振动传感器和振动监控仪表技术参数

振动传感器和振动监控仪表技术参数
振动传感器和振动监控仪表技术参数

CK-DSP90 振动传感器

CK-DSP90振动传感器是一个低费用的、具有内置数字处理器(DSP )的,带有RS485标准工业总线的振动传感器,它能将机械振动信号直接转换为数字化波形数据,并通过传感器的RS485接口传送到计算机处理。具有不锈钢防水外壳,使传感器适用于潮湿环境。

CK-DSP90是一个加速度传感器,非常适用于发电厂、造纸厂、燃气轮机和其它广泛的工业应用。在这些要求严格的领域所获得的知识和经验同样也应用在一些小型应用中,如柴油机、水泵、发电机等。

* 内置DSP 数字信号处理器 * 内置加速度振动传感器

* 带有RS485数字总线接口 * 内置FFT 频谱分析

* 软件可升级 * 低费用、安装简便

传感器内置的DSP 信号处理器对振动数据进行FFT(傅立叶变换)分析,并计算出加速度、速度、位移值。传感器可直接输出时域和频域的振动波形数据。

多达64个振动传感器可以连接成一个振动测量网络,连接到这个网络的主机(如PC 计算机)可读取振动数据,并对数据进行分析和处理。

软件是一个免费的振动传感器测试软件,随传感器提供,软件通过计算机的串口采集振动数据,其界面见上图。

性能指标:

1、附件

振动传感器外型尺寸:

附件

2、

CKG-JK10 振动监控仪表

CKG-JK10振动监测表具有振动信号采集、显示、报警功能于一体,仪表采用CK-DSP90数字振动传感,测量精度取决于振动传感器的选择。

显示功能:CKG-JK10振动监测表采用4位红色LED数码管,用于显示振动的加速度、速度、位移三个参数,通过仪表面板上的按键切换显示的参数,两个状态指示灯用于指示当前显示参数的单位。

报警或控制功能:CKG-JK10振动监测表可设定振动速度报警点,一个继电器的无源接点输出,可用于报警指示或控制外部设备。

通信功能:CKG-JK10振动监测表配有标准的RS485总线接口,该接口用于连接一个CK-DSP90-V4的数字振动传感器。

隔离性能:CKG-JK10振动监测表具有高的电气隔离性能,保证了仪表安全稳定的工作。通信接口和供电电源之间具有电气隔离,这一性能,保证了仪表即使在恶烈的强电磁场干扰环境下,也能可靠工作。

宽供电范围:采用10-40Vdc的供电设计,可以对振动监测表进行远距离供电,而不受线路压降的影响,单一电源即可对分布现场的仪表供电,适合分散点的振动监测。

技术指标:

振动传感器的连接:

CK-DSP90型号的数字振动传感器可与CKG-JK10振动监测表配套使用,该传感器具有不锈钢外壳,引线采用4芯屏蔽电缆,其信号定义为:电源(红色/棕)、地(黄)、RS485数据+(蓝), RS485数据-(黑)。仪表与振动传感器接线方式见下图:

传感器作业习题

习题1 1-1衡量传感器静态特性的主要指标有哪些?说说它们的含义。 答: 1、线性度:表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或 偏离)程度的指标。 2、灵敏度:传感器输出量增量与被测输入量增量之比。 3、分辨力:传感器在规定测量范围内所能检测出的被测输入量的最小变化量。 4、回差:反应传感器在正(输入量增大)反(输入量减小)行程过程中。。。输 出-输入曲线的不重合程度指标。 5、重复性:衡量传感器在同一工作条件下,输入量按同一方向作全程连续多次 变动时,所得特性曲线间一致程度的指标。 6、阈值:是能使传感器输出端产生可测变化量的最小被测输入量值,即零位附 近的分辨力。 7、稳定性:传感器在相当长时间内仍保持其性能的能力。 8、漂移:指在一定时间间隔内,传感器输出量存在着与被测输人量无关的、不 需要的变化。 9、静态误差(精度):指传感器在满量程内任一点输出值相对其理论值的可能偏 离(逼近)程度。它表示采用该传感器进行静态测量时所得数值的不确定度。 1-2 计算传感器线性度的方法有哪几种?差别何在? 1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。优点是简单、方便,但输出平均值与拟合直线间的最大偏差很大。 2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。 y=b+kx b截距k为斜率与理论直线发一样简便偏差很大 3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。这种方法的拟合精度最高,但是只能用图解法和计算机结算来获得。(断电平行法) 4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。最小二乘法的拟合程度很高,但是校准曲线相对拟合直线

振动入门知识及传感器简介

振动入门知识及传感器简介 工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2 (m/s2),或重力加速度(g)。 描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。 传感器的种类选择 压电式- 原理和特点 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。 压阻式 应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。同时压阻式加速度传感器测量频率范围也可从直流信号到具有刚度高,测量频率范围到几十千赫兹的高频测量。超小型化的设计也是压阻式传感器的一个亮点。需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。压阻式加速度传感器的另一缺点是受温度的影响较大,实用的传感器一般都需要进行温度补偿。在价格方面,大批量使用的压阻式传感器成本价具有很大的市场竞争力,但对特殊使用的敏感芯体制造成本将远高于压电型加速度传感器。 电容式 电容型加速度传感器的结构形式一般也采用弹簧质量系统。当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改

2016年《振动测试实验》综合练习题 (2)

2016年《振动测试实验》综合练习题 1、关于振动传感器,请回答以下问题: 1)振动传感器主要有那些类型?哪种传感器目前使用最广泛? 答:①振动传感器按所测机械量分为位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 ②目前使用最广泛的是加速度传感器。 2)加速度传感器安装方式有哪些?对于飞机空中振动环境测试,你认为哪几种安装方式较合适? 答:①加速度传感器安装方式:刚螺栓连接、胶合螺栓、石蜡粘接、双面胶、永久磁铁。 ②对于飞机空中振动环境测试,用刚螺栓连接、胶合螺栓较合适。 3)加速度传感器和力传感器的主要技术指标? 答:(1)灵敏度:电信号输出与被测运动输入之比。加速度传感器的灵敏度通常为V/g或PC/ms-2、V/ms-2。力传感器的灵敏度通常为V/N。(2)频率响应特性(包括幅频特性和相频特性)。(3)动态范围:可测量的最大振动量与最小振动量之比。下限取决于连接电缆和测量电路的电噪声,上限取决于传感器的结构强度。(4)横向灵敏度:垂直于主轴的横向振动也会使传感器产山输出信号。该信号与主轴灵敏度的百分比为横向灵敏度。(5)幅值线性度:实际传感器的输出信号只在一定幅值范围内与被测振动成正比(即保持线性特性)。在规定线性度内可测幅值范围称为线性范围。 4)一般振动数据采集设备最大输入电压为10伏。测量一结构加速度响应,加速度最大值预估约为20g,现有加速度传感器甲(灵敏度:50mv/g)、乙(灵敏度:500mv/g)各一只,选用哪一个传感器?请说明理由。 答:灵敏度等于输入电压除以加速度为10V/20g = 500 mv/g,所以选择乙传感器。 2、关于激振器,请回答以下问题: 1)常用的激振器安装方式有哪两种?两种安装方式的分别有何技术要求? 答:①常用的激振器安装方式:刚性支承、柔性悬挂。 ②刚性支承安装要求:垂直向、横向、纵向支承刚度足够大。 支承系统(激振器+支架)的最低阶固有频率>试验件最高阶固有频率。 柔性悬挂安装要求:垂直向、横向、纵向支承刚度足够小。

测试习题集-第七章 振动测试

第七章振动测试 一、填空题 1 振弦式传感器是以作为敏感元件,其与其的大小,因而弦的能表征的大小。 2 振弦式传感器中,将待测力作用在,改变弦的大小,因而弦的变化能表征的大小。 3 振弦式传感器主要由、、、、等组成。 4 振弦式传感器中,待测力通过改变弦的张紧力。激励器供给弦使弦。拾振器将弦的转换成的电信号输出。振弦把的变化转换成的变化。 5 振弦式传感器中,激励振弦自由振动的方式有和两种。 6 振弦式传感器的间歇激励中,只有和,既作为,又作为。 7 采用电流法连续激励的振弦式传感器中,传感器与组成振荡器。作为振荡器的正反馈网络。 8 采用电磁法连续激励的振弦式传感器中有两套线圈和永久磁铁,一个作,一个作。 9 振筒式压力传感器结构上主要有、、、。 10 振筒压力传感器中,激励线圈和拾振线圈通过耦合,与和反馈网络组成一个以为谐振频率的系统。 11 振筒式压力传感器中,若让它的振动频率越高,器振也越。因而,通常振筒总是在它下振动。 12 振筒式传感器中振筒振动起来后,由于振筒是磁路中的一部分,它的振动改变了磁路中的大小,引起的变化,在拾振线圈中产生。 13 振筒式压力传感器中,在振筒材料、尺寸一定情况下,只与振筒刚度有关,而这时的刚度只与筒壁有关。故与成单值函数关系,这时测量的变化,即可确定筒内的。 14 振筒式传感器中的振筒换成,激励器和拾振器放在,就

成为振管式传感器,用于测量。当振管振动时,随之振动,当发生变化时,系统发生变化,即可确定。 15 普通振膜式传感器是由、、、组成,其中的、拾振器和,再加上组成振荡系统。 16 振膜式传感器中,压力膜片受力,使压力膜片支架上固定着的支撑支架张角改变,振膜发生变化,因而振膜的发生变化。 17 将普通振膜式传感器中的取消,用代替和,并直接固定在上,就成为压电陶瓷振膜式传感器。 二、判断题 1 的惯性拾振器,其幅频特性曲线会出现“共振峰”。 2 用接触式拾振器测振时,须考虑拾振器质量对被测件运动加速度和固有频率的影响。 3 稳态正弦激振和脉冲激振都是宽带激振。 4 脉冲激振实验时,锤头垫的材料愈硬,则有效激振频率范围愈宽。 5 实验测得构件的共振频率就是其固有频率,且这时响应与激振力的相位差总是90 °。 6 进行绝对激振试验对,激振器一定要与地基牢固地固定在一起, 7 电动式激振器所产生的激振力与线圈所产生的电动力相等。 8 在机械结构振动参数测定实验中,若加大激振力,则所测得的构件的固有频率也变大。 9 阻抗头可以同时测定激振力和被测构件激振点处的响应。 10 在位移响应的虚、实频曲线中,只有虚频曲线包含幅频、相频信息。因此,常用虚频曲线来求阻尼比和固有频率。 11 由于互易法是用两只传感器互相比较来校准灵敏度的,故属于比较校准法。 三、选择题 1 阻抗头是测量振动系统 ( ) 的拾振器。 ( A )振动位移( B )振动加速度( C )激振力( D )激振力及响应

振动传感器种类、原理及发展趋势

振动传感器种类、原理及发展趋势 【摘要】振动传感器是一种能感受机械运动振动的参量(振动速度、频率,加速度等)并转换成可用输出信号的传感器。 在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,而测试系统的最前端是传感器,它是整个测试系统的灵魂,被世界各国列为尖端技术,特别是近几年快速发展的IC技术和计算机技术,为传感器的发展提供了良好与可靠的科学技术基础。使传感器的发展日新月益,且数字化、多功能与智能化是现代传感器发展的重要特征。 【关键词】种类;原理;发展趋势 【Abstract】:Vibration transducer is atransducer that can feel the vibration of a mechanical movement parameters (frequency of the vibration velocity, acceleration, etc.) and converted into usable output signal of the sensor. At the height of the development of modern industry, modern testing technology to digitization, information management has become an inevitable trend of development, and testing system for the front end is the sensor, it is the soul of an entire test system, is listed as a leading-edge technology around the world, particularly in recent years, the rapid development of IC technology and computer technology, the development of a sensor provides a good and reliable scientific and technology base. Place the sensor development, Crescent IK, and multipurpose digital, is a modern and intelligent sensor development, an important feature. 【Keywords】:type , principle , inevitable trend of development 振动传感器的分类

传感器心得体会

传感器心得体会

传感器心得体会 【篇一:传感器实验总结】 《传感器及检测技术》教学实践工作总结 本学期,担任《传感器及检测技术》课程的理论和实践教学内容。本课程的实践教学主要是教学实验,在全体同学的大力配合下,比较圆满的完成了实践教学任务,达到了实验的预期目的。现将此课程的实践教学工作总结如下: 1、实验计划的制定 为更好的完成实践教学环节,使学生能够真正的在实践环节学到更多的东西,在学期初我就认真研究教材内容和教学大纲要求,针对教学内容和学生特点制定了详细的实验安排,并与实验室老师进行了认真的沟通,充分做好教学实践前的各项准备工作。 2、注重理论和实践的结合 每讲授一段内容,就组织同学们做一次实验,让学生把课堂上获得的理论知识及时的得到验证和应用,从而加深对所学内容的理解。同时鼓励同学们利用课余时间多到实验室做一些创造性的实验,提高他们的知识迁移能力和思维能力。 3、实验过程的安排 (1)每次实验前,提前下达实验任务,让学生做好实验前的各种准备工作。由班长做好分组工作,每组指定一名组长,实行组长负责制,负责本组的组织和协调工作,。 (2)进实验室时,讲清实验室纪律,不得随意摆弄实验用品,要严格遵守实验章程,在老师的指导下进行各种实验。

(3)实验过程中,认真抓好学生的纪律,不得无故迟到、早退,杜绝做与实验无关的事情。实验过程中教师要不断巡 视及时发现学生们遇到的各种问题,并给与指导或启发。尽量多鼓励、少批评,培养学生的自信心,提高学生学习的积极性。 (4)实验完毕,及时清查实验物品,并督促学生摆放好实验物品,做到物归原位。另外,每组展示实验成果,并派代表做出总结,谈谈实验中遇到的各种问题,并说明做出了怎样的处理,有哪些收获。小组成员之间先进行互评,然后由教师作出补充,并适当给与鼓励。同时督促同学课下认真完成实验报告。 4、反思改进 在每次实验完毕后,我都把实验中发现的问题进行归纳整理,进行反思,同时向有经验的教师请教,争取在下次实践课中加以改进。 总之,这一个学期的实践教学,总的来说基本上能够按照要求保质保量的完成教学任务,但从中我也发现了一些问题,在今后的教学工作中,我会努力的改进不足的地方,争取把以后的实践教学工作做得更好。 【篇二:实验心得体会】 实验心得体会 在做测试技术的实验前,我以为不会难做,就像以前做物理实验一样, 做完实验,然后两下子就将实验报告做完.直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度成正比,使我受益匪浅. 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如做应变片的实验,你要清楚电桥的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事倍功半.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄

振动传感器

振动传感器 振动传感器分为压电式,磁电式,微型振动传感器。 常用振动传感器有以下几种: 1.压电片谐振式:使用压电片接收振动信号,压电片的谐振频率较高,为了降低谐振频率,使用加大压电片振动体的质量来实现,并使用弹簧球代替附加物,降低两谐振频率,增强了振动效果。其优点是灵敏度较高,结构简单。但是需要信号放大后送到TTL电路或者单片机电路中,不过使用一个三极管单级放大即可 2.机械振动式:传统的振动检测方式,受到振动以后,弹簧球在较长的时间内进行减幅振动,这种振动便于被检测电路检测到。振动输出开关信号,输出阻抗与配合输出的电阻阻值所决定,根据检测电路的输入阻抗,可以做成高阻抗输出方式。 3.微型振动传感器:将机械式振动传感器微型化,将振动体碳化并进行密封处理,其工作性能更可靠。输出开关信号直接与TTL电路和或者单片机输入电路相连接,电路结构简单。输出阻抗高,静态工作电流小。 振动传感器按其功能可有以下几种分类方法: 按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式; 按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 以上分类法中的传感器是相容的。

1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器

震动探测器原理

全向振动传感器 它是一种全方位固态振动控制器件,传感部分采用目前最先进的固态加速度检测器件,既对振动有很高的检测灵敏度,也对周围环境的声音信号抑制,具有很强的抗干扰能力。 目前所出现的振动传感器为一弹簧振子,通过碰撞实现振动感应,主要缺点是有方向性,可靠性差。针对这一缺陷,本方案使用的传感器, 克服了这一弱点。敏感器件采用压电陶瓷片,置于一密闭腔中,两侧为金属小球,空腔设计为球形, 以利用小球滚动。在三维空间中,无论传感器在什么方位,始终有小球与压电陶瓷片接触。在振动时,小球对压电陶瓷片压力变化,产生脉动电压, 从而实现振动感应。因为本振动传感器的输出电压幅度主要取决于振动强度,在不同方向上振动, 输出电压太小差别不大,故为全方向性。 (1) 全向振动传感器工作原理 全向振动传感器,是一种目前广泛应用的报警检测传感器,它内部用压电陶瓷片加弹簧重锤结构检测振动信号,并通过LM358等运放放大并输出控制信号。如图2-8所示为全向振动传感器电路图。 ND-2采用特别设计的低功耗检测控制芯片,静态耗电小于1μA ,是目前振动传感器中耗电最小的器件。为了方便使用,采用引线方式。引线连接方式:红线为电源正极,绿线为输出端,黑线为地。如图2-9所示为ND-2引线图。 当检测到振动大于一定幅度时,动作指示灯点亮,并发出报警。振动检测的灵敏度可以通过灵敏度调节旋钮调节,顺时针灵敏度增加,逆时针灵敏度降低。 3V 图2-8 全向振动传感器电路图 红 绿 黑 图2-9 ND-2引线图 如图2-10所示,ND-2采用集电极开路输出方式,其内部三极管的控制电流不小于10mA 。受内部定时器的控制,每检测出一次振动信号,三极管导通5秒,

振动测量技术复习总结

振动测量技术复习题 一、填空题 1、已知环境对系统(机械设备或结构)的输入(激励)和系统的动态特性,求系统输出,工程上叫响应预测。 2、已知输入和输出,求系统的动态特性,工程上称为系统识别。 3、已知输出和系统的动态特性求输入,工程上称作载荷识别或环境预估。 4、临界阻尼系数:km C C 2=。 5、无量纲频率比n p /ωλ=,无量纲衰减系数c c c /=ζ。 6、非周期振动中,加速度(位移和速度)的各阶谐波分量在整个频率域上是连续分布的。 加速度传感器在低频区具有良好的幅频特性,在测量非周期振动时,只选用加速度传感器。 7、相对式电动传感器的电学特性与绝对式电动传感器是相同的。 8、在晶体上机械能(力或变形)到电能(电荷或电场)的变换成为正压电效应,反过来则成为逆压电效应。 9、压电式加速度传感器的类型常见有三种,即中心压缩式,剪切式,三角剪切式。 10、电涡流传感器是一种相对的非接触式传感器。 11、电感传感器由两种形式,一是可变间隙,二是可变导磁面积。 12、电压灵敏度的量纲是2/-?s m mV ,电荷灵敏度的量纲是2/-?s m pC 。 13、N /1倍频程滤波器也是一种恒百分比滤波器,但它的定义是N c c f f 112/2=。 14、恒带宽滤波器,取绝对带宽等于常数,即常数=-=123c c f f B 。 15、恒百分比带宽滤波器,取相对带宽等于常数,即%100/)(/00312?-==f f f f B b c c 。 16、鉴频器的功能就是把调频波频率的变化转化为电压的变化。 17、电磁式激振器是将电能转化为机械能,并将其传递给实验结构的一种仪器。 18、把被测振动信号送入示波器的垂直偏转轴Y ,而把已知频率的比较电压信号(有信号发生器提供)送入水平偏转轴X ,这是在示波器的显示屏上将出现李萨如图形。 19、使用频率计数器直接测定简谐波形电压信号的频率或周期成为直接测频法。 20、自由振动法测量机械系统的固有频率有两个途径即初位移法和撞击法(或敲击法)。 21、用振动波形图测定机械系统的衰减系数的基本公式是)/ln(/11+=i d x x i f n 。 22、用半功率点法测定机械系统的衰减系数的基本公式是ω?=5.0n 。 23、组成合成波的两种频率相近时,振动合成波将出现共振现象。 24、采样定理:采样频率s f 必须大于被测分析信号成分中最高频率m f 值的二倍以上,即用公式表示为m s f t f 2/1>?=。

振动传感器说明

振动传感器说明 (一)设计思路和方法 (二)先把检测振动传感器的引脚P2^4定义为vibrate,并把此引脚定义为输入端 口,即将P2^4引脚置1,并不断检测此引脚状态。当振动发生时,由于振动传感器内部被短接,因此检测到P2^4引脚的电平为0,所以,但P2^4引脚为低电平时,我们判断此时发生了振动,并点亮LED表示探测到振动。延时是为让用户更容易看到LED被点亮,待振动平稳了之后,又将熄灭LED 灯。 (三)振动传感器电路原理图 (四) (五)振动传感器原理 (六)本实验板中使用的振动传感器是一种简单的器件,管内有一跟固定的导线, 在这根导线的周围有另一根较细的导线以螺旋状环绕它。可以想象为一个弹簧中间有一跟导线。在不震动时,两根导线不会相碰,一旦振动发生,两根导线就会短接。所以我们只需判断导线是否短接了,就可以知道振动是否发生。 (七)程序设计流程图 (八) (九)I O引脚的配置 1. 数码管使能引脚 s bit led=P2^3; 2. 震动传感器信号引脚 (十)sbit daozhi=P2^4; //震动传感器 (十一)详细设计参见工程代码。 (十二)测试方法 1.用STC ISP默认设置,打开工程中的HEX并下载 敲一下板子使其振动,LED灯从右往左依次点亮;多次敲板子(振动多次),LED 灯从右往左依次点亮,八个LED灯全部点亮后再感受到振动会全部熄灭重新开始从右往左依次点亮。

2. 资料精选,适合职场人士使用借鉴参考。资料精选,适合职场人士使用借鉴参考。资料精选,适合职场人士使用借鉴参考。 资料精选,适合职场人士使用借鉴参考。 资料精选,适合职场人士使用借鉴参考。 资料精选,适合职场人士使用借鉴参考。 资料精选,适合职场人士使用借鉴参考。 资料精选,适合职场人士使用借鉴参考。 资料精选,适合职场人士使用借鉴参考。 资料精选,适合职场人士使用借鉴参考。

振动传感器的种类及选择方法

涡流传感器输出与振动位移成正比。传感器与被测物体不接触,可以测量转动部件的振动,并可进一步用于测量旋转机械振动分析中的两个关键参数:转速和相位。振动测量的频率范围较宽,能同时作静态和动态测量,适用于绝大多数旋转机械。传感器输出结果与被测物体材料有关,材料本身会影响传感器线性范围和灵敏度,必须重新标定。为了获得可靠的数据,对传感器的安装要求较严。 速度传感器输出与振动速度成正比,信号可以直接提供给分析系统。传感器安装简单,临时测量可以采用手扶方式或通过磁座与被测物体固定,长期监测可以通过螺钉与被测物体固定。速度传感器体积、质量偏大,低频特性较差,测量10Hz以下振动时,幅值和相位有误差,需要补偿。测量发电机和励磁机振动时,速度传感器可能会受到电磁干扰的影响。此时,速度传感器的输出信号会变得很不稳定,忽大忽小,没有规律。 加速度传感器输出与振动加速度成正比。体积小、质量轻是加速度传感器的突出特点,特别适用于细小和质量较轻部件的振动测试。加速度传感器结构紧凑,不易损坏。涡流、速度和加速度传感器在旋转机械振动测试中都得到了广泛应用。通常是用涡流传感器测量转轴振动,用速度或加速度传感器测量轴承座振动。另外,由位移、速度和加速度之间的关系可知,为了突出反映故障信号中高频分量或脉冲量的变化,可以选用加速度传感器,而为了突出反映故障信号中低频分且的变化,可以选用涡流传感器。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/963573227.html,/

振动传感器的选择与安装重点

振动传感器的选择与安装 Choice and Installation of the Vibration Transducer 涂骥 (江西省计量测试研究院, 江西南昌330002 摘要:在众多工程领域中, 机械振动和结构动力学问题日益突出, 随着测试技术的数字化、智能化和计算机化, 动传感器的选择, 是振动测试中首先要考虑的问题。本文以压电传感器为例, 关键词:振动传感器; 选择; 安装 在航空、航天、车辆、机械、土木、化工等工程领域, 机 械振动和结构动力学问题日益突出。析已成为机械、结构产品研究、设计、、不可或缺的重要手段、。, 。一般可选择加速度量振动。在给定频率下, 加速度、速度与位移之间的幅值相差一个圆频率因子, 相位差90°。在测量系统中, 可通过积分电路由加速度得到速度, 由速度得到位移。但是由于三类传感器原理构造的不同, 使用范围的差异, 在特定情况需选择恰当的传感器类型。 以压电传感器为例, 在选择加速度传感器时, 应主要考虑以下特性: (1 灵敏度。灵敏度是加速度传感器最重要的特性之一。理论上加速度传感器的灵敏度越高越好。但灵敏度越高, 压电元件叠层越厚, 导致传感器自身谐振频率下降, 影响测量频率范围。而且灵敏度高的压电加速度传感器自身质量大, 不利于轻小试件的测量。因现代测量系统能接受很低振级的信号, 因而灵敏度也不再是决定一切的因素。压电加速度传感器的灵敏度有电荷与电压两种。对于ICP 传感器主要是电压灵敏度。

(2 安装谐振频率。即压电加速度传感器安装在其质量相对很大的刚性基础上时的固有频率 f m = s 式中:k 为压电元件的等效刚度, 为传感器质量块的质量。该参数决定了加速度传感器的测量频率范围。通 常取测量频率范围为安装谐振频率的3 , 这时测得的振 动误差不大于1dB (约10% 。为了进一步提高测量精度, 可选择测量上限频率小于谐振频率的5~10 。 (3 传感器质量。当需要在测量对象上布置大量传 , 加速度传感器的质量大。因为在这种情况下必须考虑传感。其影响可由下式近似估算 f s =f m + m s 式中:为带传感器的结构固有频率, m a 和m s 分别为传感器附加质量和结构在该阶固有频率下的等效质量。一般来说传感器质量应小于有效质量的 10

电容式传感器的结构及工作原理

电容式传感器——将被测非电量的变化转换为电容量变化的传感器。把被测的机械量,如位移、压力等转换为电容量变化的传感器。它的敏感部分就是具有可变参数的电容器。其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器。下面就让艾驰商城小编对电容式传感器的结构及工作原理来一一为大家做介绍吧。 若忽略边缘效应,平板电容器的电容为εS/d,式中ε为极间介质的介电常数,S为两极板互相覆盖的有效面积,d为两电极之间的距离。d、s、ε 三个参数中任一个的变化都将引起电容量变化,并可用于测量。 因此电容式传感器可分为极距变化型、面积变化型、介质变化型三类,即变极距型电容传感器、变面积型电容传感器和变介质型电容传感器。极距变化型一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。面积变化型一般用于测量角位移或较大的线位移。介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。 典型的电容式传感器由上下电极、绝缘体和衬底构成。当薄膜受压力作用时,薄膜会发生一定的变形,因此,上下电极之间的距离发生一定的变化,从而使电容发生变化。但电容式压力传感器的电容与上下电极之间的距离的关系是非线性关系,因此,要用具有补偿功能的测量电路对输出电容进行非线性补偿。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/963573227.html,/

传感器原理设计与应用重点总结

本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~ 第一章:传感器概论 1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。 2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。 3、传感器的分类 按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。 按构成原理分类: 结构型:依靠机械结构参数变化来实现变换。 物性型:利用材料本身的物理性质来实现变换。 按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器 按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器 4、传感器技术的发展动向: 教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器 老师表述:微型化、集成化、廉价。 第二章:传感器的一般特性 1、静态特性 检测系统的四种典型静态特性 线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。 灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。 即S N=输入量的变化/输出量的变化=dy/dx 迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。 (产生的原因:传感器机械部分存在的不可避免的缺陷。) 重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。 精确度. 测量范围和量程. 零漂和温漂. 2、动态特性:(传感器对激励(输入)的响应(输出)特性) 动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差

传感器分类(最全总结)

由于被测参量种类繁多,其工作原理和使用条件又各不相同,因此传感器的种类和规格十分繁杂,分类方法也很多。现将常采用的分类方法归纳如下: 1、按输入量即测量对象的不同分: 如输入量分别为:温度、压力、位移、速度、湿度、光线、气体等非电量时,则相应的传感器称为温度传感器、压力传感器、称重传感器等。 这种分类方法明确地说明了传感器的用途,给使用者提供了方便,容易根据测量对象来选择所需要的传感器,缺点是这种分类方法是将原理互不相同的传感器归为一类,很难找出每种传感器在转换机理上有何共性和差异,因此,对掌握传感器的一些基本原理及分析方法是不利的。因为同一种型式的传感器,如压电式传感器,它可以用来测量机械振动中的加速度、速度和振幅等,也可以用来测量冲击和力,但其工作原理是一样的。 这种分类方法把种类最多的物理量分为:基本量和派生量两大类.例如力可视为基本物理量,从力可派生出压力、重量,应力、力矩等派生物理量.当我们需要测量上述物理量时,只要采用力传感器就可以了。所以了解基本物理量和派生物理量的关系,对于系统使用何种传感器是很有帮助的。 2、按工作(检测)原理分类 检测原理指传感器工作时所依据的物理效应、化学效应和生物效应等机理。有电阻式、电容式、电感式、压电式、电磁式、磁阻式、光电式、压阻式、热电式、核辐射式、半导体式传感器等。 如根据变电阻原理,相应的有电位器式、应变片式、压阻式等传感器;如根据电磁感应原理,相应的有电感式、差压变送器、电涡流式、电磁式、磁阻式等传感器;如根据半导体有关理论,则相应的有半导体力敏、热敏、光敏、气敏、磁敏等固态传感器。 这种分类方法的优点是便于传感器专业工作者从原理与设计上作归纳性的分析研究,避免了传感器的名目过于繁多,故最常采用。缺点是用户选用传感器时会感到不够方便。 有时也常把用途和原理结合起来命名,如电感式位移传感器,压电式力传感器等,以避免传感器名目过于繁多. 3、按照传感器的结构参数在信号变换过程中是否发生变化可分为: a、物性型传感器:在实现信号的变换过程中,结构参数基本不变,而是利用某些物质材料(敏感元件)本身的物理或化学性质的变化而实现信号变换的。 这种传感器一般没有可动结构部分,易小型化,故也被称作固态传感器,它是以半导体、电介质、铁电体等作为敏感材料的固态器件。如:热电偶、压电石英晶体、热电阻以及各种半导体传感器如力敏、热敏、湿敏、气敏、光敏元件等。

振动试验中加速度传感器的选择

振动试验中加速度传感器的选择 The Choice of Acceleration Sensor in the Vibration Testing 环境适应性和可靠性2009.3 国家电子计算机质量监督检验中心符瑜慧李雪松杨红左进凯 FU Yu-hui LI Xue-song YANG Hong ZUO Jin-kai 摘要:参与振动试验中振动量值的获得,最直接也是主要的单元之一是加速度传感器。本文将重点对压电式加速度传感器的工作原理及影响其选型的主要因素进行探讨。 关键词:传感器;选择 Abstract: Getting the vibration force in the vibration testing, there is a unit-sensor which is directness and importance. This paper will talk about that the voltage acceleration sensor function and the important factor which must think about in choosing the sensor type. Key Words:sensor ; choice. 1 引言 振动试验中,我们对控制点、监测点等的振动量值都是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。如果控制点所得到的数值不真实,就会影响到我们对试验样品的振动应力施加,可能是欠应力或过应力,欠应力会导致不能真实反应样品的质量信息,达不到预期考察样品“抗振”的试验目的,过应力可能会使样品损害,或据此以样品进行改进设计,增加企业成本;如果监测点所得到的数值不真实,监测的作用就推动了应有的作用,达不到监测振动台面和样口某薄弱环节的作用,甚至会带来不必要的错误改进。因此,影响振动试验中振动量值的正确获得,除了与传感器的安装位置、样品的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。在此,本论文结合理论及实际经验介绍振动试验中加速度传感器的选择。 2 振动传感器的类型及基本工作原理 由于传感器内部机电变换原理的不同,输出的电量也各不相同。有的是将机械量的变化变换为电动势、电荷的变化,有的是将机械振动量的变化变换为电阻、电感等参量的变化。因此,振动传感器的类型按机电变换原理可分为: 1)电动式 2)压电式 3)电涡流式 4)电感式 5)电容式

(完整word版)声音传感器的原理

声音传感器 1简介 声音传感器又可称之为声敏传感器,它是一种在气体液体或固体中传播的机械振动转换成电信号的器件或装置。它采用接触或非接触的方式检测信号。声敏传感器的种类很多,按测量原理可分为压电、电致伸缩效应、电磁感应、静电效应和磁致伸缩等等。本次作业我想就电容式声敏传感器中的一种也就是电容式驻极体话筒做个简单的介绍。 2组成 该传感器是内置一个对声音敏感的电容式驻极体话筒。驻极体话筒主要由两部分组成——声电转换部分和阻抗部分。声电转换的关键元件是驻极体振动膜。它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜。然后再经过高压电场驻极后,两面分别驻有异性电荷。膜片的蒸金面向外,与金属外壳相连通。膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开。这样,蒸金膜与金属极板之间就形成一个电容。当驻极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。驻极体膜片与金属极板之间的电容量比较小。因而它的输出阻抗值很高,约几十兆欧以上。这样高的阻抗是不能直接与音频放大器相匹配的。所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换。场效应管的特点是输入阻抗极高、噪声系数低。普通场效应管有源极(S)、栅极(G)和漏极(D)三个极。这里使用的是在内部源极和栅极间再复合一只二极管

的专用场效应管。接二极管的目的是在场效应管受强信号冲击时起保护作用。场效应管的栅极接金属极板。这样,驻极体话筒的输出线便有两根。即源极S,一般用蓝色塑线,漏极D,一般用红色塑料线和连接金属外壳的编织屏蔽线。 3原理 该传感器内置一个对声音敏感的电容式驻极体话筒。声波使话筒内的驻极体薄膜振动,导致电容的变化,而产生与之对应变化的微小电压。这一电压随后被转化成0-5V的电压,经过A/D转换被数据采集器接受,并传送给计算机。 4型号及其技术指标 BR-ZS1声音传感器是一款工业标准输出(4~20mA)的积分噪声监测仪,符合GB3785、GB/T17181等噪声监测标准,BR-ZS1声音传感器针对噪声测试需求而设计,支持现场噪声分贝值实时显示,兼容用户的监控系统,对噪声进行定点全天侯监测,可设置报警极限对环境噪声超标报警,该监测仪精度高、通用性强、性价比高成为其显著的特点。

振弦式传感器的工作原理及其特点

振弦式传感器的工作原理及其特点 1. 概述 振弦式传感器是目前国内外普遍重视和广泛应用的一种非电量电测的传感器。由于振弦传感器直接输出振弦的自振频率信号,因此,具有抗干扰能力强、受电参数影响小、零点飘移小、受温度影响小、性能稳定可靠、耐震动、寿命长等特点。与工程、科研中普遍应用的电阻应变计相比,有着突出的优越性: (1)振弦传感器有着独特的机械结构形式并以振弦频率的变化量来表征受力的大小,因此具有长期零点稳定的性能,这是电阻应变计所无法比拟的。在长期、静态测试传感器的选择中,振弦传感器已成为取代电阻应变计、而广泛应用于工程、科研的长期原观的测试手段。(2)随着电子、微机技术的发展,从实现测试微机化、智能化的先进测试要求来看,由于振弦传感器能直接以频率信号输出,因此,较电阻应变计模拟量输出能更为简单方便地进行数据采集、传输、处理和存储,实现高精度的自动测试。 为此,振弦传感器得到了迅速的发展和应用。在国外,德国的MAlHAK、法国的TELEMAL、美国的SINCO和FOXBORO、英国的SCHLUBERGER及挪威等多家公司,都有振弦传感器的系列产品。国内从60年代起,先后研制开发了适合各种测试目的的多种振弦传感器的系列产品,如振弦式压力计、土压力计、空隙水压力计、应变计、测力(应力)计、钢筋计、扭力计、位移计、反力计、吊重负荷计、倾斜计等等。它们广泛应用于港口工程、土木建筑、道路桥梁、矿山冶金、机械船舶、水库大坝、地基基础等测试,已成为工程、科研中一种不可缺少的测试手段,显示出了其广阔应用和发展的前景。 2. 工作原理 振弦式传感器由受力弹性形变外壳(或膜片)、钢弦、紧固夹头、激振和接收线圈等组成。钢弦自振频率与张紧力的大小有关,在振弦几何尺寸确定之后,振弦振动频率的变化量,即可表征受力的大小。 现以双线圈连续等幅振动的激振方式,来表述振弦式传感器的工作原理。如图l所示,工作时开启电源,线圈带电激励钢弦振动,钢弦振动后在磁场中切割磁力线,所产生的感应电势由接收线圈送入放大器放大输出,同时将输出信号的一部分反馈到激励线圈,保持钢弦的振动,这样不断地反馈循环,加上电路的稳幅措施,使钢弦达到电路所保持的等幅、连续的振动,然后输出的与钢弦张力有关的频率信号。 振弦这种等幅连续振动的工作状态,符合柔软无阻尼微振动的条件,振弦的振动频率可由下式确定; 式中,f 0 ——初始频率; L——钢弦的有效长度i p一-钢弦材料密度; σ o ——钢弦上的初始应力。 由于钢弦的质量m、长度L、截面积S、弹性模量E可视为常数,因此,钢弦的应力与输出频率f 0 建立了相应的关系。当外力F未施加时,则钢弦按初始应力作稳幅振动,输出初频f 0 ;当施加外力(即被测力——应力或压力)时,则形变壳体(或膜片)发生相应的拉伸或压缩,使钢弦的应力增加或减少,这时初频也随之增加或减少。因此,只要测得振弦频率值f,即可得到相应被测的力——应力或压力值等。

相关文档
最新文档