图论GraphTheory复旦大学数学科学学院
图论GraphTheory-复旦大学数学科学学院

范 更 华 福州大学离散数学研究中心
离散数学及其应用教育部重点实验室
图论(Graph Theory)
图是由给定的点及连接两点的线所构成
的图形。现实世界中许多问题的数学抽象形
式可以用图来描述。如互联网、交通网、通
讯网、社团网、大规模集成电路、分子结构 等都可以用图来描述。对图的研究形成了一 个专门的数学分支—图论 。
四色问题
一百多年来,貌似容易的四色问题让许多一流数学 家栽了跟头。后人评说德国大数学家Minkowski (曾是爱因斯坦的老师)时认为,最让Minkowski 尴尬的不是他曾骂爱因斯坦 “懒虫”,而是他被 四色问题挂了黑板。 1880年前后,Kempe 和Tait分别发表了证明四色问 题的论文,大家都认为四色问题从此也就解决了。 十年后,人们发现这两人的证明都是错误的。
该图含三角形,且n2/4是具有该性质的最小数.
上述定理是Turan定理(1941年)的特殊情形. 主要工具:正则引理;标号代数(flag algebra)
图论的前沿——整数流问题
给定图 G 和 k 阶可换群 A。若对 G 的某个
定向 , 存在一个函数 f : 从 G 的边集到 A 的
非零元素, 使得在图的每个一点, 进入该点
四色问题
四色问题: 对每个平面图,能否只用4种颜色 对其面着色,使得任何两个有公共边的面得到 不同颜色.
1976年,两位计算机专家借助计算机验证,解决 了四色问题,但未被数学界普遍接受。数学家 们仍在努力寻找纯数学的推理证明。
四色问题
当年,那位学生告诉Morgan教授: 下面的例子说 明3种颜色不够,至少需4种颜色.
图的定义
图的直观定义:点与边 图的抽象定义:一个集合上的二元关系
图论算法

数学建模
一个图形或汉字是否能一笔画成? 地图上的颜色至少有多少种?
.......
数学建模
图的定义
图并不是几何学中的图形,而是客观世 界中某些事物间联系的一个数学抽象,用顶 点代表事物,用边表示各事物间的关系,如果 所讨论的事物之间有关系,就把相应的顶点 连成一条边.这种由顶点及边所组成的图,就 是图论中研究的图.
8
7 4
a
b
数学建模
最小生成树
避圈法步骤: 1. 在所有各边中找到边权最小的一条,将其作为第 一边;在剩余的边中,仍然找到边权最小的作为第二 条边; 2. 在剩余的边中,找到边权最小的边,查看其是 否与前面的边形成圈,如果没有,则在最小部分树中 添加该边,如果形成了圈,则不再考虑该边;
3. 重复进行第二步,直到找到第 n-1 条边为止。
数学建模
2010年东北赛B题
巡回演唱会
Avril同学要在中 国的省会城市、直 辖市、香港、澳门、 台北各举行一场演 出会。
按地理位置(经纬 度),请你为她设 计最短的巡回路径 方案。
做出题的同 学,将有机 会与此巡回 演唱会同行。
数学建模
数学建模
城市个数为n。
i dij 是两个城市 与 j 之间的距离。
数学建模
欲建设一个连接7个城市的光纤通信网络。 各城市间线路的造价如图所示,求一个使 总造价最少的线路建设方案。
A
2
27
S 5 B 5 D5
F
4
131
7
C 4E
数学建模
A
2
2
7
5
5
5
S
B
D
运筹学与控制论专业(运筹学方向)

运筹学与控制论专业(运筹学方向)攻读硕士学位研究生培养方案一.培养目标根据德、智、体全面发展的教育方针,培养具有社会主义觉悟、严谨的治学态度和良好的学风、有追求真理、献身科学的敬业精神和高尚的道德情操,具有系统的运筹学理论基础和专业知识,既能独立进行科学研究,又能从事经济和企业管理及高等学校教学工作的高级专门人才。
二.研究方向1.数学规划2.组合优化3.管理运筹学三.招生对象招生对象为数学、管理学、系统科学专业高等院校全日制本科毕业人员以及同等学力(指上述专业的函授、自考本科毕业或高等院校全日制专科毕业)人员,同等学力考生在报名时须提交以第一作者身份在二级或二级以上学术刊物公开发表的学术论文一篇。
四.学习年限三年,在职研究生四年。
应修满37学分。
五.课程设置(教学计划表附后)(一)学位课程1.公共课0000002101邓小平理论Deng Xiaoping Theory0000002104自然辨证法概论Conspectus of Nature Dialectics0000002103第一外国语The Foreign Language2.专业课0701052101离散数学Discrete Mathematics0701052102凸分析Convex Analysis0701052103线性规划Linear Programming(二) 选修课程1.指定选修课(必修课)0701052201非线性规划理论与算法Nonlinear Programming Theory and Algorithm0701052202组合优化Combinational Optimization0701052203图论Graph Theory0701052204决策优化Decision-making Analysis0701052205对策论Games Theory0701052206数值优化Numerical Optimization0000002201网络技术与应用Network Technology and Its Application多元微积分算法复杂性2.任意选修课(任选课)0701052207变分与互补理论Variational Inequalities and Complementarity0701052208软件设计Design on Software0701052209经济运筹学Economics Operations Research0701052210排序论Shcheduling Theory0701052211 物流管理Logistics Management0000002202第二外国语The Second Foreign Language六.社会实践与教学实践参与科研应用项目的研制与开发一项,或为信息管理与信息系统专业本专科生讲授、辅导运筹学、应用数学或管理学课程16学时,记2学分。
图论GraphTheory教学讲义

边(edge)
有向边(directed edge)
端点有始点和终点之分的边。 用有序二元组<始点,终点>表示
结点v的入度: 以v为终点的有向边的数目, 记为deg-(v)或d-(v)
有向图中结点v的度d(v):d(v)=d+(v)+d-(v)
a
deg+(c) = 2
deg-(c) = 3
b
c
deg(c) = deg+(c) + deg-(c) = 5
23
定理 1
设图G是具有n个顶点、m条边的有向图,
第五章 图 论 (Graph Theory)
1
图论的起源
Konigsberg(柯尼斯堡)七桥问题
能否从河岸或小岛出发,恰好通过每一座桥一次 再回到出发地?
2
欧拉引进了图论
瑞士数学家Euler(欧拉)于1736年从理论上圆满 解决这个问题。
A
抽象
D
B
D
A B
C
C
3
图论发展过程
1736年 - 欧拉解决柯尼斯堡七桥问题-图论产生 1936 年-图论第一部专著出现《有界图和无界图的
理论》 经过近六十多年的发展,逐渐成为一门相对独立的学
科。
4
图论的应用
网络技术的理论基础和重要的研究工具 生物和化学:区别分子式相同但结构不同的两
种化合物。 计算机和通信:用于通信网络和计算机网络的
设计,交通网络的合理分布
数学系本科生课程设置与简介

数学系本科生课程设置与简介01101011 数学分析(1) mathematical analysis课程性质:专业基础课课内学时:112 学分:7简介:“数学分析”是数学专业最重要的一门专业课。
第一学期主要内容是分析基础。
第一章函数、第二章极限、第三章连续函数、第四章实数的连续性、第五章导数与微分、第六章微分基本定理及其应用、第七章不定积分、第八章定积分。
先修课要求:无教材及参考书:《数学分析讲义》刘玉琏傅沛仁编高等教育出版社适用专业:数学与应用数学开课学期:秋01101021 数学分析(2) mathematical analysis课程性质:专业基础课课内学时:144 学分:8简介:本学期将在此基础上继续学习级数和多元函数微分学。
级数是数学分析的重要组成部分,它分为数值级数和函数级数。
数值级数是函数级数的特殊情况,也是函数级数的基础;函数级数是表示非初等函数的一个重要的数学工具,它在自然科学、工程技术和数学本身都有广泛的应用。
多元函数微分学是一元函数微分学的推广,隐函数、反常积分与含参变量的积分、重积分和曲线积分与曲面积分。
并且对某些概念和定理作了进一步的发展。
先修课要求:数学分析(1)教材及参考书:《数学分析讲义》刘玉琏傅沛仁编高等教育出版社适用专业:数学与应用数学开课学期:春01101031 数学分析(3) mathematical analysis课程性质:专业基础课课内学时:40 学分:2简介:本学期将在此基础上继续学习级数和多元函数积分学。
多元函数积分学是一元函数积分学的推广,隐函数、反常积分与含参变量的积分、重积分和曲线积分与曲面积分。
并且对某些概念和定理作了进一步的发展。
先修课要求:数学分析(1) 、数学分析(2)教材及参考书:《数学分析讲义》刘玉琏傅沛仁编高等教育出版社适用专业:数学与应用数学开课学期:秋01101041 数学分析选讲 Selected Topics of Analysis课程性质:专业选修课课内学时:48 学分:2简介:数学分析教材自身科学规律概述、数学分析的思想方法与表达方式浅析、数学分析解题方法概述、关于数学分析中何种类型习题宜于用反证法证明的问题、形式逻辑与辩证逻辑方面易出现的错误及其分析、函数、数列极限、函数极限、函数的连续性、导数、中值定理与导数的应用、实数的基本定理、不定积分、定积分、数项级数、函数列与函数项级数、含参量正常积分、黎曼积分概念与性质,重积分的计算、曲线积分、曲面积分、各类积分间的联系、非正常积分、含参量非正常积分。
图论(Graph Theory)学习笔记3

图论学习笔记(3)基本概念图G中的结点u与v相邻接当且仅当它们在图H中的相应结点也邻接,则称图G与图H是同构的(isomorphic),记作G≈H,否则,称两者为非同构的(nonisomorphic)。
用函数描述同构:图G与图H同构,即存在一个一一映射函数 f : V(G) →V(H),此时,图G中任何结点对u和v邻接当且仅当f(v)和f(u)在图H中邻接。
函数f 称作从G到H的同构函数(isomorphic function)。
相关推论:令函数 f : V(G) →V(H)为图G与图H的同构函数,那么,对任意结点u∈V(G),都有deg(u)=deg(v),换句话说,如果两个图同构,则对应的结点有相同的度数。
设图G与H同构,同构函数为 f : V(G) →H(G)。
若在图G中,结点v1与v2间的测地线为v1,v2,v3,...,vk,则在图H中,f(v1),f(v2),f(v3),...,f(vk)是结点f(v1)与f(vk)间的测地线。
含n个结点的图G的度序列(degree sequence)是指按照节点度数排列的n-元非递增序列。
若一个非负整数的非递增序列S可以表示某个图的度序列,则称序列S是可绘的。
注:非递增序列可绘⇒图的结点度数之和是非负偶数。
相关算法:可绘图度序列的判定算法从序列S中删除第一个数k。
如果S的第一个数后的k个数都大于等于1,则将这k个数分别都减去1得到新序列S';否则,停止,得出元序列不可绘图的结论。
若S'全是0,停止,得原序列为可绘图。
将步骤2得到的序列S'重新排序,得到非递增序列S*。
令S=S*,转不骤1。
图常量是指根据图的某个性质定义的函数,即同构图将具有相同的函数值。
注:如果f 是图常量,而f(G) ≠f(H),则图G于图H不同构。
用来说明图是否同构的一些量:结点个数连通分量个数边数度序列具有给定唯一度数结点对间的测地线长度图中的最长路具有唯一度数结点的邻接点的度基本定理定理3.1 设S是由以上算法得到的序列,那么当且仅当S'是可绘图序列时,S是可绘图序列。
离散数学-复旦大学数学科学学院

所有点的圈)。
哈密尔顿圈问题: 哪些图有哈密顿圈?
带权哈密尔顿圈
哈密顿圈可看成过每个点恰好一次的 回路;若每条边有一个权(weight),求最优
哈密顿圈(总权和最小的哈密顿圈),就
是找一条回路:过每个点恰好一次且行程
最短—旅行推销员问题。
旅行推销员问题
问题提出: 一个推销员从公司出发, 访问 若干指定城市, 最后返回公司,要求设计
Ramsey 问题 应用广、影响大。微软研究中 心的 Kim 因求解R(3, t)的工作而获 1997年
Fulkerson 奖。
图论的热点——极值问题
一般叙述 : 图的边数大于某个数时 ,该图具有某
种性质,此数的最小值称为该性质的极值.
Mantel 定理(1907年): n点图的边数大于n2/4时,
该图含三角形,且n2/4是具有该性质的最小数.
上述定理是Turan定理(1941年)的特殊情形. 主要工具:正则引理;标号代数(flag algebra)
图论的前沿——整数流问题
给定图 G 和 k 阶可换群 A。若对 G 的某个
定向 , 存在一个函数 f : 从 G 的边集到 A 的
非零元素, 使得在图的每个一点, 进入该点
图的定义
图的直观定义:点与边 图的抽象定义:一个集合上的二元关系
Petersen 图
点集:5个元素{a,b,c,d,e}的所有2-子集作为点 边集:两点有边相连当且仅当对应的2-子集不交
ab ce
de
ac ad bc
cd
be
bd
ea
离散数学
图论是离散数学的一个主要分支 广泛应用背景的基础研究 与计算机科学密切相关
复旦大学计算机科学与工程系 吴永辉 离散数学 图论应用

2 44的黑白格棋盘跳马
在44的黑白格棋盘(四分之一国 际象棋盘)上跳马,使得它经过每个格 一次并且仅一次,最后又回到出发点。 能否办到?为什么?
1)构造数学模型:
将棋盘转化为无向图,作无 向图G=(V, E)。16个格中各放一个顶点 顶点集V。马跳“日”字,若马能在vi和 vj之间走一步,则vi和vj相邻,于是就组 成了边集。
构造图G(V, E),V中顶点表示剩下 的10中情况,如果经过一次渡河,情况 甲变成情况乙,在情况甲和情况乙表示 的顶点间加一条边,作为E中的边。
2)算法分析
在图G(V, E)中找一条从MWSV到 的最短路。
3)解:7次摆渡 MWSV WV MWV V W S MS MWSV WV MWV W MSW S MS
2)算法思想: G中是否存在哈密顿回路。
定理(必要条件) 若图G是哈密顿图,则对于顶点集 V的每一个非空真子集S,均成立 (G-S) |S| 其中|S|表示S中的顶点数,G-S表示G中 删去顶点子集S后得到的图。
3)解:
删除中心四个点,得6个连通分支, 由上述定理,图中不存在哈密顿回路, 所以无解。
3.1 考试安排
设学校共有n门课程要进行期终 考试, 因为不少同学不止选修一门课, 所 以不能把一个同学选修的两门课安排在 同一场次进行考试. 问学期的期终考试最 少需要多少场次才能完成?
构造数学模型: 图的顶点着色 设G=(V, E), 以每门课程为一个顶点,
当且仅当两门课被同一个学生选修时, 在相应两个顶点之间连一条边。得图G。 将n门功课划分成K个划分U1, U2, …, Uk, 每个Ui(1 i k)中顶点两两不相邻, 要求划分数K必须最少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Petersen 图
点集:5个元素{a,b,c,d,e}的所有2-子集作为点 边集:两点有边相连当且仅当对应的2-子集不交
ab
ce
de
ac
cd
b离散数学
图论是离散数学的一个主要分支 广泛应用背景的基础研究 与计算机科学密切相关
离散数学
以蒸汽机的出现为标志的工业革命促进了 以微积分为基础的连续数学的发展。
四色问题
一百多年来,貌似容易的四色问题让许多一流数学 家栽了跟头。后人评说德国大数学家Minkowski (曾是爱因斯坦的老师)时认为,最让Minkowski 尴尬的不是他曾骂爱因斯坦 “懒虫”,而是他被 四色问题挂了黑板。
1880年前后,Kempe 和Tait分别发表了证明四色问 题的论文,大家都认为四色问题从此也就解决了。 十年后,人们发现这两人的证明都是错误的。
数学抽象: 城市作为点, 两点间有边相连, 如果对应的城市间有直飞航班。里程或机 票价作为每条边的权。
旅行推销员问题
问题: 在带权图中找一条回路:过每个点 恰好一次,且边的权之和最小(带权最优哈 密顿圈)
难度: NP--完全问题
应用: 投币电话、自动取钞机等
中国邮递员问题
中国邮递员问题: 在带权图中找一条回路: 过每条边至少一次,且边的权之和最小(带权 最优欧拉回路问题)
图论的热点——极值问题
一般叙述: 图的边数大于某个数时,该图具有某 种性质,此数的最小值称为该性质的极值. Mantel 定理(1907年): n点图的边数大于n2/4时, 该图含三角形,且n2/4是具有该性质的最小数. 上述定理是Turan定理(1941年)的特殊情形. 主要工具:正则引理;标号代数(flag algebra)
图论(Graph Theory)
图是由给定的点及连接两点的线所构成 的图形。现实世界中许多问题的数学抽象形 式可以用图来描述。如互联网、交通网、通 讯网、社团网、大规模集成电路、分子结构 等都可以用图来描述。对图的研究形成了一 个专门的数学分支—图论 。
图的定义
图的直观定义:点与边 图的抽象定义:一个集合上的二元关系
四色问题
四色问题: 对每个平面图,能否只用4种颜色 对其面着色,使得任何两个有公共边的面得到 不同颜色.
1976年,两位计算机专家借助计算机验证,解决 了四色问题,但未被数学界普遍接受。数学家 们仍在努力寻找纯数学的推理证明。
四色问题
当年,那位学生告诉Morgan教授: 下面的例子说 明3种颜色不够,至少需4种颜色.
难度: 有多项式算法 (Edmonds, 1985 von Neumann Prize)
应用: 起源于中国邮递(管梅谷,1962)
图论的经典——Ramsey数问题
简单情形: 任意六个人中, 必有3个互相 认识, 或三个互相不认识。
数学抽象: 点代表人, 两点相连当且仅 当对应的两人认识。该图要么有三角形, 要么有三个点两两不连。
四色问题
Tait的错误在于他认为3-正则,3-连通的 平面图有一个圈包含所有点(哈密顿圈)。 可是他没能证明这一点。半个多世纪后(1946 年),Tutte给出了第一个不含哈密顿圈的3正则,3-连通平面图,从而宣告了Tait证明 的错误是无法修补的。
图论的经典——哈密顿圈问题
Tait 对四色问题的错误证明在于假定 3-正则,3-连通平面图有哈密顿圈(含 所有点的圈)。
哥尼斯堡七桥问题
哥尼斯堡七桥问题
欧拉定理: 连通图存在欧拉迹当且仅 当图中奇度数的点的个数至多为2。
图论的发展——四色问题
1852年, Morgan教授的一位学生问他: 能否给 出一个理由,为什么只需 4 种颜色,就可给任 意地图的每个国家着色,使得有共同边界的国 家着不同的颜色。
该问题成为数学史上最著名问题之一。将地图 看作一个平面图:国界为边,相交处为点,国 家区域称为面,则该问题可表述为:
哈密尔顿圈问题: 哪些图有哈密顿圈?
带权哈密尔顿圈
哈密顿圈可看成过每个点恰好一次的 回路;若每条边有一个权(weight),求最优 哈密顿圈(总权和最小的哈密顿圈),就 是找一条回路:过每个点恰好一次且行程 最短—旅行推销员问题。
旅行推销员问题
问题提出: 一个推销员从公司出发, 访问 若干指定城市, 最后返回公司,要求设计 最优旅行路线(行程最短或费用最小)
Ramsey数问题
一般化: 定义R(s,t)为最小整数使得任意 R(s,t)个人中, 要么有 s 个人两两认识, 要么有 t 个人两两不认识。
R(3,3)=6 R(4,4)=18 R(5,5)=?
Ramsey问题 应用广、影响大。微软研究中
心的 Kim 因求解R(3, t)的工作而获1997年
Fulkerson 奖。
图论的前沿——整数流问题
给定图G 和k 阶可换群A。若对G 的某个 定向, 存在一个函数f : 从G 的边集到A的
非零元素, 使得在图的每个一点, 进入该点 的边的函数值之和等于离开该点的边函数值
之和, 则称f 为G 的一个 k-流。
整数流问题
整数流问题:对哪些整数k,存在k-流
k-流的等价定义:给图的每条边一个定向及一 个绝对值小于k的非零整数, 使得在图的每个
点, 进入该点的所有边的整数值之和等于离开 该点的所有边的整数值之和。
整数流的一个例子
整数流理论
Tutte定理(1954年): 平面图可 k 着色当且 仅当该图存在 k-流。
◆ 四色问题等价于平面图的 4-流存在性。
整数流理论
整数流与数学其他领域的一些著名问题有关联:
组合学: Lonely Runner 数论: Diophantine Approximation 几何学: View Obstruction 有限域线性空间: Additive Basis
以计算机的出现为标志的信息革命将促 进离散数学的发展。
图论分支 图论
结 极 随代 拓 构 值 机数 扑 图 图 图图 图 论 论 论论 论
图论的起源——哥尼斯堡七桥问题
哥尼斯堡七桥问题
1735年, 欧拉(Euler)证明哥尼斯堡七桥问题无 解, 由此开创了数学的一个新分支---图论。
欧拉将哥尼斯堡七桥问题转化为图论问题: 求 图中一条迹(walk), 过每条边一次且仅一次. 后人将具有这种性质的迹称为欧拉迹。