高等数学(本科)第七章课后习题集解答

高等数学(本科)第七章课后习题集解答
高等数学(本科)第七章课后习题集解答

习题7.1

1.在空间直角坐标系中,指出下列各点位置的特点.

()0,5,0-A ;()0,3,3-B ;()3,0,6-C ;()0,0,4D ;()7,5,0-E ;()9,0,0F .

【解】A 点在y 轴上;B 点在xoy 坐标面上;C 点在zox 坐标面上;D 点在x 轴上;E 点在yoz 坐标面上;F 点在z 轴上. 2.指出下列各点所在的卦限.

()1,3,2-A ;()2,1,7--B ;()1,3,2---C ;()3,2,1--D .

【解】A 点在第五卦限;B 点在第三卦限;C 点在第七卦限;D 点在第六卦限. 3.自点()2,3,1--M 分别作xoy 、yoz 、zox 坐标面和x 、y 、z 坐标轴的垂线,写出各垂足的坐标,并求出点M 到上述坐标面和坐标轴的距离.

【解】()2,3,1--M 在xoy 坐标面上的垂足为()0,3,1-、在yoz 坐标面上的垂足为

()2,3,0-、在zox 坐标面上的垂足为()2,0,1--;

()2,3,1--M 在x 轴的垂足为()0,0,1-、在y 轴的垂足为()0,3,0、在z 轴的垂

足为()2,0,0-;

()2,3,1--M 到x 轴的距离为()13232

2=-+;

()2,3,1--M 到y 轴的距离为()()52122=-+-;

()2,3,1--M 到z 轴的距离为

()10312

2=+-.

3.已经点()2,1,3--M .求:(1)点M 关于各坐标面对称点的坐标;(2)点M 关于各坐标轴对称点的坐标;(3)点M 关于坐标原点的对称点的坐标. 【解】(1)()2,1,3--M 关于xoy 面对称点的坐标是(),2,1,3-; ()2,1,3--M 关于yoz 面对称点的坐标是(),2,1,3---;

()2,1,3--M 关于zox 面对称点的坐标是(),2,1,3-.

(2)()2,1,3--M 关于x 轴对称点的坐标是(),2,1,3; ()2,1,3--M 关于y 轴对称点的坐标是(),2,1,3--;

()2,1,3--M 关于z 轴对称点的坐标是(),2,1,3--.

(3)()2,1,3--M 关于坐标原点的对称点的坐标是(),2,1,3-. 5.求点()5,3,4-A 到坐标原点和各坐标轴的距离.

【解】 ()5,3,4-A 到坐标原点距离为()2553422

2=+-+;

()5,3,4-A 到x 轴的距离为()34532

2=+-;

()5,3,4-A 到y 轴的距离为415422=+;

()5,3,4-A 到z 轴的距离为()5342

2=-+.

6.在y 轴上求与点()7,2,3-A 和()7,1,3-B 等距离的点. 【解】设所求点为()0,,0y C .据题意,有 BC AC =,即

()()()()=

-+-+--2

2270230y ()()()()22270130--+-+-y

解得 23=

y .所以,所求之点为.0,23,0??

? ??C 7.已知三角形ABC 的顶点坐标分别为()3,2,1A 、()3,10,7B 和()1,3,1-C ,试证明 ∠BAC 为钝角. 【解】AB 边长()()()1033210172

22=-+-+-==AB c ;

AC 边长()()()()33123112

22=-+-+--=b ; BC 边长()()()()11731103712

22=-+-+--=a .

由余弦定理知 cos ∠BAC ()

010

32117

10322

2

2222

-+=

bc a c b ,

所以,∠BAC 为钝角.

8.试在xoy 面上求一点,使它到()5,1,1-A 、()4,4,3B 和()1,6,4C 各点的距离相等. 【解】设所求点为()0,,y x D .据题意,有 CD BD AD ==,即

()()()()=

-+--+-2

225011y x ()()()222443-+-+-z y x

()()()222164-+-+-=

z y x

解得 5,16-==y x .所以,所求之点为().0,5,16-D

习题7.2

1.设平行四边形ABCD 的对角线向量b BD a AC ==,,试用a ,b 表示

,,,.

【解】记平行四边形ABCD 的对角线的交点为O .

()

b a b a BD AC OD OC DC AB -=-=-=

-==2

1

21212121; 同理可求出,()

b a a b OC BO BC +=+=+=21

2121;

()a b AB CD -=-=21

()

b a BC DA +-=-=2

1

.

2.已知向量n m a 23-=,n m a +=.试用向量n m ,表示b a 32-. 【解】b a 32-()()

n m n m n m 733232-=+--=.

3.设c b a u 2-+=,c b a v +--=3.试用向量c b a ,,表示v u 32-. 【解】v u 32-()()

c b a c b a c b a 71153322-+=+----+=. 4.设ABCDEF 是一个正六边形,AF b AB a ==,,试用a ,b 表示

,,,.

【解】记六边形ABCDEF 的对角线的交点为O .则四边形ABOF 、CDEO 、DEFO

及ABCO 均为平行四边形.由向量加法的平行四边形法则知,

+=+==; ==;

-=-===;

()

.+-=-=

5.设向量k a j a i a a z y x ++=,,若它满足下列条件之一:

(1)a 垂直于z 轴;(2)a 垂直于xoy 面;(3)a 平行于yoz 面.那么它的坐标有什么有何特征? 【解】

(1)因为a 垂直于z 轴,故0.=k a ,即0=z a ;

(2)因为a 垂直于xoy 面,故a 平行于z 轴,从而a ∥{}1,0,0=k ,所以,

0==y x a a . (3)a 平行于yoz 面,故垂直于x 轴,从而.a 0=i ,所以,0=x a . 6.已知向量{}7,4,4-=AB ,它的终点坐标为()7,1,2-B ,求它的起点坐标. 【解】设起点()z y x A ,,,则{}z y x AB ----=7,1,2,根据已知条件,有

77,41,42=--=--=-z y x ,解得 .0,3,2==-=z y x 所以,起点坐标为 ()0,3,2-A .

7.已知向量{}1,1,6-=a ,{}0,2,1=b .求 (1)向量b a c 2-=; (2)向量c 的方向余弦; (3)向量c 的单位向量. 【解】

(1)c {}{

}{}{}{}{}1,3,401,41,260,4,21,1,60,2,121,1,6--=----=--=--=.

(2()()261342

2

2=-+-+=.故,

??????--==

261,263,2640c ,

所以,向量c 的方向余弦为.261cos ,26

3cos ,26

4cos -

=-

==

γβα

(3).向量c 的单位向量为???

???--±261,263,26

4.

8.试确定m 和n 的值,使向量k n j i a ++-=32和k j i m b 26+-=平行. 【解】因为a ∥b ,所以

2

632n

m =-=-,解得 .1,4-==n m

9.已知向量{}12,9,8-=b 及点()7,1,2-=A ,由点A 作向量AM 34=, 且AM 与b 的方向相同.求向量AM 的坐标表达式及点M 的坐标.

【解】设()z y x M ,,,则{}7,1,2-+-=z y x AM .据题意知AM ∥b 且与b 同向,因此有

λ=--=+=-12

7

9182z y x ,① 且 0>λ. ② 由①式得 λλλ127,91,82=-++=-z y x .

又已知 34=,故有 ()()()3412982

22=++λλλ. ③

③式化简得

4115628922=?=λλ,

解得 2=λ或2-=λ(舍).所以,.17,17,18-===z y x

因此AM {

}24,18,16-=,()17,17,18-=M .

10.已知点()4,2,1--A 和点()z B ,2,6-9=,求z 的值.

【解】()(){}{}4,4,74,22,16+-=------=z z AB .9=,得

()()94472

2

2=++-+z ,化简得

082=+z z ,解之,得 0=z 或.8-=z

11.已知点()1,2,41M和点()2,0,32M,计算向量21M M的模、方向余弦和方向角.

【解】{}{}1,2,1

1

2,2

0,4

3

2

1-

-

=

-

-

-

=

M

M;

()()2

1

2

12

2

2=

+

-

+

-

=.

因为{}

?

?

?

?

?

?

-

-

=

-

-

=

=

2

1

,

2

2

,

2

1

1,2

,1

2

1

2

1

2

1

M

M

M

M.

所以

2

1

M

M的方向余弦是.

2

1

cos

,

2

2

cos

,

2

1

cos=

-

=

-

β

α

方向角为.

3

cos

,

4

3

,

3

γ

π

β

π

α=

=

=

12.求与下列向量a同方向的单位向量0a.

(1){}1,4,2-

=

a;(2)k

j

i

a+

+

-

=3

2.

【解】

(1()21

1

4

22

2

2

=

+

-

+

=,所以

{}

?

?

?

?

?

?

-

=

-

=

=

21

1

,

21

4

,

21

2

1,4

,2

21

1

a.

(2()14

1

3

22

2

2

=

+

+

-

=,所以

.

14

1

,

14

3

,

14

2

14

1

?

?

?

?

?

?

-

=

=

a

习题7.3

1.设向量k

j

i

a2

3-

-

=,k

j

i

b-

+

=2.求:

(1)b a.;(2)b

a?;(3)()()b

a3

2?

-;(4)()b

a2

?;(5)向量b

a,的夹角. 【解】

(1)()()()3

1

2

2

1

1

3

.=

-

?

-

+

?

-

+

?

=

b

a;

(2)k

j

i7

5

2

1+

+

=

-

=

?;

(3)()()()

1836.63.2-=?-=-=-b a b a ;

(4)()()k j i b a b a 1421022++=?=?;

(5)

()()142132

2

2=-

+-+=()61212

22=-++=,故

2123

6143,cos =?==???? ??∧b a ,所以向量b a ,的夹角为

.2123

arccos ,=???

? ??∧b a

2.设向量a ,b ,c 为单位向量,且满足0=++c b a ①.求:a c c b b a ...++. 【解】由①式得

()0.=++c b a a ;

()0.=++c b a b ; ()0.=++c b a c .

0..=++; ②

0..=+c b a b ; ③

0..=++b c a c ; ④ 将②、③、④相加得

()

03...2=+++a c c b b a

所以,.2

3

...-=++

3.已知点()2,1,1-A ,()2,6,5-B ,()1,3,1-C 求: (1)同时与AB 及AC 垂直的单位向量; (2)ABC ?的面积. 【解】

微积分课后题答案第九章习题详解

第9章 习题9-1 1. 判定下列级数的收敛性: (1) 11 5n n a ∞ =?∑(a >0); (2) ∑∞ =-+1 )1(n n n ; (3) ∑∞ =+13 1 n n ; (4) ∑∞ =-+12)1(2n n n ; (5) ∑∞ =+11ln n n n ; (6) ∑∞ =-12)1(n n ; (7) ∑∞ =+11 n n n ; (8) 0(1)21n n n n ∞ =-?+∑. 解:(1)该级数为等比级数,公比为 1a ,且0a >,故当1 ||1a <,即1a >时,级数收敛,当1 | |1a ≥即01a <≤时,级数发散. (2) Q n S =+++L 1= lim n n S →∞ =∞ ∴ 1 n ∞ =∑发散. (3)113 n n ∞ =+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11 n n ∞ =∑发散,故原 级数 11 3 n n ∞ =+∑发散. (4)Q 1112(1)1(1)22 2n n n n n n n ∞ ∞-==?? +--=+ ???∑∑ 而11 12n n ∞ -=∑,1(1)2m n n ∞ =-∑是公比分别为1 2的收敛的等比级数,所以由数项级数的基本性质

知111(1)2 2n n n n ∞ -=??-+ ???∑收敛,即原级数收敛. (5)Q ln ln ln(1)1 n n n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞ =-∞,所以级数 1 ln 1 n n n ∞ =+∑发散. (6)Q 2210,2n n S S +==- ∴ lim n n S →∞ 不存在,从而级数 1 (1) 2n n ∞ =-∑发散. (7)Q 1 lim lim 10n n n n U n →∞ →∞+==≠ ∴ 级数 1 1 n n n ∞ =+∑发散. (8)Q (1)(1)1 , lim 21212 n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1 (1)21n n n n ∞ =-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和: (1) ∑∞ =??? ??+13121n n n ; (2) ※ ∑∞ =++1)2)(1(1n n n n ; (3) ∑∞ =?1 2sin n n n π ; (4) 0πcos 2n n ∞ =∑. 解:Q (1)1111, 23n n n n ∞ ∞==∑∑都收敛,且其和分别为1和12,则1112 3n n n ∞ =?? + ???∑收敛,且其 和为1+ 12=3 2 . (2)Q 11121(1)(2)212n n n n n n ?? =-+ ?++++??

郑州大学高等数学下课后习题答案解析

习题7.7 3.指出下列方程所表示的曲线. (1)???==++;3, 25222x z y x (2)???==++;1,3694222y z y x (3)???-==+-;3, 254222x z y x (4)???==+-+.4,08422y x z y 【解】 (1)表示平面3=x 上的圆周曲线1622=+z y ; (2)表示平面1=y 上的椭圆19 32322 2=+z x ; (3)表示平面3-=x 上的双曲线14 162 2=-y z ; (4)表示平面4=y 上的抛物线642-=x z . 4.求() () ?????=++=++Γ2, 21, :2 22 2 222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 2224 3R y x = + 所以,Γ在xoy 面上的投影曲线为 ?????==+.0, 4 322 2z R y x (二)(1)、(2)联立消去y 得 R z 2 1 = 所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤ ?? ? ??==

(三)(1)、(2)联立消去x 得 R z 21 = 所以,Γ在yoz 面上的投影曲线为 .23.0, 21R y x R z ≤ ????? == 6.求由球面224y x z --= ①和锥面() 223y x z += ②所围成的立体在xoy 面上的投影区域. 【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为 ? ??==+.0, 122z y x 所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 习题7.8 2.设空间曲线C 的向量函数为(){} t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与 20=t 相应的点处的单位切向量. 【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为 (){}2,4,42='r . C 相应20=t 的点处的单位切向量为 (){}.31,32,322,4,4612? ?????±=± =' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为

高等数学试题及答案新编

《 高等数学》 一.选择题 1.当0→x 时,)1ln(x y +=与下列那个函数不是等价的() A)、x y =B)、x y sin =C)、x y cos 1-=D)、1-=x e y 2.函数f(x)在点x 0极限存在是函数在该点连续的() A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3.下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有(). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、 (( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4.下列各式正确的是() A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+?D )、2 11 ()dx C x x -=-+? 5.下列等式不正确的是(). A )、 ()()x f dx x f dx d b a =???????B )、()()()[]()x b x b f dt x f dx d x b a '=???? ??? C )、()()x f dx x f dx d x a =???????D )、()()x F dt t F dx d x a '=???? ??'? 6.0 ln(1)lim x x t dt x →+=?() A )、0 B )、1 C )、2 D )、4 7.设bx x f sin )(=,则=''?dx x f x )(()

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式. 解 A ?B =(-∞, 3)?(5, +∞), A ? B =[-10, -5), A \ B =(-∞, -10)?(5, +∞), A \(A \B )=[-10, -5). 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C . 证明 因为 x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f (A ?B )=f (A )?f (B ); (2)f (A ?B )?f (A )?f (B ). 证明 因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ? y ∈f (A )?f (B ), 所以 f (A ?B )=f (A )?f (B ). (2)因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )? y ∈ f (A )?f (B ), 所以 f (A ?B )?f (A )?f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、 I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中

高等数学试题及答案91398

《高等数学》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

高等数学课后习题及解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

高等数学上复旦第三版 课后习题答案

283 高等数学上(修订版)(复旦出版社) 习题六 无穷数级 答案详解 1.写出下列级数的一般项: (1)111135 7 ++++ ; (2)2 2242462468x x x x x ++++?????? ; (3)3579 3579 a a a a -+-+ ; 解:(1)1 21 n U n =-; (2)()2 !! 2n n x U n = ; (3)() 21 1 121 n n n a U n ++=-+; 2.求下列级数的和: (1)()()() 11 11n x n x n x n ∞ =+-+++∑ ; (2) ( )1 221n n n n ∞ =+-++∑; (3)23 111 5 55+ ++ ; 解:(1)()()() ()()()()1 11111211n u x n x n x n x n x n x n x n = +-+++?? -= ?+-++++??

284 从而()()()()()()() ()()()()()()()1111 1211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ?-+-= +++++++?? ++ - ?+-++++? ?? -= ?++++?? 因此() 1lim 21n n S x x →∞ =+,故级数的和为 () 121x x + (2)因为()()211n U n n n n =-+-++- 从而()()()() ()()()()3243322154432112112 1 12 21 n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++ 所以lim 12n n S →∞ =-,即级数的和为12-. (3)因为2111 5551115511511145n n n n S =+ ++????-?? ???? ?=-????=-?? ????? 从而1lim 4 n n S →∞ =,即级数的和为14 . 3.判定下列级数的敛散性: (1) ( )1 1n n n ∞ =+-∑; (2) ()() 11111661111165451n n +++++???-+ ; (3) ()23133222213333 n n n --+-++- ;

高等数学上考试试题及答案

四川理工学院试卷(2007至2008学年第一学期) 课程名称: 高等数学(上)(A 卷) 命题教师: 杨 勇 适用班级: 理工科本科 考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项: 1、 满分100分。要求卷面整洁、字迹工整、无错别字。 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否 则视为废卷。 3、 考生必须在签到单上签到,若出现遗漏,后果自负。 4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷 分别一同交回,否则不给分。 试 题 一、单选题(请将正确的答案填在对应括号内,每题3分,共15分) 1. =--→1 ) 1sin(lim 21x x x ( C ) (A) 1; (B) 0; (C) 2; (D) 2 1 2.若)(x f 的一个原函数为)(x F ,则dx e f e x x )(? --为( B ) (A) c e F x +)(; (B) c e F x +--)(; (C) c e F x +-)(; (D ) c x e F x +-) ( 3.下列广义积分中 ( D )是收敛的. (A) ? +∞ ∞ -xdx sin ; (B)dx x ? -111 ; (C) dx x x ?+∞ ∞-+2 1; (D)?∞-0dx e x 。 4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( B )

(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导; (C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则? x a dt t f )(在[]b a ,上一定可导。 5. 设函数=)(x f n n x x 211lim ++∞→ ,则下列结论正确的为( D ) (A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x 二、填空题(请将正确的结果填在横线上.每题3分,共18分) 1. 极限=-+→x x x 1 1lim 20 _0____. 2. 曲线? ??=+=3 2 1t y t x 在2=t 处的切线方程为______. 3. 已知方程x xe y y y 265=+'-''的一个特解为x e x x 22 )2(2 1+- ,则该方程的通解为 . 4. 设)(x f 在2=x 处连续,且22 ) (lim 2=-→x x f x ,则_____)2(='f 5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。 6.曲线23 3 2 x y =上相应于x 从3到8的一段弧长为 . 三、设0→x 时,)(22 c bx ax e x ++-是比2 x 高阶的无穷小,求常数c b a ,,的值(6分)

高等数学试卷和答案新编

高等数学(下)模拟试卷一 一、填空题(每空3分,共15分) (1)函数 11z x y x y =+ +-的定义域为 (2)已知函数 arctan y z x =,则z x ?= ? (3)交换积分次序, 2 220 (,)y y dy f x y dx ? ? = (4)已知L 是连接(0,1),(1,0)两点的直线段,则 ()L x y ds +=? (5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分) (1)设直线L 为321021030x y z x y z +++=?? --+=?,平面π为4220x y z -+-=,则() A.L 平行于πB.L 在π上C.L 垂直于πD.L 与π斜交 (2)设是由方程 222 2xyz x y z +++=确定,则在点(1,0,1)-处的dz =() dx dy +2dx dy +22dx dy +2dx dy -(3)已知Ω是由曲面222425()z x y =+及平面5 z =所围成的闭区域,将 2 2()x y dv Ω +???在柱面坐标系下化成三次积分为() 22 5 3 d r dr dz πθ? ??. 24 5 3 d r dr dz πθ? ?? 22 5 3 50 2r d r dr dz πθ? ??. 22 5 20 d r dr dz π θ? ?? (4)已知幂级数,则其收敛半径() 2112 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y * =() ()x ax b xe +()x ax b ce ++()x ax b cxe ++ 三、计算题(每题8分,共48分) 1、 求过直线1L :1231 01x y z ---==-且平行于直线2L :21211x y z +-==的平面方程 2、 已知 22 (,)z f xy x y =,求z x ??,z y ?? 3、 设 22{(,)4}D x y x y =+≤,利用极坐标求 2 D x dxdy ?? 4、 求函数 22 (,)(2)x f x y e x y y =++的极值 得分 阅卷人

微积分课后题答案习题详解

微积分课后题答案习题 详解 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则lim n →∞ ∣x n ∣=|a|.考察数列x n =(-1)n ,说明 上述结论反之不成立. 证: 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-< 由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞ =, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞ 2 22111(1) (2)n n n ??+++ ?+?? =0; (2) lim n →∞2!n n =0. 证:(1)因为 222 222111 112(1)(2)n n n n n n n n n n ++≤+++ ≤≤=+ 而且 21lim 0n n →∞=, 2lim 0n n →∞=, 所以由夹逼定理,得 22211 1lim 0(1)(2)n n n n →∞?? +++ = ?+? ? . (2)因为22222240!123 1n n n n n < =<-,而且4 lim 0n n →∞=,

(完整版)高等数学试题及答案

《高等数学》试题30 考试日期:2004年7月14日 星期三 考试时间:120 分钟 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、 ()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

大学《高等数学A》课后复习题及解析答案

大学数学A (1)课后复习题 第一章 一、选择题 1.下列各组函数中相等的是. …….. ……..…………………………………………………………………………………….( ) A .2 ln )(,ln 2)(x x g x x f == B .0 )(,1)(x x g x f == C .1)(,11)(2-=-?+= x x g x x x f D .2)(|,|)(x x g x x f == 2.下列函数中为奇函数的是. ……. …….. …………………………………………………………………………………….( ). A .)1ln()(2++=x x x f B .| |)(x e x f = C .x x f cos )(= D .1 sin )1()(2--= x x x x f 3.极限??? ? ?+++∞→22221lim n n n n n 的值为………………………………………………………………………..…….( ) A .0 B .1 C .2 1 D .∞ 4.极限x x x x sin lim +∞→的值为.. …….. ……..……………………………………………………………………………...…….( ) A .0 B .1 C .2 D .∞ 5.当0→x 时,下列各项中与 2 3 x 为等价无穷小的是…………………………………………………….( ) A .)1(3-x e x B .x cos 1- C .x x sin tan - D .)1ln(x + 6.设12)(-=x x f ,则当0→x 时,有…………………………………………………………………………..…….( ). A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非等价无穷小 C .)(x f 是比x 高阶的无穷小 D .)(x f 是比x 低阶的无穷小 7.函数)(x f 在点x 0可导是)(x f 在点x 0连续的____________条件. ………...………………....…..( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 8.设函数?? ? ??<≤--<≤≤≤-=01,110, 21,2)(2x x x x x x x f ,则下述结论正确的是……………………………………….( )

高等数学下-复旦大学出版-习题十答案详解

习题十 1. 根据二重积分性质,比较 ln()d D x y σ+?? 与2[ln()]d D x y σ+??的大小,其中: (1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤. 解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有 图10-1 12x y ≤+≤ < 从而 0ln()1x y ≤+< 故有 2 ln()[ln()]x y x y +≥+ 所以 2ln()d [ln()]d D D x y x y σσ+≥+?? ?? (2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥. 图10-2 从而 ln(x +y )>1 故有 2 ln()[ln()]x y x y +<+ | 所以 2ln()d [ln()]d D D x y x y σσ +<+?? ?? 2. 根据二重积分性质,估计下列积分的值: (1)4d ,{(,)|02,02}I xy D x y x y σ=+=≤≤≤≤??; (2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ= =≤≤≤≤?? ;

解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤ 因而 04xy ≤≤. 从而 2≤≤》 故 2d D D σσσ≤≤?? ?? ?? 即2d d D D σσσ≤≤???? 而 d D σσ=?? (σ为区域D 的面积) ,由σ=4 得 8σ≤ ≤?? (2) 因为2 2 0sin 1,0sin 1x y ≤≤≤≤,从而 220sin sin 1x y ≤≤ 故 220d sin sin d 1d D D D x y σσσ≤≤?? ???? 即220sin sin d d D D x y σσσ≤ ≤=???? ~ 而2 πσ= 所以2220sin sin d πD x y σ≤ ≤?? (3)因为当(,)x y D ∈时,2 2 04x y ≤+≤所以 22229494()925x y x y ≤++≤++≤ 故 229d (49)d 25d D D D x y σσσ≤++≤?? ???? 即 229(49)d 25D x y σσσ≤ ++≤?? 而 2 π24πσ=?= 所以 2236π(49)d 100πD x y σ≤ ++≤?? … 3. 根据二重积分的几何意义,确定下列积分的值:

高数课后题答案及详解

2019年广西满分作文:毕业前的最后一堂课时光飞逝,白马过隙。2019高考如约而至,距离我的那年高考也已有二十岁的年份。烈日的阳光,斑驳的光影,仿佛又把我拉进了在宽窄巷子的学堂里最后冲刺的时光。 高中即将毕业,意味着每个人将为人生方向的开启选好时光的阀门,单纯的学历生涯即将告一段落。课堂上朗朗整齐的晨读和起立,行礼的流程将渐行远去。它是青春懵懂的里程,也是最为单纯的诗书礼仪,课桌黑板走廊都将记录这里每个人在经历人生的最后一课,无论是同学还是老师。 记得1999年炙热的炎夏,当年的二十八中还隐藏在老成都皇城宽窄巷子里面,距离高考还有一周,同学们已经不再像之前那样紧张忙碌的复习节奏,三三两两,甚至结伴到学校周围看看能不能捡到老皇城留下的一砖半瓦,为自己这里的高中学涯留点念想。 还记得是用过学校食堂的午餐,在最后一节考前动员课上完以后,大家就会各自回到家中,为最后到来的大考最最后的准备。课堂的气氛很是轻松,甚至我和我的同桌还在讨论中午学校食堂红椒肉丝的白糖是否搁多了,随着班主任走进教室,踏上讲台,一如既往地喊道:上课!接着就是值日生的“起立敬礼老师好”的三重奏,最后一节课的师生礼仪完毕后,班主任转身在黑板上用粉笔撰写了四个大字“勇往直前”,语重心长的寄语和感慨在此不表,大家彼此默契的拿出早已准备好的记事本开始彼此留言签名,数言珍语,寥寥几笔都赫然纸上。 人生最后一堂课,没有习题的讲解和紧张备考的威严氛围。三年同窗,彼此单纯的朝夕相处和课桌校园间的点滴生活早已让这个班级凝成了一片经脉。“聚是一团火,散是满天星,不求桃李满天下,只愿每人福满多。”班主任最后这句话至今印刻脑海。二十载已过,当时班主任的心境早已能够理解,也希望每年高考时,同学志愿看天下!

精品高数课后题答案及详解

高等数学习题及答案 一、填空题(每小题3分,共21分) 1.设b a by ax y x f ,,),(其中+=为常数,则=)),(,(y x f xy f .y b abx axy 2 ++ 2.函数2 2y x z +=在点)2,1(处,沿从点)2,1(到点)32,2(+的方向的 方向导数是 .321+ 3.设有向量场k xz j xy i y A ρρρρ++=2 ,则=A div ρ . x 2 4.二重积分??2 1 ),(x dy y x f dx 交换积分次序后为 .??1 1 ),(y dx y x f dy 5.幂级数∑∞ =-1 3)3(n n n n x 的收敛域为 . [0,6) 6.已知y x e z 2-=,而3 ,sin t y t x ==,则 =dt dz 3sin 22(cos 6)t t e t t -- 7.三重积分 =???Ω dv 3 , 其中Ω是由3,0,1,0,1,0======z z y y x x 所围成的立体. 二、计算题(一)(每小题7分,共21分) 1.设b a b a ρρρρ与,5,2==的夹角为π3 2 ,向量b a n b a m ρρρρρρ-=+=317与λ相互垂直,求λ. 解:由25173 2 cos 52)51(1217)51(3022?-???-+=-?-+=?=πλλλλb b a a n m ρρρρρρ 得.40=λ 2.求过点)1,2,1(-且与直线?? ?=--+=-+-0 4230 532z y x z y x 垂直的平面方程.

解:直线的方向向量为{}11,7,52 13132 =--=k j i s ρρρρ 取平面的法向量为s n ρ ρ=,则平面方程为0)1(11)2(7)1(5=++-+-z y x 即.081175=-++z y x 3.曲面32=xyz 上哪一点处的法线平行于向量}1,8,2{=S ρ ?并求出此法线方程. 解:设曲面在点),,(z y x M 处的法线平行于s ρ ,令32-=xyz F 则在点),,(z y x M 处曲面的法向量为.1 82,}.,,{},,{xy xz yz s n xy xz yz F F F n z y x ====故有 由于ρ ρρ由此解得 y z y x 8,4==,代入曲面方程,解得),,(z y x M 的坐标为)8,1,4(,用点向式即得所求法线 方程为1 8 8124-= -=-z y x 三、计算题(二)(每小题7分,共21分) 1.设)(x y xF xy z +=,其中)(u F 为可导函数,求.y z y x z x ??+?? 解: ),()(u F x y u F y x z '-+=?? )(u F x y z '+=?? xy z xF xy y z y x z x +=+=??+??2 2.将函数??? ? ??-=x e dx d x f x 1)(展成x 的幂级数,并求∑∞ =+1)!1(n n n 的和. 解:???++???++=--1! 1 !2111n x x n x x e

高等数学第四章不定积分课后习题详解

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) ? 思路: 被积函数5 2 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C --=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+??? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34 134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★ (9) 思路 =? 11172488x x ++==,直接积分。 解 :7 15888.15 x dx x C ==+?? ★★(10) 221(1)dx x x +? 思路:裂项分项积分。 解:222222111111()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)211 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ? 思路:初中数学中有同底数幂的乘法: 指数不变,底数相乘。显然33x x x e e = ()。

同济高等数学下册课后题答案详解

第8章第1节向量及其线性运算 习题8—1 11,12,15,17,18 第8章第2节数量积、向量积、混合积习题8—2 3,4,6,7,9,10 第8章第3节曲面及其方程 习题8—3 2,5,7,9, 10(1)(2)(3)(4) 第8章第4节空间曲线及其方程 习题8—4 3,4,7,8 第8章第5节平面及其方程 习题8—5 1,2,3,5,9 第8章第6节空间直线及其方程 习题8—6 1,2,3,4,5,8,9,10(1)(2),12, 13,15 第8章总复习题 总复习题八 1,7,8,10,11,12,13,14(1)(2), 15,17,19,20 第9章第1节多元函数基本概念 习题9—1 2,5(1)(2),6(1)(2)(4)(5),7(1),8

第9章第2节偏导数 习题9—2 1(3)(4)(5) (6)(7),4,6(2), 9(1) 第9章第3节全微分 习题9—3 1(1)(2)(4),2,3,5 第9章第4节多元复合函数的求导法则习题9—4 2,4,6,7,8(1)(2),10,11, 12(1)(4) 第9章第5节隐函数的求导公式 习题9—5 1,2,4,5,6,8,9,10(1)(3) 第9章第6节多元函数微分学的几何应用习题9—6 3,4,6,7,9,10,12 第9章第7节方向导数与梯度 习题9—7 2,3,5,7,8,10 第9章第8节多元函数的极值及其求法习题9—8 1,2,5,6,7,9,11 第9章第9节二元函数泰勒公式 习题9—9 1,3 第9章总复习题 总复习题九

1,2,3,5,6,8,9, 12,15,16,17,20 第10章第1节二重积分的概念与性质 习题10—1 2,4,5 第10章第2节二重积分的计算法 习题10—2 1(1)(3),2(3)(4),4(1)(3),6(4)(5)(6),7,89,12(1)(2)(3),14(1)(2),15(1)(2)(3),16 第10章第3节三重积分 习题10—3 1(1)(2),2,4,5,7,8,9(1)(2),10(1)(2),11(1) 第10章第4节重积分的应用 习题10—4 1,2,5,6,8,10,14 第10章总复习题 总复习题十 1,2(1) (3),3(1)(2) 6,8(1)(2),10,11,12 第11章第1节对弧长的曲线积分 习题11—1 1,3(3)(4)(5)(7),4 第11章第2节对坐标的曲线积分 习题11—2 3(1) (2)(3) (5) (6)(7), 4(1)(2)(3),7(1)(2),8 第11章第3节格林公式及其应用

相关文档
最新文档