图论GraphTheory-复旦大学数学科学学院
图论(Graph Theory)

第一章 图形理论图形理论有明确的起始点,由瑞士数学家尤拉(Leonhard Euler, 1707-1783)于1736年发表的论文开始。
其研究的主要论点,乃在于解决当时的热门问题,即有名K önigsgerg 的七桥问题。
1.1 定义与例题定义1.1:令 V 为非空集合,且E V V ⊆⨯. 序对(),V E 称为(V 上)有向图(directedgraph or digraph),其中 V 为顶点(vertex)或节点(node)的集合,E 为边(edge)的集合。
我们记(),G V E =表示此图形。
图1.1为{}, , , , V a b c d e =上有向图的例子,其中()()()(){}, , , , , , , E a a a b a d b c =。
边的方向由边上的有向箭头表示,如图所示对任意边,如(), b c ,我们说此边接合(incident)顶点, b c ;称b 邻接至(adjacent to) c ;或c 邻接自(adjacent from) b 。
此外, b 称为边的原点(origin)或源点(source), c 称为终点(terminus or terminating vertex)。
边(), a a 为一个循环(loop), 且顶点e 不与任何边接合,称为孤立点(isolated)。
若不考虑边的方向,此图称为无向图(undirected)。
定义1.2:令, x y 为无向图(), G V E =的顶点(不一定相异)。
G 中的X Y -路(x y -walk)是指选自G 的顶点及边的有限交错序列。
01122311,,,,,,...,,,,n n n n x x e x e x e e x e x y --==其中由顶点 1x 开始,终止于顶点y ,n 个边{}1,,1i i i e x x i n -=≤≤路的长度(length)是指该条路的边数n 。
图论讲座

指派问题(assignment problem)
一家公司经理准备安排 名员工去完成 项任务, 每人一项。由于各员工的特点不同,不同的员 工去完成同一项任务时所获得的回报是不同的。 如何分配工作方案可以使总回报最大?
2013.11.10
中国邮递员问题(CPP-chinese postman problem)
图论的起源
图论起源于18世纪。第一篇图论论文是瑞士 数学家欧拉于1736年发表的“哥尼斯堡的七 座桥”。 1857年,凯莱发现了“树”。 1895年,哈密尔顿提出周游世界游戏。
2013.11.10
图论的运用
近几十年来,由于计算机技术和科学的飞速发 展,大大促进了图论研究和运用,图论的理论 和方法已经渗透到物理、化学、通讯科学、建 筑学、运筹学、生物遗传学、心理学、经济学、 社会学等学科中。
2013.11.10
哥尼斯堡七桥问题
2013.11.10
哥尼斯堡七桥问题的数学模型
2013.11.10
图与网络
图与网络是运筹学(Operations Research)中一 个经典和重要的分支,所研究的问题涉及经济 管理、工业工程、交通运输、计算机科学与信 息技术通讯与网络技术等诸多领域。下面将要 讨论的最短路问题、最大流问题、最小费用流 问题和匹配问题等都是图与网络的基本问题。
2013.11.10
最短路问题(SSP—shortest path problem)
一名货柜车司机奉命在最短的时间内将一车货 物从甲地运往乙地。从甲地到乙地的公路网纵 横交错,因此有多种行车路线,这名司机应该 选择哪条路线?假设货柜车行车速度是恒定的, 那么这一问题相当于需要找一条从甲地到乙地 的最短路。
图 论(Graph Theory) ----图与网络模型及方法
图论GraphTheory教学讲义

边(edge)
有向边(directed edge)
端点有始点和终点之分的边。 用有序二元组<始点,终点>表示
结点v的入度: 以v为终点的有向边的数目, 记为deg-(v)或d-(v)
有向图中结点v的度d(v):d(v)=d+(v)+d-(v)
a
deg+(c) = 2
deg-(c) = 3
b
c
deg(c) = deg+(c) + deg-(c) = 5
23
定理 1
设图G是具有n个顶点、m条边的有向图,
第五章 图 论 (Graph Theory)
1
图论的起源
Konigsberg(柯尼斯堡)七桥问题
能否从河岸或小岛出发,恰好通过每一座桥一次 再回到出发地?
2
欧拉引进了图论
瑞士数学家Euler(欧拉)于1736年从理论上圆满 解决这个问题。
A
抽象
D
B
D
A B
C
C
3
图论发展过程
1736年 - 欧拉解决柯尼斯堡七桥问题-图论产生 1936 年-图论第一部专著出现《有界图和无界图的
理论》 经过近六十多年的发展,逐渐成为一门相对独立的学
科。
4
图论的应用
网络技术的理论基础和重要的研究工具 生物和化学:区别分子式相同但结构不同的两
种化合物。 计算机和通信:用于通信网络和计算机网络的
设计,交通网络的合理分布
图论(Graph Theory)学习笔记2

图论学习笔记(2)基本概念设图G,u∈V(G),v∈V(G),u-v通道(u-v path)是指从结点u出发,经过一个交互的结点和边的序列,最后回到结点v的路径,其中连续的结点和边是关联的。
通道的长度(length)是指通道经过边的数量。
若一个通道中没有重复的边,则称该通道为迹(trace)。
(注:迹中的结点是可以重复的)若迹开始和结束于相同的结点,则称该迹是闭的(closed),称该迹为回路(loop)。
若一个通道中没有重复的节点,则称该通道为路(pathway)。
若u∈V(G),v∈V(G),则一个将u和v连接起来的路称为u-v路(u-v pathway)。
注:显然,如果结点不重复,则边必然不重复,所以,一个路也是迹,一个闭路称为圈(circle)。
若图中的任意两个结点间都存在路,则称此图为连通图(connected graph),否则,称之为非连通图(disconnected graph)。
在连通图中,各个分支称为连通分量,严格来说,图的连通分量指的是极大连通子图([unknown])。
若u∈V(G),v∈V(G),则节点u和v之间的测地线路是指长度最短的u-v路,简称测地线(geodesic)。
注:当你要在最短时间内从u到达v,测地线路是你的最佳选择。
途中可能存在多条测地线路。
测地线路也常被称为最短路。
图G的结点集V(G),边集E(G)。
当图H满足结点集V(H)的子集,边集E(H)是E(G)的子集,边界对每一条边e=uv∈E(H),其中u∈V(H),v∈V(H),则称图H是G的子图(subgraph),通常称图G为图H的超图(supergraph)。
定义结点都给以标号的图称为标记图(labeled graph),否则,称为非标记图(unlabeled graph)。
注:对标记图G,若S⊆V(G),并且在标记图G中共有k条边连接了S中的所有结点,那么,G的以S为结点集的子图数为2k。
若V(H)=V(G),则称子图H是图G的生成子图(spanning subgraph)。
graphtheory图论

算
(G) = min{d(v)| v∈V(G) }
机 称,分别为G的最大度和最小度。
科
在有向图D中,可类似定义 ⊿(D)、(G)。另外,令 ⊿ +(G) = max{d+(v)| v∈V(D) }
学
+(G) = min{d+(v)| v∈V(D) }
系
⊿ -(G) = max{d-(v)| v∈V(D) }
范 (1) d(b), ⊿ , . 学 (2) d+(v3), d-(v3), ⊿, , ⊿ +, + , ⊿ - , - .
院 解:(1) 6, 6 , 2 .
计
(2) 3, 2, 5, 3, 3, 1 , 3 , 1 .
算
机
a
科
(1)
d
学
(2)
系
c
b
12
第七章 图的基本概念
衡 零星定义1
机 为ek的端点,若vi=vj,则称ek为D中的环。
科
在图中无关联边的顶点称为孤立点。
学
系
6
第七章 图的基本概念
衡 与图有关的概念和规定
阳 定义7.4 设G=<V,E>为无向图,vi,vj∈V,
师 范 学 院 计 算 机
ek,el∈E,若 et∈E,使得et=(vi,vj),则称vi与vj 是相邻的.若ek与el至少有一个公共端点,则称 ek与el 是相邻的。
。v2
阳 师
e1
计
算 设A,B为任意的两个集合,称
机
{{a,b}|a∈A∧b∈B}
科
为A与B的无序积,记作A&B.
学
系
元素可以重复出现的集合称为多 重集合,某个元素重复出现的次 数称为该元素的重复度。例如在
图论

G
K5
ห้องสมุดไป่ตู้
*十一.相对补图 设G1=<V1,E1>是图G=<V,E>的子图,如果有G2=<V2,E2> 使得E2=E-E1且V2中仅包含E2中的边所关联的结点,则称 G2是G1相对G的补图. a a a c b c b c b b c d e d e d e d e G1 G2 G3 G
例2.“七桥问题” 十八世纪,哥尼斯堡城内有一条河----普 雷 格尔河,河中有两个岛屿,河面架有七座桥,使得岛屿与两 A 岸之间互相贯通. A
B D
e1 e e5 2 B e6 e3 e 4 e7
D
C
C
V={A,B,C,D} E={e1, e2, e3, e4, e5 e6, e7} 人们茶余饭后经常到桥上散步,从而提出这样问题:是否 可以从某地出发,每座桥都走一次,再回到出发点. 很多 人试图找出这样的路径, 都没有找到. 后来欧拉证明这样 的路径根本不存在. 此图可以抽象为上边右图.
2.解:已知边数|E|=10, ∑deg(v)=2|E|=20 其中有4个3度结点, 余下结点度之和为: 20-3×4=8 因为G是简单图, 其余每个结点度数≤2, 所以至少还有 4个结点. 所以G中至少有8个结点.
七. 有向图结点的出度和入度:(in degree out degree) G=<V,E>是有向图,v∈V a b v的出度: 从结点v射出的边数. c d 记作deg+(v) 或 dego(v) v的入度: 射入结点v的边数. 记作deg-(v) 或 degi(v) degi(a)=2 degi(b)=2 degi(c)=1 degi(d)=1 dego(a)=2 dego(b)=3 dego(c)=1 dego(d)=0 定理8-1.3 G=<V,E>是有向图, 则G的所有结点的出度之和 等于入度之和. 证明: 因为图中每条边对应一个出度和一个入度. 所以所 有结点的出度之和与所有结点的入度之和都等于有向边 数. 必然有所有结点的出度之和等于入度之和.
图论(Graph Theory)学习笔记3

图论学习笔记(3)基本概念图G中的结点u与v相邻接当且仅当它们在图H中的相应结点也邻接,则称图G与图H是同构的(isomorphic),记作G≈H,否则,称两者为非同构的(nonisomorphic)。
用函数描述同构:图G与图H同构,即存在一个一一映射函数 f : V(G) →V(H),此时,图G中任何结点对u和v邻接当且仅当f(v)和f(u)在图H中邻接。
函数f 称作从G到H的同构函数(isomorphic function)。
相关推论:令函数 f : V(G) →V(H)为图G与图H的同构函数,那么,对任意结点u∈V(G),都有deg(u)=deg(v),换句话说,如果两个图同构,则对应的结点有相同的度数。
设图G与H同构,同构函数为 f : V(G) →H(G)。
若在图G中,结点v1与v2间的测地线为v1,v2,v3,...,vk,则在图H中,f(v1),f(v2),f(v3),...,f(vk)是结点f(v1)与f(vk)间的测地线。
含n个结点的图G的度序列(degree sequence)是指按照节点度数排列的n-元非递增序列。
若一个非负整数的非递增序列S可以表示某个图的度序列,则称序列S是可绘的。
注:非递增序列可绘⇒图的结点度数之和是非负偶数。
相关算法:可绘图度序列的判定算法从序列S中删除第一个数k。
如果S的第一个数后的k个数都大于等于1,则将这k个数分别都减去1得到新序列S';否则,停止,得出元序列不可绘图的结论。
若S'全是0,停止,得原序列为可绘图。
将步骤2得到的序列S'重新排序,得到非递增序列S*。
令S=S*,转不骤1。
图常量是指根据图的某个性质定义的函数,即同构图将具有相同的函数值。
注:如果f 是图常量,而f(G) ≠f(H),则图G于图H不同构。
用来说明图是否同构的一些量:结点个数连通分量个数边数度序列具有给定唯一度数结点对间的测地线长度图中的最长路具有唯一度数结点的邻接点的度基本定理定理3.1 设S是由以上算法得到的序列,那么当且仅当S'是可绘图序列时,S是可绘图序列。
离散数学-复旦大学数学科学学院

所有点的圈)。
哈密尔顿圈问题: 哪些图有哈密顿圈?
带权哈密尔顿圈
哈密顿圈可看成过每个点恰好一次的 回路;若每条边有一个权(weight),求最优
哈密顿圈(总权和最小的哈密顿圈),就
是找一条回路:过每个点恰好一次且行程
最短—旅行推销员问题。
旅行推销员问题
问题提出: 一个推销员从公司出发, 访问 若干指定城市, 最后返回公司,要求设计
Ramsey 问题 应用广、影响大。微软研究中 心的 Kim 因求解R(3, t)的工作而获 1997年
Fulkerson 奖。
图论的热点——极值问题
一般叙述 : 图的边数大于某个数时 ,该图具有某
种性质,此数的最小值称为该性质的极值.
Mantel 定理(1907年): n点图的边数大于n2/4时,
该图含三角形,且n2/4是具有该性质的最小数.
上述定理是Turan定理(1941年)的特殊情形. 主要工具:正则引理;标号代数(flag algebra)
图论的前沿——整数流问题
给定图 G 和 k 阶可换群 A。若对 G 的某个
定向 , 存在一个函数 f : 从 G 的边集到 A 的
非零元素, 使得在图的每个一点, 进入该点
图的定义
图的直观定义:点与边 图的抽象定义:一个集合上的二元关系
Petersen 图
点集:5个元素{a,b,c,d,e}的所有2-子集作为点 边集:两点有边相连当且仅当对应的2-子集不交
ab ce
de
ac ad bc
cd
be
bd
ea
离散数学
图论是离散数学的一个主要分支 广泛应用背景的基础研究 与计算机科学密切相关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范 更 华 福州大学离散数学研究中心
离散数学及其应用教育部重点实验室
图论(Graph Theory)
图是由给定的点及连接两点的线所构成
的图形。现实世界中许多问题的数学抽象形
式可以用图来描述。如互联网、交通网、通
讯网、社团网、大规模集成电路、分子结构 等都可以用图来描述。对图的研究形成了一 个专门的数学分支—图论 。
四色问题
一百多年来,貌似容易的四色问题让许多一流数学 家栽了跟头。后人评说德国大数学家Minkowski (曾是爱因斯坦的老师)时认为,最让Minkowski 尴尬的不是他曾骂爱因斯坦 “懒虫”,而是他被 四色问题挂了黑板。 1880年前后,Kempe 和Tait分别发表了证明四色问 题的论文,大家都认为四色问题从此也就解决了。 十年后,人们发现这两人的证明都是错误的。
该图含三角形,且n2/4是具有该性质的最小数.
上述定理是Turan定理(1941年)的特殊情形. 主要工具:正则引理;标号代数(flag algebra)
图论的前沿——整数流问题
给定图 G 和 k 阶可换群 A。若对 G 的某个
定向 , 存在一个函数 f : 从 G 的边集到 A 的
非零元素, 使得在图的每个一点, 进入该点
四色问题
四色问题: 对每个平面图,能否只用4种颜色 对其面着色,使得任何两个有公共边的面得到 不同颜色.
1976年,两位计算机专家借助计算机验证,解决 了四色问题,但未被数学界普遍接受。数学家 们仍在努力寻找纯数学的推理证明。
四色问题
当年,那位学生告诉Morgan教授: 下面的例子说 明3种颜色不够,至少需4种颜色.
图的定义
图的直观定义:点与边 图的抽象定义:一个集合上的二元关系
Petersen 图
点集:5个元素{a,b,c,d,e}的所有2-子集作为点 边集:两点有边相连当且仅当对应的2-子集不交
ab ce
de
ac ad bc
cd
be
bd
ea
离散数学
图论是离散数学的一个主要分支 广泛应用背景的基础研究 与计算机科学密切相关
四色问题
Tait的错误在于他认为3-正则,3-连通的
平面图有一个圈包含所有点(哈密顿圈)。
可是他没能证明这一点。半个多世纪后(1946
年),Tutte给出了第一个不含哈密顿圈的3正则,3-连通平面图,从而宣告了Tait证明 的错误是无法修补的。
图论的经典——哈密顿圈问题
Tait 对四色问题的错误证明在于假定
最优旅行路线(行程最短或费用最小)
数学抽象: 城市作为点, 两点间有边相连, 如果对应的城市间有直飞航班。里程或机 票价作为每条边的权。
旅行推销员问题
问题: 在带权图中找一条回路:过每个点
恰好一次 , 且边的权之和最小 ( 带权最优哈
密顿圈)
难度: 应用: NP--完全问题 投币电话、自动取钞机等
离散数学
以蒸汽机的出现为标志的工业革命促进了 以微积分为基础的连续数学的发展。 以计算机的出现为标志的信息革命将促
进离散数学பைடு நூலகம்发展。
图论分支
图 论
结 构 图 论
极 值 图 论
随 机 图 论
代 数 图 论
拓 扑 图 论
图论的起源——哥尼斯堡七桥问题
哥尼斯堡七桥问题
1735年, 欧拉(Euler) 证明哥尼斯堡七桥问题无 解, 由此开创了数学的一个新分支---图论。
认识, 或三个互相不认识。 数学抽象: 点代表人, 两点相连当且仅
当对应的两人认识。该图要么有三角形, 要么有三个点两两不连。
Ramsey数问题
一般化 : 定义 R(s,t) 为最小整数使得任意
R(s,t) 个人中 , 要么有 s 个人两两认识 , 要么有 t 个人两两不认识。 R(3,3)=6 R(4,4)=18 R(5,5)=?
整数流理论
Tutte定理(1954年): 平面图可 k 着色当且 仅当该图存在 k-流。
◆ 四色问题等价于平面图的 4-流存在性。
整数流理论
整数流与数学其他领域的一些著名问题有关联:
欧拉将哥尼斯堡七桥问题转化为图论问题 : 求 图中一条迹 (walk), 过每条边一次且仅一次 . 后人将具有这种性质的迹称为欧拉迹。
哥尼斯堡七桥问题
哥尼斯堡七桥问题
欧拉定理: 连通图存在欧拉迹当且仅 当图中奇度数的点的个数至多为2。
图论的发展——四色问题
1852年, Morgan教授的一位学生问他: 能否给 出一个理由,为什么只需 4 种颜色,就可给任 意地图的每个国家着色,使得有共同边界的国 家着不同的颜色。 该问题成为数学史上最著名问题之一。将地图 看作一个平面图:国界为边,相交处为点,国 家区域称为面,则该问题可表述为:
的边的函数值之和等于离开该点的边函数值 之和, 则称f 为G 的一个 k-流。
整数流问题
整数流问题:对哪些整数k,存在k-流
k-流的等价定义:给图的每条边一个定向及一 个绝对值小于k的非零整数, 使得在图的每个
点, 进入该点的所有边的整数值之和等于离开 该点的所有边的整数值之和。
整数流的一个例子
3-正则,3-连通平面图有哈密顿圈(含
所有点的圈)。
哈密尔顿圈问题: 哪些图有哈密顿圈?
带权哈密尔顿圈
哈密顿圈可看成过每个点恰好一次的 回路;若每条边有一个权(weight),求最优
哈密顿圈(总权和最小的哈密顿圈),就
是找一条回路:过每个点恰好一次且行程
最短—旅行推销员问题。
旅行推销员问题
问题提出: 一个推销员从公司出发, 访问 若干指定城市, 最后返回公司,要求设计
中国邮递员问题
中国邮递员问题: 在带权图中找一条回路:
过每条边至少一次 , 且边的权之和最小 ( 带权
最优欧拉回路问题)
难度: 有多项式算法
(Edmonds, 1985 von Neumann Prize) 应用: 起源于中国邮递(管梅谷,1962)
图论的经典——Ramsey数问题
简单情形: 任意六个人中, 必有3个互相
Ramsey 问题 应用广、影响大。微软研究中 心的 Kim 因求解R(3, t)的工作而获 1997年
Fulkerson 奖。
图论的热点——极值问题
一般叙述 : 图的边数大于某个数时 ,该图具有某
种性质,此数的最小值称为该性质的极值.
Mantel 定理(1907年): n点图的边数大于n2/4时,