无向树顶点数和边数的关系
数据结构章节练习题 - 答案第7章 图

7.1选择题1.对于一个具有n个顶点和e条边的有向图,在用邻接表表示图时,拓扑排序算法时间复杂度为()A)O(n)B)O(n+e)C)O(n*n)D)O(n*n*n)【答案】B2.设无向图的顶点个数为n,则该图最多有()条边。
A)n-1B)n(n-1)/2C)n(n+1)/2【答案】B3.连通分量指的是()A)无向图中的极小连通子图B)无向图中的极大连通子图C)有向图中的极小连通子图D)有向图中的极大连通子图【答案】B4.n个结点的完全有向图含有边的数目()A)n*n B)n(n+1)C)n/2【答案】D5.关键路径是()A)AOE网中从源点到汇点的最长路径B)AOE网中从源点到汇点的最短路径C)AOV网中从源点到汇点的最长路径D)n2D)n*(n-1)D)AOV网中从源点到汇点的最短路径【答案】A6.有向图中一个顶点的度是该顶点的()A)入度B)出度C)入度与出度之和D)(入度+出度)/2【答案】C7.有e条边的无向图,若用邻接表存储,表中有()边结点。
A)e B)2eC)e-1D)2(e-1)【答案】B8.实现图的广度优先搜索算法需使用的辅助数据结构为()A)栈B)队列C)二叉树D)树【答案】B9.实现图的非递归深度优先搜索算法需使用的辅助数据结构为()A)栈B)队列C)二叉树D)树【答案】A10.存储无向图的邻接矩阵一定是一个()A)上三角矩阵B)稀疏矩阵C)对称矩阵D)对角矩阵【答案】C11.在一个有向图中所有顶点的入度之和等于出度之和的()倍A)B)1C)2D)4【答案】B12.在图采用邻接表存储时,求最小生成树的Prim 算法的时间复杂度为(A)O(n)B)O(n+e)C)O(n2)D)O(n3))【答案】B13.下列关于AOE网的叙述中,不正确的是()A)关键活动不按期完成就会影响整个工程的完成时间B)任何一个关键活动提前完成,那么整个工程将会提前完成C)所有的关键活动提前完成,那么整个工程将会提前完成D)某些关键活动提前完成,那么整个工程将会提前完成【答案】B14.具有10个顶点的无向图至少有多少条边才能保证连通()A)9B)10C)11D)12【答案】A15.在含n个顶点和e条边的无向图的邻接矩阵中,零元素的个数为()A)e B)2eC)n2-e D)n2-2e【答案】D7.2填空题1.无向图中所有顶点的度数之和等于所有边数的_____________倍。
北京理工大学数学专业离散数学期末试题(MTH17068,MTH17175)

课程编号:MTH17068 北京理工大学2012-2013学年第一学期2011级离散数学试题A 卷一、选择题(本大题共10小题,每小题2分,共20分)1.下列不是命题的是A.7能被3整除B.5是素数当且仅当太阳从西边升起C.x+7<0D.北京理工大学位于北京市西城区2.设p :王平努力学习,q :王平取得好成绩。
命题“除非王平努力学习,否则他不能取得好成绩”的符号化形式为A.p q →B.p q ⌝→C.q p →D.q p ⌝→3.下列4个推理定律中正确的是A.A A B ⇒∨(附加律)B.()A B A B ∨∧⌝⇒(析取三段论)C.()A B A B →∧⇒(假言推理)D.()A B B A →∧⌝⇒(拒取式)4.设解释I 如下:个体域{}()()()()1,2,1,12,20,1,22,11D F F F F =====。
在此解释下,下列各式真值为1的是A.(),x yF x y ∀∃B.(),x yF x y ∃∀C.(),x yF x y ∀∀D.(),x yF x y ⌝∃∃ 5.下列4个命题为真的是 A.Φ∈Φ B.{}a Φ∈ C.{}{}Φ∈Φ D.Φ⊆Φ 6.设{},,A a b c =上的二元关系{},,,,,R a a b b a c =<><><>,则关系R 的对称闭包()s R 为A.A R IB.RC.{},R c a <>D.A R I7.设{},,A a b c =,则下列是A 的划分的是A.{}{}{},,b c cB.{}{}{},,,a b a cC.{}{},,a b cD.{}{}{},,a b c8.下列编码是前缀码的是A.{1,11,101}B.{1,001,0011}C.{1,01,001,000}D.{0,00,000}9.下列图既是Euler 图又是Hamilton 图的是 A.9K B.10K C.2,3K D.3,3K 10.下列图一定是平面图的是A.5KB.,,9,22G V E V E =<>==C.3,3KD.,,10,8G V E V E =<>==二、填空题(本大题共10小题,每小题2分,共20分)1.若对命题P 赋值1,对命题Q 赋值0,则命题P Q ↔的真值为_______________。
第七章图习题答案

第七章图习题答案基础知识:7.1 在图7.23所示的各无向图中:(1)找出所有的简单环。
(2)哪些图是连通图?对非连通图给出其连通分量。
(3)哪些图是自由树(或森林)?答:(1)所有的简单环:(同一个环可以任一顶点作为起点)(a)1231(b)无(c)1231、2342、12341(d)无(2)连通图:(a)、(c)、(d)是连通图,(b)不是连通图,因为从1到2没有路径。
具体连通分量为:(3)自由树(森林):自由树是指没有确定根的树,无回路的连通图称为自由树:(a)不是自由树,因为有回路。
(b)是自由森林,其两个连通分量为两棵自由树。
(c)不是自由树。
(d)是自由树。
7.2 在图7.24(下图)所示的有向图中:(1) 该图是强连通的吗? 若不是,则给出其强连通分量。
(2) 请给出所有的简单路径及有向环。
(3) 请给出每个顶点的度,入度和出度。
(4) 请给出其邻接表、邻接矩阵及逆邻接表。
答:(1)该图是强连通的,所谓强连通是指有向图中任意顶点都存在到其他各顶点的路径。
(2)简单路径是指在一条路径上只有起点和终点可以相同的路径:有v1v2、v2v3、v3v1、v1v4、v4v3、v1v2v3、v2v3v1、v3v1v2、v1v4v3、v4v3v1、v3v1v4、另包括所有有向环,有向环如下:v1v2v3v1、v1v4v3v1(这两个有向环可以任一顶点作为起点和终点)(3)每个顶点的度、入度和出度:D(v1)=3ID(v1)=1OD(v1)=2D(v2)=2 ID(v2)=1OD(v2)=1D(v3)=3 ID(v3)=2OD(v3)=1D(v4)=2 ID(v4)=1OD(v4)=1(4)邻接表:(注意边表中邻接点域的值是顶点的序号,这里顶点的序号是顶点的下标值-1) vertex firstedge next┌─┬─┐┌─┬─┐┌─┬─┐0│v1│─→│ 1│─→│ 3│∧│├─┼─┤├─┼─┤└─┴─┘1│v2│─→│ 2│∧│├─┼─┤├─┼─┤2│v3│─→│ 0│∧│├─┼─┤├─┼─┤3│v4│─→│ 2│∧│└─┴─┘└─┴─┘逆邻接表:┌─┬─┐┌─┬─┐0│v1│─→│ 2│∧│├─┼─┤├─┼─┤1│v2│─→│ 0│∧│├─┼─┤├─┼─┤┌─┬─┐2│v3│─→│ 1│─→│ 3│∧│├─┼─┤├─┼─┤└─┴─┘3│v4│─→│ 0│∧│└─┴─┘└─┴─┘邻接矩阵:0 1 0 10 0 1 01 0 0 00 0 1 07.3 假设图的顶点是A,B...,请根据下述的邻接矩阵画出相应的无向图或有向图。
《离散数学》课件-第16章树

18
16.3 根树及其应用
19
定义(有向树)设D是有向图,如果D的基图是无向 树,则称D为有向树。
在有向树中最重要的是根树。 定义16.6(根树)一棵非平凡的有向树,如果恰有 一个顶点的入度为O,其余所有顶点的入度均为1,则称该 树为根树。 入度为0的顶点称为树根,入度为1出度为0的顶点称 为树叶,入度为1出度不为0的点称为内点,内点和树根统 称为分支点。 树根到一个顶点的有向通路的长度称为该顶点的层数。 层数最大顶点的层数称为树高。 平凡树也称为根树。
2
16.1 树及其性质
3
定义16.1(树和森林) 连通且无回路的无向图称为无向树,简称为树,常用
T表示树。 平凡图为树,称为平凡树。 非连通且每个连通分支是树的无向图称为森林。 T中度数为1的顶点(悬挂顶点)称为树叶,度数大于
1的顶点称为分支点。 称只有一个分支点,且分支点的度数为n-1的n(n≥3)
定义16.8(子树)设T为一棵根树,则其任一顶点v 及其后代导若将层数相同的顶点都 标定次序,则称T为有序树。
根据每个分支点的儿子数以及是否有序,可将根树 分成如下若干类:
定义(跟树分类)设T为一棵根树 (1)若T的每个分支点至多有r个儿子,则称T为r叉 树。又若r叉树是有序的,则称它为r叉有序树。 (2)若T的每个分支点恰好有r个儿子,则称T为r叉 正则树。又若r叉正则树是有序的,则称它为r叉正则有 序树。 (3)若T为r叉正则树,且每个树叶的层数均为树高, 则称T为r叉完全正则树。又若r叉完全正则树是有序的, 则称它为r叉完全正则有序树。
8
平均编码长度为:L = ∑ P( i )× l( i ) = 2.53bit i=1
课本内容记录

现实世界中许多现象都能用由点和连接两点间的连线组成的图形来表示。
对于这种图形,我们只关注点的个数和线的条数(存在),而忽略线的长短曲直和点的位置。
通常,把这类具体领域的问题抽象地描述为图结构。
一个图是由一个非空的有限顶点集V和一个边集E所组成的二元组。
根据顶点间的关系是否有向而引入有向图和无向图。
有向图:图中的每条边都是顶点的有序对;有向图中的边称为弧或有向边(弧尾、弧头)无向图:图中的每条边都是两个不同顶点的无序对。
在图中每条边上附加一个值作为权,这样的带权图称为网。
对图的讨论,有两点限制:第一,图中不能有从顶点出发回到顶点自身的边;第二,两个顶点之间相关联的边不能多于一条。
图的基本术语:入度:在有向图中,进入一个顶点的弧数称为该顶点的入度。
出度:在有向图中,从一个顶点发出的弧数称为该顶点的出度。
度:入度与出度之和称为该点的度。
完全图:对于无向图来说,其任意两点之间都有一条边[n(n-1)/2]。
对于有向图来说,其任意两个不同顶点之间都恰有一条边[n(n-1)]。
子图:路径:从一个顶点到另一个顶点的路径是指连接两个顶点的边经过的顶点的序列。
路径上边的数目称为该路径的长度。
在图中主要讨论以下三种特殊路径:简单路径:除始点和终点外,其余各点均不相同的路径。
回路:始点和终点相同的路径。
简单回路:始点和终点相同的简单路径。
连通图、不连通图:在无向图中,若两个顶点之间有路径,则称这两点之间是连通的。
若图中任意两顶点都是连通的,则称该无向图是连通图。
否则称非连通图,但存在若干连通分量。
强连通图、强连通分量:在有向图中,若任意两顶点可以相互到达,则称为强连通图。
在有向图中的极大强连通子图称为强连通分量。
无向树:连通且无简单回路的无向图称为无向树,简称树。
树的概念有三种等价描述:●无简单回路且边数e=顶点数n-1;●连通且边数e=顶点数n-1;●连通,但删除任一边,图便不连通。
有向树:若有向图中仅有一个顶点的入度为0,其余顶点的入度为1,则称此图为有向树。
离散数学 课件 PPT 精品课程 考研 大学课程 数学一 第九章 树

例 (2)为(1)的一棵生成树T,(3)为T的余树.
(1)
(2)
(3)
余树可能不连通,也可能含回路。
2019/1/30
11
定理9.3 任何连通图G至少存在一棵生成树. 推论1 设n阶无向连通图G有m条边,则 m≥n-1. 推论2 设n阶无向连通图G有m条边,T是G的生 成树,T'是T的余树,则T'中有m-n+1条边.
(1)
(2)
(3)
m=8,n=5
2019/1/30 12
a
d b
f
e
图中, 初级回路aed, bdf,cef.
c
这3个回路中每一 个回路都只含一条 弦,其余的边都是树 枝,这样的回路称为 基本回路.
2019/1/30
13
定义9.3 设T是n阶连通图G=<V,E>的一棵生成 树,G有n条边.设e1,e2· · · ,em-n+1为T的弦,设Cr是T 加弦er产生的G的回路,r=1,2,…m-n+1.称Cr为 对应于弦er的基本回路,称{C1,C2,· · · ,Cm-n+1}为 对应生成树T的基本回路系统.
连通分支数大于等于2,且每个连通分支均
平凡图称为平凡树. 设T=<V,E>为一棵无向树,v∈V,若d(v)=1,
则称v为T的树叶.若d(v)≥2,则称v为T的分 支点.
2019/1/30 3
例
(a)
(b)
(c )
图中(a),(b)为树,而(c)不是树, 但(c)为森林。
2019/1/30 4
T有5个树枝a, b, c, d, e, 因而有5个 基本割集:Sa={a,g,f } ; Sb={b,g,h } ; Sc={c,f,h } ; Sd={d,i,h } ; Se={e,f,i}. 基本割集系统为{Sa,Sb,Sc, Sd,Se}.
数据结构第六章图理解练习知识题及答案解析详细解析(精华版)

图1. 填空题⑴设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。
【解答】0,n(n-1)/2,0,n(n-1)【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。
⑵任何连通图的连通分量只有一个,即是()。
【解答】其自身⑶图的存储结构主要有两种,分别是()和()。
【解答】邻接矩阵,邻接表【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。
⑷已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。
【解答】O(n+e)【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。
⑸已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。
【解答】求第j列的所有元素之和⑹有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。
【解答】出度⑺图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。
【解答】前序,栈,层序,队列⑻对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal 算法求最小生成树的时间复杂度为()。
【解答】O(n2),O(elog2e)【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。
⑼如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。
【解答】回路⑽在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。
【解答】vi, vj, vk【分析】对由顶点vi, vj, vk组成的图进行拓扑排序。
数据结构第7章 图习题

习题7 图单项选择题1.在一个图中,所有顶点的度数之和等于所有边数的____倍。
A. 1/2B. 1C. 2D. 42.任何一个无向连通图的最小生成树。
A.只有一棵B.有一棵或多棵C.一定有多棵D.可能不存在3.在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的____倍。
A. 1/2B. 1C. 2D. 44.一个有n个顶点的无向图最多有____条边。
A. nB. n(n-1)C. n(n-1)/2D. 2n5.具有4个顶点的无向完全图有____条边。
A. 6B. 12C. 16D. 206.具有6个顶点的无向图至少应有____条边才能确保是一个连通图。
A. 5B. 6C. 7D. 87.在一个具有n个顶点的无向图中,要连通全部顶点至少需要____条边。
A. nB. n+1C. n-1D. n/28.对于一个具有n个顶点的无向图,若采用邻接矩阵表示,则该矩阵的大小是____。
A. nB. (n-1)2C. n-1D. n29.对于一个具有n个顶点和e条边的无向图,若采用邻接表表示,则表头向量的大小为_①___;所有邻接表中的接点总数是_②___。
①A. n B. n+1 C. n-1 D. n+e② A. e/2 B. e D. n+e10.已知一个图如图所示,若从顶点a出发按深度搜索法进行遍历,则可能得到的一种顶点序列为__①__;按宽度搜索法进行遍历,则可能得到的一种顶点序列为__②__。
① A. a,b,e,c,d,f B. e,c,f,e,b,d C. a,e,b,c,f,d D. a,e,d,f,c,b② A. a,b,c,e,d,f B. a,b,c,e,f,d C. a,e,b,c,f,d D. a,c,f,d,e,b图一个无向图11.已知一有向图的邻接表存储结构如图所示。
⑴根据有向图的深度优先遍历算法,从顶点v1出发,所得到的顶点序列是____。
A. v1,v2,v3,v5,v4B. v1,v2,v3,v4,v5C. v1,v3,v4,v5,v2D. v1,v4,v3,v5,v2⑵根据有向图的宽度优先遍历算法,从顶点v1出发,所得到的顶点序列是____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无向树顶点数和边数的关系
介绍
无向树是图论中一种特殊的无环连通图,它由一组顶点和连接这些顶点的边组成。
每个顶点都具有且只有一个父节点,除了根节点没有父节点。
在无向树中,顶点之间的连接关系是无方向的,即从一个顶点到另一个顶点的边没有箭头指示。
本文将探讨无向树的顶点数和边数之间的关系,并且通过实例分析来证明结论。
顶点数和边数的关系
在无向树中,顶点数和边数之间有如下关系:
边数 = 顶点数 - 1
这个公式可以用来计算给定无向树中的边数,只要知道了顶点数就可以得到正确的结果。
证明和解释
为了证明这个关系,我们可以利用无向树的特性进行递归推理。
首先考虑最简单的情况,即只有一个顶点的无向树(树中只有根节点)。
在这种情况下,树中没有边,所以边数等于顶点数减去1。
接下来考虑加入一个新的顶点的情况,该顶点作为根节点的子节点。
在这种情况下,我们在树中添加了一个顶点,并且增加了一条连接根节点和新顶点的边。
树中的边数就等于顶点数加一减去根节点的边数(即1),即边数等于顶点数减去1。
通过以上分析,我们可以得出结论:在无向树的情况下,边数等于顶点数减去1。
这个结论可以使用递归的方式进行证明。
每次添加一个新的顶点时,边数增加1,
并且顶点数也增加1,所以边数始终比顶点数少1。
实例分析
为了进一步理解顶点数和边数之间的关系,让我们通过一个具体的例子来进行实例分析。
考虑一个有5个节点的无向树,节点分别为A,B,C,D,E。
它们之间的连接关系如下图所示:
A
/ | \
B C D
/
E
在这个例子中,我们可以很容易地计算出顶点数(5个)和边数(4条),符合之前提到的关系:边数等于顶点数减去1。
接下来,我们可以尝试通过增加或删除顶点来验证这个关系。
如果我们添加一个新的顶点F,并建立和D之间的连接,那么树的结构会变成:
A
/ | \
B C D
/ \
E F
现在,我们可以再次计算顶点数(6个)和边数(5条),仍然符合边数等于顶点数减去1的关系。
另一方面,如果我们删除顶点F和与D之间的连接,树会变回原来的结构。
这时,顶点数(5个)和边数(4条)的关系仍然保持不变。
通过这些实例分析,我们再次验证了顶点数和边数之间的关系:边数等于顶点数减去1。
总结
在无向树中,顶点数和边数之间存在简单而有用的关系:边数等于顶点数减去1。
这个关系可以方便地用于计算无向树的边数,只需知道顶点数即可。
通过递归推理和实例分析,我们证明了这个关系的准确性。
这个关系在图论和计算机科学中是非常重要的,有助于分析和处理各种问题,如网络设计、算法设计等。
希望本文的讲解能够帮助你更好地理解无向树的结构和性质,并且对顶点数和边数的关系有一个清晰的认识。