储量参数与测井评价资料
测井方法原理-测井解释基础

充分得了解。循环后效、氯根变化等。
测井资料一次解释- 资料质量检查
1. 刻度检查。 2. 仪器刻度如秤的准星、尺的零点一样,是非常
关键的。 3. 深度控制。 4. 测井响应与邻井及录井图是否一致。 5. 标志层。 6. 曲线有无平头及突变。 7. 重复曲线与主曲线之间进行对比,测后校验是
SW =
1
/
(1Vsh Vsh
/
2)
Rt Rsh
m
a • RW
式中:a —— 岩性系数 m —— 胶结指数 Sw —— 含水饱和度,%; Vsh —— 泥质含量,%; Rsh —— 泥岩深探测电阻率,•m; Rt —— 目的层深探测电阻率,•m。 Rw —— 地层水电阻率,•m
Rw的求取
计算解释;
层界划分 以自然GR半幅点为主,参考Rt、CN、DEN等曲线的变化划分界面;
薄层划分以微电阻率曲线划分界面。
读值 依据岩性、含油性取其代表值或平均值; 各条曲线必须对应取值; 取值时应避开干扰。
自然GR法
泥质含量Vsh的确定
GR = GR GR min GR max GR min
Vsh = 2C*GR 1 2C 1
Rt
40% < Sw < 60% 油(气) +水
测井资料一次解释-渗透层的识别及特征
通常钻遇的渗透层是砂岩,其特征:
1. 自然电位曲线在钻井滤液矿化度低于地层水矿化度条 件下,砂岩层出现负异常;反之则为正异常。两者矿 化度接近,自然电位显示不明显或无异常显示。
2. 自然伽玛曲线对砂岩反映为低值,泥岩反映为高值。 砂岩的自然伽玛值越高,则泥质含量越大。
碳酸盐岩缝洞型储层测井评价方法

碳酸盐岩缝洞型储层测井评价方法田瀚;杨敏【摘要】由于缝洞型碳酸盐岩储层孔隙结构复杂,非均质性极强,使得碳酸盐岩缝洞型储层的识别和评价一直以来是测井分析的热点和难点。
文章从碳酸盐岩缝洞型储层的识别、储层参数计算、储层有效性评价以及储层流体识别等4个方面,较系统地介绍了碳酸盐岩缝洞型储层测井评价的方法技术。
在正确认识各种方法的技术要点及应用条件的基础上,综合利用测井技术,并结合地质、地震等相关手段,可以提高碳酸盐岩测井评价的效率和准确性。
%Fractured⁃vuggy carbonate reservoir has complex pore structures and strong heterogeneity,and the identification and evalua⁃tion of this kind of reservoirs have become hot and difficult issues in log analysis.This paper systematically describes logging evaluation methods and techniques for fractured⁃vuggy carbonate reservoirs on the basis of the following 4 aspects:reservoir type identification, res⁃ervoir parameters calculation,reservoir effectiveness evaluation,and reservoir fluid property discrimination.On the basis of the correct understanding of various technical points and application conditions,comprehensive utilized of logging technology, and combined with the related means,such as geological,seismic,et al,the efficiency and accuracy of the logging evaluation of carbonate rocks can be im⁃proved.【期刊名称】《物探与化探》【年(卷),期】2015(000)003【总页数】8页(P545-552)【关键词】碳酸盐岩缝洞型储层;储层识别;参数计算;流体识别;有效性评价【作者】田瀚;杨敏【作者单位】中国石油勘探开发研究院,北京100083;中国石油勘探开发研究院,北京 100083【正文语种】中文【中图分类】P631.4随着碳酸盐岩油气藏的陆续发现,碳酸盐岩储层测井评价变得越来越重要。
第五章 压力测井及资料分析

2 3
2.3 HP石英晶体压力计
(1)仪器结构(见下图) (2)仪器标定 步骤: 1.采集连续的压力数据; 2.是有计算机处理这些数据
石英压力计测井图 HP石英晶体压力计
第三节 试井与压力资料的应用
(4)DST恢复期资料分析方法
Corபைடு நூலகம்ea等人1987年提出了以下DST恢复方法:
mc 9 . 21 10 Kh
1
f
3
式中:
a 0 、b 0 、c 0 为参考温度为时的一、二、三级频率温度系数。
(2)特性分析4
(4)频率的稳定性
造成频率不稳定的因素 : 振子表面加精度不够,表面抛光误差较大; 质量吸附效应的影响; 应力弛豫效应的影响; 温度变化的影响。
为了得到较高的、一致的精度,应该定期标定石英晶 体压力计,标定分以下三个步骤: ⑴ 温度标定系数 ⑵ 压力标定系数 ⑶ 压力确定
(lg
K
C r
2 t w
0 .9077 0 . 8686 S )]
(3)由压降曲线或压力恢复曲线求参数
若画出压力降落曲线(
或压力恢复曲线(
Pwf — lg t
t P t t
曲线,称为MDH曲线);
曲线,称为Horner曲线);
Pws — lg
或 t P t max 在时,画出 P — lg t 曲线(称为MDH曲线),并量 出其直线段的斜率,就可以算出:
127 . 2 1 . 25
0 . 492
0 . 685
m 2 m
mPa S
煤层储量计算

第二节 储量计算基本参数的确 定
(2)倾角大于60°时,可将立面投影图上测得的面积换算 成斜面积,
S=S1╳(1/sinα) 式为:S——斜面积,
S1——水平投影面积, α——煤层倾角.
第22页/共44页
第二节 储量计算基本参数的确定
三、煤层厚度的确定 1. 可采厚度的确定 煤层厚度是指煤层顶板至底板间的垂直距离.煤层可采 厚度是指具有工业开采价值的煤层或煤分层厚度。在可 采厚度中,对于有夹矸的煤层的采用厚度,其确定方法 如下: (1) 煤层中夹矸的单层厚度不大于0.05m时,计算煤 层采用厚度时,夹矸与煤分层可合并计算,但合并后全 层的灰分或发热量指标应符合要求。
(4) 对于复杂结构煤层,当各煤分层的总厚度等于或大于所 规定的最低可采厚度,同时夹矸的总厚度不超过煤分层总厚度 的1/2时,可以各煤分层的总厚度作为煤层的采用厚度(C)。
1.5 0.84 1.05
A
0.9 0.2
2.2
B
第24页/共44页
0.85 0.15 0.5 0.25 0.7 0.15
0.9
Mcp=(M1+M2+…+Mn)/n M1,M2,… Mn —各钻孔的可采厚度, n—计算面积内的钻孔数目
第28页/共44页
第二节 储量计算基本参数的确定
3)加权平均厚度 每一个钻孔的见煤厚度,都 有一个影响范围,这称为权。将每一个钻孔见煤 厚度乘上权数后相加,再除以权的总和,称为加 权平均厚度。其计算公式如下i ’ . Mx=(M1F1+M2F2+…+MnF)/(F1+F2+…+Fn)
第3页/共44页
第二节 储量/资源量的估算指标与参数
测井系统基本知识讲解

(4) 井壁取心。井壁取心作业能按照测井结果准确地从井壁取出岩心,用以 分析地层岩性及含油性,验证解释结果,弥补钻井取心的不足。
一、测井基本概念
岩石物理参 数或井眼工
程参数
合理抽象后的
测
地质和工程实 际问题
物理模型
(物性参数空间分布)
井
主
演
研
正演
究 对
激励源
形成的物理场
(物性参数物理意义)
过程
象
:
测
传感器
井
信
息
原始测井信息
(处理和采集后的
电信号)
介质物性参数 空间分布
一、测井基本概念
岩石物理参 数或井眼工
程参数
激励源
推到出物理场
一、测井基本概念
传感器
物理场的测量都是通过传感器将物理场强转换成电信号进 行测量的。常用传感器有电磁测井中的电极或线圈系,声测 井中的压电晶体换能器,核测井中的碘化钠晶体和光电倍增 管组合而成的伽马射线探测器等。 1)具有较大的动态范围和足够高的灵敏度。
2)有足够的空间或方向分辨能力。 3)有足够的时间分辨能力。 4)响应函数尽量简单。 5)能够在恶劣环境条件下稳定可靠地工作。
度浅
(导电性,电化学)
成像测井系列 (电、声、核磁)
生产测井系列 (产出、注入剖面、工程测井、
产层评价测井、剩余油监测)
射孔取心及特殊工艺系列
深电阻率测井 中电阻率测井 浅电阻率测井
油井储层综合评价与新方法测井解释

油井储层综合评价与新方法测井解释摘要:油井勘探目的,是为该区的地震、地质等基础调查求取有关地层数据;为资源储量测算提供重要参考;为该区域下阶段石油勘查发展奠定基础。
油井先后已开展过四期全套测井,全部使用美国LOGIQ测井系统。
测井方面针对各种第一手数据开展了资料校正、数据分析、四性关系评价、储层综合判断、新数据分析等较完整的研究。
关键词:测井解释;四性关系;阵列感应;地层倾角引言:测井技术可以说是一种新的测井技术,它的关键在于确定测井信号与地质信息之间的关系,并通过合适的处理手段将其处理成地质信号。
结合大量的地质、钻井、开发等数据,对地层划分、油气层、矿物层等进行了详细的研究。
测井解释工作包括:评价产层性质、评价产液性质、评价储层性质、开展钻探和开发应用等。
一、测井解释的新方法(一)井周声波成像(CBIL)测井技术井周声波成像测井技术是利用旋转环能装置将高频率的脉冲声波辐射到目标地层,利用声波的反馈,对井口周围进行地质勘探,其频率为每秒6周,一般一周可达250个取样点。
通过传感器端接井周声波,通过内部处理器来记录和分析井周声波的强度和回波时间,并以此来完成井周地层的特征分析。
在实际应用中,通过对岩层的回波强度和回波时间的分析,可以得到岩性、物性、沉积结构等信息。
此外,还可以将反射波的传输时间转化为目标的距离,并将其以井周360度的方式呈现为黑白或彩色的影像。
通过图象显示的资料,可以更好的理解井底岩性和几何接触面的变化,进而对地层中的裂缝位置、地质结构等进行分析。
(二)核磁共振技术在没有其他磁场干扰的情况下,形成中的氢核是自旋相关的,并且具有随机的方向。
利用核磁共振技术,通过使用核磁共振记录装置来创造一个永久的磁场,形成中的氢核在应用磁场的方向上形成有规律的排列,这个过程称为氢核的极化。
如果这个应用磁场总是恒定的,那么在它上面添加一个垂直方向的射频场,同时调整射频场的频率以匹配氢核的谐振频率,就会产生核磁共振现象。
第四章 储量计算

是油田开发规模大小的物质基础 1、地质储量(N):特定地质构造中所聚集的油 气数量。 2、可采储量(NR):在目前技术经济条件下可 以采出来的地质储量。 类比法 3、采收率(R):可采储量/地质储量。 经验法
模拟法
4、静态地质储量:用静态地质参数计算的地 质储量。(容积法) 5、动态地质储量:用动态生产数据计算的地 质储量。
3).相渗透率曲线法 4).相关经验公式法* 5).水驱特征曲线法* 6).产量递减曲线法* (确定 Re 、 NR)
与储量质量、开 发水平和管理水 平有关
7).模糊综合分析法**
(2) 不同阶段计算Re 、 NR的方法
1)勘探评价阶段:统计法(相关经验公
式法)、类比法、岩心分析法、岩心模 拟试验法、分流量曲线法 2) 稳产阶段:物质平衡法、水驱特征曲线 法、数值模拟法 3) 递减阶段:水驱特征曲线法、产量递减 法(衰减曲线法)、水淹区内取心方法 (岩心分析)
oisiwcoisioisios22储量计算参数储量计算参数地质参数地质参数wcwc岩心分析岩心分析ososoioisisipvtpvt实验实验储量的分类与分级储量的分类与分级潜在资源量潜在资源量预测储量预测储量含油边界不确定含油边界不确定含油面积不确定含油面积不确定控制储量控制储量含油边界基本确定含油边界基本确定探明储量探明储量含油边界完全确定含油边界完全确定开发储量开发储量油藏情况完全掌握油藏情况完全掌握分为
该分流曲线采收率又可叫水平波及系数ER
4).估算体积波及系数Ev法: Craig(克雷格)近似体积波及系数计算公式
Vk—渗透率变异系数
最终采收率为:
Re=Ev ER
5).经验公式法:
是根据已经开发结束或接近开发结束油田的实际开发 指标,就其影响采收率的各项地质因素和开发因素, 进行多元回归分析,最后找出相关系数最大和标准差 最小的相关经验公式。
测井解释(重要)

按岩性可分为: 碳酸盐岩:主要岩石类型石灰岩、白云岩
储集层的分类及特点
特殊岩性:包括岩浆岩、变质岩、泥岩等 孔隙型
按储集空间结构:
裂缝型
洞穴型
孔隙度:总孔隙度、有效孔隙度、原生孔隙度、次生孔隙度
储集层的基本参数
饱和度:储集层的含油性指示,孔隙中油气所占孔隙的相对体积称含油饱和度。
岩层厚度:指岩层上下界面之距离,以岩性或孔隙度、渗透率的变化为其 特征。
80年代中期开始,由于计算机工业的发展,测井资料采集技术得到极大的提高, 先后问世的CSU、CLS3700、MAX-500等测井系统使测井系列得到极大丰富,测井资 料解释摆脱手工定性解释阶段,开始进入应用计算机的半定量解释阶段。解释评价软 件有:POR、SAND、CRA等,各油田还根据自己的的特点研制开发了自动判别油气 水层程序等多种应用软件,可以定量计算孔、渗、饱、泥质含量、可动油饱和度、束 缚水饱和度等参数,还可以通过地倾角测井,解释地层倾向、倾角、断层等构造问题, 研究沉积相变化等 第三阶段:定量解释和多井评价阶段 从90年代末发展起来的成像测井技术,为测井资料解释展现了广阔平台,现代的
第二部分 测井综合解释评价
测井资料解释技术发展史
第一阶段:60-80年代裸眼井测井系列是横向测井和 声-感测井定性解释阶段
当时用手工方法根据横向测井地层电阻率特征,结合自然电位、井径曲线划分 储层,在根据微梯度与微电位曲线之间的差异,自然电位幅度大小所反映的储 层渗透性的好坏,对储层进行评价,结合录井的岩屑、井壁取芯、钻井取芯的 显示定性判别储层油、气、水性质。 通过区域一些井的试油、试采结果,统计电性与含油性的关系,如:制作 地层真电阻率与纯水层电阻率交会图版;地层真电阻率与自然电位相对值的图 版等,对应用电阻率进行储层油、气、水性质判别起到较大作用。