、2x,则,解得,,、、分别为、、,,A错误,符合题意,,B正确,不符合题意;,C正确,不符合题意;,D正确,不符合题意;故选:根据三角形内角和定理分别求出、、,根据勾股定理、等腰三角形的概念判断即可.本题考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于是解题的关键.5.【答案】C【解析】解:设每相邻两个点间的距离是则①的周长,①面积;②的周长,②的面积综上所述,这两个四边形的面积相同,但周长不相同.故选:根据勾股定理、周长公式、面积公式计算每个图形的周长和面积,然后进行比较.考查了图形的周长和面积计算,勾股定理.注意数形结合在解题中的应用.6.【答案】B【解析】解:依照题意画出图形,如图所示.在中,,,在中,,,,故选:依照题意画出图形,在中,利用勾股定理可求出OA的长度,结合AC的长度可得出OC的长度,在中,利用勾股定理可求出OD的长度,再利用即可求出BD 的值.本题考查了勾股定理,依照题意画出图形,利用数形结合解决问题是解题的关键.7.【答案】C【解析】解:在中,,,,如图,当点C在点D右边时,;如图,当点C在点D左边时,,故BC的长为:5或故选:在中,根据,,求得,然后分情况讨论即可求得BC 的长.本题考查解直角三角形以及分类讨论,解题关键是正确画出分类讨论的三角形图形求解.8.【答案】A【解析】解:,,,,即,,,即的面积是,故选:根据勾股定理得到,根据完全平方公式求出,得到,得到答案.本题考查的是勾股定的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么9.【答案】B【解析】解:,,,,,,是直角三角形,设点C到BD的距离为h,故选:先根据勾股定理求出BC,再根据勾股定理的逆定理可得是直角三角形,再根据三角形的面积公式即可求解.本题考查了勾股定理,勾股定理的逆定理,熟悉勾股定理,勾股定理的逆定理的计算是解题的关键.10.【答案】B【解析】解:如图,小虫爬行的最短路程故选:先将图形展开,再根据两点之间线段最短,由勾股定理可得出.此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.11.【答案】B【解析】解:从表中可知:a依次为6,8,10,12,14,16,18,20,22,24,,即,b依次为8,15,24,35,48,,即当时,,c依次为10,17,26,37,50,,即当时,,所以当时,故选:先根据表中的数据得出规律,根据规律求出b、c的值,再求出答案即可.本题考查了勾股数,能根据表中数据得出,是解此题的关键.12.【答案】C【解析】解:将转化为,代入得,,可理解为点到与的距离.如图:找到C关于x轴的对称点,可见,AB的长即为求代数式的最小值.,代数式的最小值为故选:将代数式转化为,理解为点到与的距离,利用勾股定理解答即可.本题考查利用轴对称求最短路线的问题,难度较大,解题关键是将求代数式的值巧妙地转化为几何问题.13.【答案】【解析】解:根据题意,结合图形可知:,,在中,故答案为:分析题意,如图进行点标注,则有米,米,在中,利用勾股定理可得本题考查的是勾股定理应用类型的题目,解题的关键是构造直角三角形.14.【答案】13或【解析】解:①12cm是直角边,第三根木棒要取的长度是;②12cm是斜边,第三根木棒要取的长度是;故答案为:13或分2种情况:①12cm是直角边;②12cm是斜边;根据勾股定理求出第三根木棒的长即可求解.考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形.15.【答案】【解析】解:将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,当杯子中筷子最短是等于杯子的高时为12cm,最长时等于杯子斜边长度,即:,的取值范围是:,即故答案为:根据杯子内筷子的长度取值范围得出杯子外面长度的取值范围,即可得出答案.此题主要考查了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的关键.16.【答案】【解析】解:在中,,,,由折叠的性质可得,≌,,,,设,则,,在中,解得,即根据勾股定理可得,由折叠的性质可得≌,则,,则,在中根据勾股定理求AG的即可.此题主要考查折叠的性质,综合利用了勾股定理的知识.认真分析图中各条线段的关系,也是解题的关键.17.【答案】【解析】解:,,,,即为等腰直角三角形,由勾股定理得因为是由旋转得到的,则这两个三角形全等,根据所以,可得为等腰直角三角形,由勾股定理即可求解.此题主要考查学生对旋转的性质及等腰三角形的性质的掌握情况.18.【答案】【解析】解:,,,,根据图形,每3个图形为一个循环组,,所以,第13个三角形的直角顶点在x轴上,横坐标为,所以,第13个三角形的直角顶点的坐标为,故答案为:利用勾股定理得到AB的长度,结合图形可求出图③的直角顶点的坐标;根据图形不难发现,每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合.本题考查了坐标与图形的变化-旋转,仔细观察图形,判断出旋转规律“每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合”是解题的关键.19.【答案】【解析】解:计算;;,,;①根据上面的规律,可得,,故答案为:n,;②根据二次根式的性质,零指数幂,绝对值的性质求解即可;根据二次根式的性质,二次根式的乘除法则求解即可;先将变形为,再根据完全平方公式求解即可;①根据给定的规律填空即可;②先分母有理化,再求值即可.本题考查了二次根式的化简与求值,规律型,熟练掌握二次根式的性质是解题的关键.20.【答案】解:不是直角.理由:,,,,不是直角.四边形ABCD的面积是如图,四边形ABED即为所求作.答案不唯一【解析】解:不是直角.理由:,,,,不是直角.四边形ABCD的面积是如图,四边形ABED即为所求作.答案不唯一利用勾股定理,判断即可.利用分割法求解即可.取格点E,连接BE,DE即可.本题考查作图-应用与设计作图,勾股定理以及逆定理,四边形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】证明:连接BD交AC于O,四边形ABCD是平行四边形,,,,,,,,,在和中,,≌,,,又,四边形BEDF为平行四边形;解:由得:,,,,【解析】连接BD交AC于O,由平行四边形的性质得出,,,,由平行线的性质得出,证明≌得出,得出,即可得出结论;由得:,由勾股定理得出OB的长,即可得出结果.此题主要考查了平行四边形的判定与性质,全等三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.22.【答案】6【解析】解:在中,由勾股定理得:,故答案为:6;过点F作,交DO延长线于H,如图所示:则,在中,由勾股定理得:,,是等腰直角三角形,,,的度数为在中,由勾股定理求出AB即可;过点F作,交DO延长线于H,由勾股定理得,再证是等腰直角三角形,得,进而得出答案.本题考查了勾股定理的应用、等腰直角三角形的判定与性质等知识,熟练掌握勾股定理和等腰直角三角形的性质是解题的关键.23.【答案】解:由勾股定理得,,设,则,在中,由勾股定理得,,解得,;当时,,为等腰三角形;当时,如图,,,,,,;当时,如图,过D作于点E,,设,则,,即,解得,综上,当或3或时,为等腰三角形.【解析】由勾股定理直接求得AC,设,由勾股定理列出x的方程,便可求得AB;分三种情况:;;分别进行解答便可.本题考查了勾股定理,等腰三角形的性质,分情况讨论是解题的关键.。
2021年初二第二次月考试卷
初二第二次月考试卷初二学年历史月考试题201*.11一、选择题1、提出“师夷长技以制夷”主张的是A.林则徐B.洪秀全C.左宗棠D.魏源2、从麻木不仁的清王朝手中侵占我国领土最多的国家是A.英国B.日本C.俄国D.葡萄牙3、黄海海战中牺牲的致远舰管带是A、丁汝昌B、邓世昌C、刘步蟾D、李鸿章4、与中英《南京条约》比较,中日《马关条约》新增的内容是A.割地B.赔款C.开通商口岸D.外国人可在华开设工厂5、清末一位小商贩说在北京东交民巷,我们这些个卖瓜的、卖菜的不能随便出入了,更不说居住了,说什么皇上把这地界给了洋人。
这一情景的出现是因为清政府签订了A.《南京条约》B.《瑷珲条约》C.《辛丑条约》D.《马关条约》6、标志着清政府已变成“洋人的朝廷”的是A、《南京条约》B、《北京条约》C、《马关条约》D、《辛丑条约》7、西方列强的枪炮声震醒了清王朝部分官僚,从19世纪60年代开始,他们发起了一场自救运动。
其主要影响是A.实现了富国强兵B.开始了中国的近代化进程C.挽救了民族危亡D.阻止了外国资本主义扩张8、“他”以状元的身份毅然辞官南归,一生先后创办了大生纱厂等19个企业。
“他”是A.詹天佑B.魏源C.张謇D.候德榜9、严复被鲁迅先生称为中国“十九世纪末最敏感的人”,因为他A.提出了“师夷长技以制夷”的思想B.主张民主共和思想C.提出“自强”、“求富”的主张D.宣传“物竞天择”观点10、中国同盟会成立的地点是A.江西南昌B.湖南长沙C.日本东京D.英国伦敦11、201*年5月23日上午,孙中山铜像回迁揭幕仪式在南京市新街口广场隆重举行。
孙中山先生受世人敬仰,其丰功伟绩有①建立中国同盟会②提出三民主义③亲自发动武昌起义④成立中华民国A.①②③B.①②④C.②③④D.①③④12、孙中山领导的辛亥革命实现了20世纪中国第一次历史性的巨变,主要是因为A.辛亥革命使中国结束了被侵略被奴役的屈辱历史B.辛亥革命推翻了两千多年的封建帝制,使民主共和观念深入人心C.辛亥革命使人民获得了真正的民主、自由D.辛亥革命使三民主义的理想在中国实现13、1915年,创办《青年杂志》,吹响新文化运动号角的人物是A.蔡元培B.李大钊C.陈独秀D.鲁迅14、新文化运动在中国近代历史上最突出的贡献是A.开启了近代化进程B.解放了人们思想C.维护了民族尊严D.挽救了民族危亡15、1928年底,一位热血青年在井冈山入伍参军,当时他参加的军队应是A.国民革命军B.中国工农红军C.八路军D.中国人民解放军16、下列说法中和北京大学历史相符合的有①初名京师大学堂②是维新变法运动的成果之一③是中国近代第一所国家建立的最高学府④所倡导的办学思想和办学原则对中国近代教育产生了深远影响A.①③④B.①②C.②③④D.①②③④17、下列事项可能出现在20世纪20年代初北京居民日常生活中的是()A.出行可以乘坐飞机B.用手机和亲友联系C.可以看到无声电影D.称呼政府官员“大人”、“老爷”18、中华民国建立后,明令废除“大人”、“老爷”等称呼。
最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)
最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)时间:100分钟满分:120分学校:__________姓名:__________班级:__________考号:__________一、选择题1.下列图形中,不是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形.2. 在下列实数中,无理数是( )A. 0B. 14C. 5D. 6【答案】C【解析】试题分析:有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.因此,选项A、B、D的0、14、6都是有理数,选项C5C.3.在平面直角坐标系中,点M(﹣2,1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B∵点P的横坐标为负,纵坐标为正,∴该点在第二象限.故选B.4.下列四组线段中,可以构成直角三角形的是()A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,6【答案】C【解析】【分析】根据勾股定理的逆定理逐项判断即可.【详解】A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、42+52≠62,不能构成直角三角形,故不符合题意.故选:C.【点睛】本题考查勾股定理的逆定理,如果三角形的三边长为a,b,c,有下面关系:a2+b2=c2,那么这个三角形是直角三角形.5.当x=2时,函数112y x=+的值是()A. 3B. 2C. 1D. 0 【答案】B【解析】【分析】把x=2代入函数关系式进行计算即可得解.【详解】x=2时,y=12×2+1=1+1=2.故选B.【点睛】本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.6.到△ABC的三条边距离相等的点是△ABC的().A. 三条中线的交点B. 三条边的垂直平分线的交点C. 三条高的交点D. 三条角平分线的交点【解析】【分析】根据角平分线的性质求解即可.【详解】到△ABC 的三条边距离相等的点是△ABC 的三条角平分线的交点故答案为:D .【点睛】本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键. 7.等腰三角形的周长为80,腰长为 x ,底边长为y ,y 是x 的函数,则 x 的取值范围是( )A. x>0B. 020x <<C. 040x <<D. 2040x <<【答案】D【解析】【分析】根据已知列方程,化为函数关系式,再根据三角形三边的关系确定x 的取值范围即可.【详解】∵2x+y=80,∴y=80-2x ,∵y >0,∴80-2x >0,即x <40,∵两边之和大于第三边,∴2x >y ,即2x >80-2x,解得x >20,综上可得20<x <40,故选D.【点睛】本题考查了等腰三角形的性质及三角形三边关系,运用方程的思想列出关系式、根据三角形三边关系求得x 的取值范围是解答本题的关键.8.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A. 3B. 4C. 5D. 6【答案】A【解析】正确理解函数图象横纵坐标表示的意义.解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y 在AB段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是×2×3=3.故选A.理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二、填空题9.18的立方根是__.【答案】1 2【解析】试题分析:根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a 的一个立方根:∵31128⎛⎫=⎪⎝⎭,∴18的立方根是12.10.用四舍五入法把9.456精确到百分位,得到的近似值是.【答案】9.46【解析】试题分析:把千分位上的数字6进行四舍五入即可.解:9.456≈9.46(精确到百分位).故答案为9.46.考点:近似数与有效数字.11. 等腰三角形一个底角是30°,则它的顶角是__________.【答案】120°【解析】本题主要考查“等腰三角形的两底角相等”与“三角形的内角和定理”等腰三角形一个底角是30°,则它的另一个底角也是30°,则它的顶角是180°-30°-30°=120°12.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.【答案】20【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.13.已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.x【答案】2【解析】【分析】直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键. 14.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).【答案】>【解析】【分析】分别把点A (-1,y 1),点B (-2,y 2)的坐标代入函数y =3x ,求出点y 1,y 2的值,并比较出其大小即可.【详解】∵点A (-1,y 1),点B (-2,y 2)是函数y =3x 的图象上的点,∴y 1=-3,y 2=-6,∵-3>-6,∴y 1>y 2.15.一次函数1y x =+与3y ax =+的图象交于点P ,且点P 的横坐标为1,则关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是______. 【答案】12x y =⎧⎨=⎩【解析】【分析】把1x =代入1y x =+,得2y =,得出两直线的交点坐标为(1,2),从而得到方程组的解.【详解】解:把1x =代入1y x =+,得2y =,则函数1y x =+和3y ax =+的图象交于点(1,2)P ,即x=1,y=2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是1,2.x y =⎧⎨=⎩故答案为12x y =⎧⎨=⎩【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.如图,在△ABC 中,∠BAC =90°,AB =5,AC =12,点D 是BC 的中点,将△ABD 沿AD翻折得到△AED,连接BE,CE.则CE=___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总4页
八年级第二次月考数学试卷
一、选择题(8×3’=24’)
1.如果把分式yxx232中的x,y都扩大3倍,则分式值( )
A 扩大3倍 B 不变 C 缩小3倍 D 扩大2倍
2.若关于x的方程1112xmxx产生增根,则m是 ( )
A.-1 B. 1 C.-2 D.2
3、如图,直线y=x+a-2与双曲线y=x4交于A,B两点,则当线段AB的长度取最小值时,a的值为( ) A.0 B.1 C.2 D.5 4.把分式方程21y -yy21=1的两边同乘y-2,约去分母,得( ) A、 1-(1-y)=1 B、 1+(1-y)=1 C、 1-(1-y)=y-2 D、 1+(1-y)=y-2 5、同一坐标系中,若正比例函数y=k1x与反比例函数y= k2 x 的图像没有公共点,则 ( ) (A) k1k2<0 (B) k1k2>0 (C) k1k2<0 (D) k1k2>0 6、设点11,yxA和22,yxB是反比例函数xky图象上的两个点,当1x<2x<0时,1y<2y,则一次函数kxy2的图象不经过的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为( ) A.4030201.5xx B.4030201.5xx C.3040201.5xx D.3040201.5xx 8、如图,等边三角形OAB的一边OA在x轴上,双曲线xy3 在第一象限内的图像经过OB边的中点C,则点B的坐标是( ) (A)( 1,3).(B)(3,1 ). (C)( 2 ,32).(D)(32 ,2 ). 二、填空题(8×4’=32’) 9.分式28,9,12zyxxyzxxzy的最简公分母是 10.计算1111112xx的结果是 11.若2222,2babababa则= 12.若关于x的分式方程xmxx525无解,则m的值为____▲_____
13.关于x的方程211xax的解是负数,则a的取值范围是__________.
14. 如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA
的距离DE=y.求y与x之间的函数关系式:
15
.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个, 现对原有设备进行了技术
改进后,提高了生产效率,每天比原计划增产25%,结果提前10天完成了任务.原计划每天生产
个零件。
16.已知双曲线xy3和xky的部分图象如图所示,点C是y轴正半轴上一点,过点C作AB∥
x
轴分别交两个图象于点BA、.若CB=CA2,则k= .
三、计算化简与解方程(17题7’×2=14’ 18题8’ 19题8’×2=16’ 20题8’ 共46’)
17.化简:(1)
2
2142x
xx
(2) 22444122aaaaa
总4页
18. 先化简:144)113(2aaaaa,并从0,1,2中选一个合适的数作为a的值代
入求值 19.解方程: (1) xxx31432 (2)261393xxxx 20.关于x 的方程223242mxxxx无解,求m的值。 四、解答题(12’×3=48’ ) 21. 如图,在平面直角坐标系xOy中,正比例函数y1=kx的图象与反比例函数y2=的图象有一个交点A(m,2).(1)求正比例函数y=kx的解析式;(2)根据图象写出正比例函数值大于反比例函数的值的x的取值范围 22. 某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期
的情况下,你觉得那一种施工方案最节省工程款?
23.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强
p(Pa)是气
球体积V(m3)的反比例函数,且当V =1.5m3时
,p=16000Pa.
(1)当V =1.2m3时,求p的值;(2)当气球内的气压大于40000Pa时,气球将爆炸,为确
保气球不爆炸,气球的体积应不小于多少?
24.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交
于点D、E,若四边形ODBE的面积为12,求(1)反比例函数的解析式。(2)求矩形OABC的面
积。