复旦大学高等数学b教材

合集下载

复旦自科班大一课程

复旦自科班大一课程

复旦自科班大一课程
复旦大学自然科学类大一课程包括数学、物理、化学、计算机科学等课程。

具体课程如下:
1.高等数学:包括数列、函数、极限、微分、积分、微分方程
等内容。

2.线性代数:包括矩阵、向量、线性方程组、向量空间、特征
值等内容。

3.大学物理:包括力学、热学、电磁学、光学等内容。

4.普通化学:包括基础的无机化学、有机化学、物理化学等内容。

5.计算机科学导论:包括计算机基础知识、计算机系统结构、
数据结构等内容。

6.通识英语:包括英语听说读写等综合训练。

7.思想道德修养与法律基础:包括思想道德修养、法律基本概
念和法制常识等内容。

8.大学生心理健康教育:包括大学生心理健康状况、心理适应
障碍预防与干预等内容。

此外,根据个人的兴趣和专业选择,还可以有选修课程的机会,
如自然科学实验、计算机编程等。

这些课程组合在一起,形成了大一学生的基础科学知识和能力。

【预录生福利】复旦大一第一学期各专业必修课书单

【预录生福利】复旦大一第一学期各专业必修课书单

前言:1、本资料提供的书单只是参考,届时根据自己的选课不同,不同的老师可能使用的教材会不一致,但是对于一门科目来说知识点是相通的,这些教材也可以学到相应的知识。

如果错误或者不全欢迎同学勘误或者补充。

2、有时间的同学可以全部买来看,但是按照过来人经验暑假应该是没有时间学术的,基本都是吃喝玩乐,所以建议挑自己感兴趣的课程买1-2本来看看。

3、有些专业的书单分成教材书和参考书,所谓的参考书就是很多老师上课提到的,但是这些书大多和最后的论文和考试没啥关系,而且每学期的很多参考书也不一定一样,所以还是按照兴趣来~4、大一第一学期的成绩很重要,决定了3月份的转专业的录取,决定了未来6月份的专业分流,所以还是请各位有目标有理想有信仰的三有青年好好努力。

5、书目以专业课为主,一些选修课,公共课,军理课,计算机课,政治课,英语课神马的教材就没有整理,因为那些也不用提前准备,还有下面的当当网的购买网址绝对不是植入广告!(求当当网给赞助费!)中国语言文学类:课程教材:无(第一学期貌似没有必修专业课,呵呵)推荐书目:1、《沈从文精读》作者:张新颖出版社:复旦大学出版社/main/product.aspx?product_id=90421062、《鲁迅精读》作者:郜元宝出版社:复旦大学出版社/main/product.aspx?product_id=90421043、《论语精读》作者:傅杰出版社:复旦大学出版社4、《李太白集》(清)王琦注,中华书局1977年版5、《杜诗镜铨》(清)杨伦笺,上海古籍出版社1980年版历史学类:课程教材:1、《世界文明史讲稿》作者:赵立行出版社:复旦大学出版社/main/product.aspx?product_id=200396692、《国史概要》作者:樊树志出版社:复旦大学出版社/main/product.aspx?product_id=208601543、《新全球史》作者:本特利,齐格勒出版社:北京大学出版社/main/product.aspx?product_id=20037247哲学类:课程教材:1、《哲学导论》作者:王德峰出版社:上海人民出版社/main/product.aspx?product_id=205308972、《哲学要义》作者:叶秀山出版社:世界图书出版公司/main/product.aspx?product_id=20851069英语:课程教材:1、《精读英语教程》作者:沈黎出版社:复旦大学出版社/?key=%BE%AB%B6%C1%D3%A2%D3%EF%BD%CC%B 3%CC%20%20%B8%B4%B5%A9朝鲜语:课程教材:1、《初级韩国语》作者:姜银国出版社:上海交大出版社/main/product.aspx?product_id=90507172、《韩国语泛读教程》作者:文英子出版社:上海交大出版社/main/product.aspx?product_id=92953343、《韩国语视听说》/?key=%BA%AB%B9%FA%D3%EF%CA%D3%CC%FD%C B%B5新闻传播学类:推荐书目:1、《马克思主义新闻经典教程》作者:童兵出版社:复旦大学出版社/main/product.aspx?product_id=86258002、《新闻学概论》作者:李良荣出版社:复旦大学出版社/main/product.aspx?product_id=22577342社会科学试验班:课程教材:1、《政治学概论》作者:孙关宏,胡雨春,任军锋出版社:复旦大学出版社/main/product.aspx?product_id=202988272、《社会学》第十一版作者:波普诺出版社:中国人民大学出版社/main/product.aspx?product_id=200594503、《心理学与生活》作者:理查德·格里格菲利普·津巴多出版社:人民邮电出版社/main/product.aspx?product_id=87606754、《公共行政学》作者:竺乾威出版社:复旦大学出版社/product.aspx?product_id=201399945、《国际关系精要》作者:卡伦·明斯特出版社:上海世纪出版集团/main/product.aspx?product_id=229095116、《社会研究方法》作者:艾尔·巴比出版社:华夏出版社/main/product.aspx?product_id=205125087、《当代中国政治制度》作者:浦兴祖出版社:复旦大学出版社/main/product.aspx?product_id=1710668、《法理学》作者:张文显出版社:高等教育出版社/product.aspx?product_id=226162019、《国际法原理》作者:张乃根出版社:复旦大学出版社/main/product.aspx?product_id=2276612810、《社会工作概论》作者:顾东辉出版社:复旦大学出版社/main/product.aspx?product_id=20226706心理学:课程教材:1、《心理学与生活》作者:理查德•格里格菲利普•津巴多出版社:人民邮电出版社/main/product.aspx?product_id=87606752、《社会学》第十一版作者:波普诺出版社:中国人民大学出版社/main/product.aspx?product_id=200594503、《社会研究方法》作者:艾尔·巴比出版社:华夏出版社/main/product.aspx?product_id=205125084、《高等数学》(上,下)作者:童裕孙出版社:高等教育出版社/main/product.aspx?product_id=20146861/main/product.aspx?product_id=201468625、《大学物理简明教程》作者:梁励芬等编出版社:复旦大学出版社/main/product.aspx?product_id=210904526、《现代生物科学导论》作者:曹凯明主编出版社:高等教育出版社/main/product.aspx?product_id=227071467、《基础物理实验》作者:沈元华陆申龙出版社:高等教育出版社/main/product.aspx?product_id=20146699法学:课程教材:1、《法理学》作者:沈宗灵出版社:北京大学出版社/product.aspx?product_id=19000700252、《法理学导论》作者:张光杰出版社:复旦大学出版社/product.aspx?product_id=92229703、《行政法学》作者:罗豪才出版社:北京大学出版社/main/product.aspx?product_id=226191544、《民法总论》作者:梁慧星出版社:法律出版社/main/product.aspx?product_id=21059688经济管理试验班:课程教材:1、《政治经济学教材(第13版)》作者:蒋学模出版社:上海人民出版社/main/product.aspx?product_id=227206652、《微观经济学(第二版)》作者:克鲁格曼,韦尔斯出版社:中国人民大学出版社/main/product.aspx?product_id=226331083、《高等数学》上、下作者:金路出版社:高等教育出版社/main/product.aspx?product_id=207961184、《管理学》作者:斯蒂芬•P•罗宾斯,玛丽•库尔特出版社:中国人民大学出版社/main/product.aspx?product_id=228052185、《工科数学分析》作者:张宗达出版社:高等教育出版社/main/product.aspx?product_id=22594510推荐书目:1、《牛奶可乐经济学(完整版)》作者:弗兰克出版社:中国人民大学出版社/main/product.aspx?product_id=209923982、《超爆魔鬼经济学》作者:斯蒂夫·列维特,斯蒂芬都伯纳出版社:中信出版社/main/product.aspx?product_id=208031083、《经济学原理第5版:微观经济学分册》作者:曼昆出版社:北京大学出版社/main/product.aspx?product_id=20573361自然科学试验班:课程教材:1、《高等数学>上、下(配套练习,包含线性代数练习)》(共5本)作者:金路出版社:高等教育出版社/main/product.aspx?product_id=207961182、《现代化学原理(上、下)》(共2本)作者:金若水出版社:高等教育出版社/main/product.aspx?product_id=224575843、《大学物理通用教程》全套(共五册:力学热学电磁学光学近代物理)作者:钟锡华出版社:北京大学出版社/product.aspx?product_id=74045074、《现代生物科学导论》作者:曹凯鸣出版社:高等教育出版社/main/product.aspx?product_id=227071465、《C语言程序设计(第二版)》(书+上机指导共两本)作者:夏宽理赵子正出版社:中国铁道出版社/main/product.aspx?product_id=226818786、《大学计算机信息科技教程》(书+上机指导共两本)作者:吴立德出版社:复旦大学出版社/main/product.aspx?product_id=8731955数学类:课程教材:1、《数学分析(第二版)》作者:陈纪修於崇华金路出版社:高等教育出版社/main/product.aspx?product_id=224669332、《高等代数学(第二版)》作者:姚慕生吴泉水出版社:复旦大学出版社/main/product.aspx?product_id=202988193、《空间解析几何》作者:黄宣国出版社:复旦大学出版社(注:空间解析几何的老师今年退休了,新的老师必然用新的教材,所以本教材参考意义不大。

复旦大学课程教学大纲

复旦大学课程教学大纲

复旦大学课程教学大纲课程代码 MATH120008.09 编写时间 2011年08月更新课程名称 数学分析(I)英文名称 Mathematical Analysis(I)学分数 5 周学时 6任课教师* 谢锡麟 开课院系**力学与工程科学系预修课程 仅需普通高中相关数学基础;无特别先有基础要求。

课程性质:本课程可谓所有基础科学(包括数学、力学、物理、化学、生物等)、技术科学(包括航空航天、环境、材料、信息等)等专业最为基础和重要的数学基础课程,提供微积分的基本内容。

从知识体系的发展而言,微积分融合线性代数(这点特别反映在《数学分析(Ⅱ)》中)作为核心基础,一方面将为后续复变函数、实分析与泛函分析、常微分方程与偏微分方程、概率统计、微分几何等系统的数学知识体系的发展提供实质性的基础;另一方面,微积分和线性代数亦是理论力学、连续介质力学(包括流体力学、弹性力学)、振动力学、控制力学等力学知识体系的发展的坚实基础。

总体而言,本一年制的数学分析课程将结合面对的对象(适用于非数学类的几乎所有的专业),提供系统的微积分知识体系,不仅注重微积分知识体系的核心基础特点,而且注重知识体系的现代化发展,力求学生具有坚实的基础并具有基于其上的自我学习的能力。

在教学的广度与深度上,我们力求课程所授的知识体系具有国内外一流化水平,且切实注重学生的实际接受水平。

本课程《数学分析(I)》将主要提供一元微积分的内容,包括常微分方程最为基础的若干思想及方法。

教学目的:2005年,学校在百年校庆时提出“走以内涵发展的道路”,以及现今所致力于探索和推广的“通识教育、精英教育”的理念,结合力学以及数学间相辅相成、紧密相连的关系,而考虑本门课程的具体教学。

以下反映一些基本的观点,这将指导具体的教学。

✧虽然数学分析是数学课程,但我们学习的是“认识自然的系统的思想和方法”——许多实践和成就表明,数学对于我们认识自然是极其有效的——许多数学机制具有鲜明的力学和物理背景。

复旦考研数学白皮书电子版

复旦考研数学白皮书电子版

复旦考研数学白皮书电子版于复旦大学大一数学系学生而言,高等代数无疑是最重要的课程之一,然而起初面对这门课程,相信大多数同学会感到困难和无所下手,此时教材和学习指导书便是最重要和最可靠的“助手”,也是每位同学应该学会利用的。

高等代数学习方法指导(第三版)(下称白皮书)是由复旦大学姚慕生老师和谢启鸿老师编著的数院本科生高等代数学习宝典,对高等代数的学习有着极大的帮助,接下来我就谈谈个人对白皮书的感受以及其对我高代学习的影响。

整本白皮书共计535页,在旧版的基础上增加了大量的例题,对每个知识点都有着深刻的剖析,内容全面而丰富且有阶梯性,因此不论对基础好坏的同学都易于接受。

在每章开头都会有本章基础知识点的总结,方便同学们回顾和记忆;在每章结尾处也会有一些基本训练题帮助同学们巩固和加强,打好基础。

我在阅读白皮书的过程中,印象最深刻的有如下七点:1.对各类知识点的总结和整理:例如p338页对于矩阵的Jordan 标准型的求法的总结;p392页对正定阵判定准则的总结;p116页对于矩阵的秩和行(列)向量的极大无关组的求法等等;2.大量的一题多解:除了在现有知识的基础下提供的多种解法(例如p339例7.28等),还会在学习了新的知识点和方法后对前面的题目提供新的解法(例如p158页例3.71的证法3;p486页例8.25的证法2、例9.27的证法2等),这有助于我们从不同角度看问题,更深刻地理解题目,尤其在用新的视角重新审视以前的题目时。

3.许多竞赛题、考研题:白皮书中整理了大学生数学竞赛的真题并穿插在各个章节中,此外,书中还涵盖了谢启鸿老师教学论文的成果和前两年的每周一题,这对于学有余力的同学而言是学习高代的宝贵财富。

4.几何和代数的转化:记得谢启鸿老师在第一节高代课上就讲过学好高代最有效的方法是:深入理解几何意义、熟练掌握代数方法,而白皮书很好的体现了这一点,书中包含了大量对同一道题目或知识点代数和几何的不同解法或解析(例如p429页Gram-Schmidt正交化方法)。

《复旦大学数学系 数学分析 第3版 上册 笔记和课后习题 》读书笔记思维导图

《复旦大学数学系 数学分析  第3版  上册 笔记和课后习题 》读书笔记思维导图
《复旦大学数学系 数学 分析 第3版 上册 笔记
和课后习题 》
最新版读书笔记,下载可以直接修改
思维导图PPT模板
本书关键字分析思维导图
第版
习题
考研
复旦大学 数学系
知识
笔记
内容
真题
名校
数学分析 教材
考生
复习
书 参考书目 电子书
极限
命题
升级
目录
01 第一篇 极限论
02
第二篇 单变量微积分 学
本书特别适用于参加研究生入学考试指定考研参考书目为复旦大学数学系《数学分析》(第3版)(上册) 的考生。也可供各大院校学习复旦大学数学系《数学分析》(第3版)(上册)的师生参考。复旦大学数学系主 编的《数学分析》(第3版)是我国高校数学类广泛采用的权威教材之一,也被众多高校(包括科研机构)指定 为考研考博专业课参考书目。为了帮助参加研究生入学考试指定参考书目为复旦大学数学系主编的《数学分析》 (第3版)的考生复习专业课,我们根据该教材的教学大纲和名校考研真题的命题规律精心编写了复旦大学数学 系《数学分析》(第3版)辅导用书(均提供免费下载,免费升级):1.[3D电子书]复旦大学数学系《数学分析》 (第3版)(上册)笔记和课后习题(含考研真题)详解[免费下载]2.[3D电子书]复旦大学数学系《数学分析》 (第3版)(下册)笔记和课后习题(含考研真题)详解[免费下载]3.[3D电子书]复旦大学数学系《数学分析》 (第3版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】[免费下载]4.[3D电子书]复旦大 学数学系《数学分析》(第3版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】[免费下载] 本书是复旦大学数学系主编的《数学分析》(第3版)的配套e书,主要包括以下内容:(1)梳理知识脉络,浓 缩学科精华。本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。 因此,本书的内容几乎浓缩了该教材的所有知识精华。(2)详解课后习题,巩固重点难点。本书参考大量相关 辅导资料,对复旦大学数学系主编的《数学分析》(第3版)的课后思考题进行了详细的分析和解答,并对相关 重要知识点进行了延伸和归纳。(3)精编考研真题,培养解题思路。本书精选详析了部分名校近年来的相关一篇 极限论

大学高等数学有几本教材书

大学高等数学有几本教材书

大学高等数学有几本教材书大学高等数学是大部分理工科学生在大学阶段必修的一门课程,因此教材的选择对于学生学习的效果有着重要的影响。

那么,在大学高等数学领域中,究竟有几本常见的教材书呢?本文将会为您详细介绍并比较几本常见的大学高等数学教材。

1.《大学高等数学》(同济大学版)《大学高等数学》(同济大学版)是中国大学高等数学领域的经典教材之一。

该教材由中国著名大学同济大学编写,自1978年以来一直深受广大学生的喜爱和使用。

该教材内容丰富,理论和实践相结合,注重培养学生的问题解决能力和实际应用能力。

它系统全面地介绍了大学高等数学的基本概念、定理和方法,并通过大量习题和例题进行巩固和拓展。

2.《高等数学》(人民教育出版社版)《高等数学》(人民教育出版社版)是另一本广泛采用的大学高等数学教材。

该教材为中国高等教育出版社出版,经过多年的修订和完善,已经成为许多高校的指定教材。

该教材内容详尽,结构严谨,注重教材与实际应用的结合,帮助学生全面而深入地理解高等数学的核心概念和方法。

此外,该教材还附有大量的习题和例题,供学生巩固与扩展知识。

3.《高等数学》(清华大学版)《高等数学》(清华大学版)是由清华大学编写的一本大学高等数学教材。

该教材以清华大学优秀的师资力量和教学资源为基础,内容全面、思维严谨。

教材中的例题和习题不仅涵盖了基础知识,还注重推导方法和解题思路的讲解,有助于培养学生的数学思维和解题能力。

4.《大学高等数学导学与习题解析》《大学高等数学导学与习题解析》是一本通过对大学高等数学重点知识点进行导读和针对性习题解析的辅助教材。

该教材旨在帮助学生快速掌握数学的基本概念和解题方法,通过习题解析提高学生的独立解题能力。

此外,该教材还提供了大量的习题和练习题,供学生系统地巩固和扩展知识。

5.《高等数学辅导与习题解析》《高等数学辅导与习题解析》是一本专为大学高等数学学习者准备的辅导教材。

该教材内容通俗易懂,注重解题过程的详细解析和操作方法的讲解,帮助学生理解和掌握数学知识点。

高等数学(经管类)下、林伟初 郭安学主编、复旦大学出版社、课后习题答案

高等数学(经管类)下、林伟初  郭安学主编、复旦大学出版社、课后习题答案

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。

2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3).同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-40)2(10)2(7z)2(30)2(50)2(-2z)2解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。

高等数学下册复旦大学出版社 答案 黄立宏著

高等数学下册复旦大学出版社 答案 黄立宏著

习题七1. 在空间直角坐标系中,定出下列各点的位置:A (1,2,3);B (-2,3,4);C (2,-3,-4);D (3,4,0);E (0,4,3);F (3,0,0).解:点A 在第Ⅰ卦限;点B 在第Ⅱ卦限;点C 在第Ⅷ卦限;点D 在xOy 面上;点E 在yOz 面上;点F 在x 轴上.2. xOy 坐标面上的点的坐标有什么特点?yOz 面上的呢?zOx 面上的呢? 答: 在xOy 面上的点,z =0;在yOz 面上的点,x =0; 在zOx 面上的点,y =0.3. x 轴上的点的坐标有什么特点?y 轴上的点呢?z 轴上的点呢? 答:x 轴上的点,y =z =0;y 轴上的点,x =z =0;z 轴上的点,x =y =0.4. 求下列各对点之间的距离: (1) (0,0,0),(2,3,4); (2) (0,0,0), (2,-3,-4); (3) (-2,3,-4),(1,0,3); (4) (4,-2,3), (-2,1,3).解:(1)s ==(2) s ==(3) s ==(4) s ==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x 轴,y 轴,z 轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故 02s =x s ==y s ==5z s ==.6. 在z 轴上,求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解:设此点为M (0,0,z ),则222222(4)1(7)35(2)z z -++-=++--解得 149z =即所求点为M (0,0,149).7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB = c ,BC = a 表示向量1D A ,2D A ,3D A 和4D A .解:1115D A BA BD =-=-- c a2225D A BA BD =-=-- c a3335D A BA BD =-=-- c a444.5D A BA BD =-=-- c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则1Pr j cos604 2.2u OM OM =︒=⨯=12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP ==12Pr j 2.z z a PP ==-(2) 12PP =(3) 12cos x aPP α==12cos ya PP β==12cos zaPP γ==(4) 12012PP PP ===+e j. 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||=Rcos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ===a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有cos (1,1)3x a ia a i a iπ⋅====⋅求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则22cos 42a b a b π⋅=⇒=⋅ 则214y a =求得12y a =± 又1,a = 则2221x y z a a a ++=从而求得11{,,}222a =± 或11{,,}222-±18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM的坐标.解:设向径OM={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}.19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b 解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b (2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b (3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB在向量CD上的投影.解:AB={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且 a +b ={2,4, -2}a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0 故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求: (1) a ×b ; (2) 2a ×7b ; (3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k (4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算: (1) |(a +b )×(a -b )|; (2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++=l l i j k12|| ||==l l 所以1212||sin 1||||θ⨯===l l l l .即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯ .证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P --{2,2,2}MN =--3{1,0,}2MP =-{4,4,4}AC =--{2,0,3}BC =-22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯.30.(1)解: x y zx y zi j ka b a a a b b b ⨯==-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k ()()() 则C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()() xy z xy z xyza a ab b b C C C = 若 ,,C a b共面,则有 a b ⨯ 后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2) C xy z xy z xy za a a ab b b b C C C ⨯⋅=() a xy z xy z xy z b b b b C C C C a a a ⨯⋅=() b xy z xy z xy z C C C C a a a a b b b ⨯⋅=() 由行列式性质可得:xy z x y z x y z xy z x y z xy z xyzxyzxyza a ab b b C C C b b b C C C a a a C C C a a a b b b ==故 C a ?a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()31. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =. 32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅ , 而11948222BCD S BC BD i j k =⨯=--+=又BCD ∆所在的平面方程为:48150x y z +-+=则43h ==故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB = ,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥ ,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程. 35. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2} 故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程. 解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0 即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=得b =2. 故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x – y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4)(4) x –y =0表示过z 轴的平面(如图7-5)(5) 2x -3y +4z =0表示过原点的平面(如图7-6).图7-4 图7-5 图7-642. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面.解:设平面方程为Ax +By +Cz +D =0则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||4θ⋅====n nn n解得k=44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面. 解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=046. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量.解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n 故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点: (1)11126x y z -+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x t y t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k --={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为 234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n 故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z ++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程. 解:直线的方向向量为12123111-=++-ij k i j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3)故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0得23t =- 于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离. 解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量 即11133211==-=---ij k n s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为d == 55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ) 3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7-7.(2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9.(4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11.(6)z 轴,如图7-12.图7-11 图7-1259. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15.(4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形:(1) x 2+y 2+z 2=a 2与z =0,z =2a (a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-2161. 求下列曲面和直线的交点: (1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2).(2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1,得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0;(3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y +==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y += 故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.故曲线在xOy平面上的投影方程为2215 ()24x yz⎧-+=⎪⎨⎪=⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复旦大学高等数学b教材
数学是一门深奥而又重要的学科,它渗透于各个领域,为我们提供
了解世界、解决问题的重要工具。

作为中国一流的综合性高校,复旦
大学自然也有着一系列优秀的教材。

其中,复旦大学高等数学B教材
被广大学子认为是一部经典之作。

本文将从教材架构、内容特点和教
学效果三个方面介绍这本教材。

一、教材架构
复旦大学高等数学B教材的架构十分合理,包括了基础篇和拓展篇
两部分,共分为十五章。

基础篇主要涵盖了极限与连续、微分学、微
分方程基础、多元函数微分学等内容;拓展篇则进一步延伸到重积分、曲线与曲面积分、常微分方程、级数等重要概念。

这样的架构能够帮
助学生系统地学习数学知识,并逐渐深入了解更高级的数学内容。

二、内容特点
复旦大学高等数学B教材的内容特点突出,有几个鲜明的特点。

首先,该教材注重理论与实践的结合,不仅介绍了数学的基本理论,还
通过大量的例题和习题让学生在实践中巩固所学知识。

其次,教材对
于数学的概念和定义给予了详细而准确的解释,帮助学生建立起完整
的数学知识体系。

同时,教材还特别强调了数学思维的培养,注重培
养学生的逻辑思维和问题解决能力。

最后,该教材还涵盖了一些数学
前沿的内容,如复数、级数等,使学生对数学的学习充满了兴趣和挑
战性。

三、教学效果
复旦大学高等数学B教材得到了广大学生和教师的一致好评,表现出良好的教学效果。

首先,该教材注重概念的讲解,能够帮助学生理解数学的基本原理和概念。

其次,教材中大量的例题和习题不仅有利于学生巩固知识,更重要的是锻炼了学生的解决问题的能力。

再次,该教材注重理论与实践的结合,帮助学生将所学的数学知识应用到实际问题中。

最后,教材还注重培养学生的数学思维和创新能力,提高了学生对数学学科的兴趣和热爱。

综上所述,复旦大学高等数学B教材凭借其架构合理、内容特点鲜明和教学效果显著等优点,成为了广大学生学习数学的重要工具。

这本教材不仅能够帮助学生建立起坚实的数学基础,还能够培养学生的数学思维和创新能力,为其未来的学习和工作奠定坚实的基础。

相关文档
最新文档