海马与学习记忆的关系

合集下载

海马体的形态学变化与认知功能的关联

海马体的形态学变化与认知功能的关联

海马体的形态学变化与认知功能的关联海马体作为大脑中重要的区域之一,其形态学的变化与认知功能之间存在着密切的关联。

海马体的变化可能会影响多种认知功能,包括学习记忆、空间导航、情感调节等。

本文将探讨海马体的形态学变化与认知功能之间的关联以及可能的机制。

1. 海马体形态学变化对学习记忆的影响研究表明,海马体的体积与学习记忆能力之间存在正相关关系。

较大的海马体通常与更好的学习记忆功能相关联。

海马体的体积增加可能会增强学习时的信息编码和存储能力。

此外,海马体中神经元的增加和突触的改变也可能对学习记忆起到重要作用。

2. 海马体形态学变化对空间导航的影响海马体在空间导航过程中扮演着关键角色。

研究发现,海马体的形态学变化与空间导航的能力之间存在联系。

海马体的神经元活动在空间导航中编码了位置和方向信息。

而海马体的形态学变化可能会影响神经元的活动模式,从而影响空间导航的准确性和效率。

3. 海马体形态学变化对情感调节的影响除了学习记忆和空间导航外,海马体的形态学变化还可能与情感调节相关。

研究发现,海马体与情感相关的事件记忆存储密切相关。

而情感调节障碍在多种精神疾病中很常见,如焦虑和抑郁症。

因此,海马体的形态学变化可能与情感调节的功能异常相关。

4. 可能的机制海马体形态学变化与认知功能之间的关联可能涉及多种机制。

其中,神经可塑性是关键机制之一。

神经可塑性是指神经元和突触的结构和功能可根据输入和活动的改变而改变的能力。

海马体对于学习记忆等认知功能的支持正是通过神经可塑性来实现的。

此外,神经递质和神经生长因子等分子机制也在海马体形态学变化与认知功能之间扮演重要角色。

总结:海马体的形态学变化与认知功能的关联十分复杂而深入。

它们之间存在密切的关系,海马体的变化可能对学习记忆、空间导航和情感调节等认知功能产生影响。

进一步研究海马体形态学变化与认知功能的关系,有助于增加对大脑认知机制的理解,也为相关疾病的诊断和治疗提供理论基础。

参考文献:1. McHugh TJ, et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 2007.2. Small SA, et al. The structural basis for coding in hippocampal CA1 pyramidal neurons. Cell, 2004.3. Maguire EA, et al. London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus, 2006.4. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 2010.。

海马体与运动记忆运动技能学习的神经基础

海马体与运动记忆运动技能学习的神经基础

海马体与运动记忆运动技能学习的神经基础入门:海马体是大脑内一对位于颞叶内侧的重要结构,被广泛研究与记忆形成密切相关。

然而,近年来发现海马体不仅仅在空间和事实记忆中扮演关键角色,还与运动记忆和技能学习密切相关。

本文旨在探讨海马体在运动记忆和技能学习中的神经基础。

海马体的解剖和功能特点:海马体位于内侧颞叶,被分为海马体头、体和尾三部分。

其独特的结构和功能特点使其成为关键的记忆和学习区域。

首先,海马体通过神经元之间的突触连接与其他脑区进行信息传递。

这些突触在记忆形成和存储的过程中发挥重要作用。

其次,海马体内存在丰富的神经元。

在学习和记忆任务中,这些神经元会被激活,并通过突触连接的方式参与信息传递,促成记忆形成。

此外,海马体还具有产生新神经元的能力,这被称为神经发生。

新生的神经元在学习和记忆中发挥着重要的作用,并参与到海马体的功能调节中。

运动记忆和技能学习的相关研究:研究表明,海马体在运动记忆和技能学习过程中起到重要的调控作用。

下面将从运动记忆和技能学习两个方面进行论述。

1. 运动记忆:运动记忆是指对运动动作的记忆和识别能力。

研究发现,海马体在运动记忆的形成中发挥着重要作用。

研究人员通过实验发现,海马体的神经元在动物进行运动学习时会被激活,并参与到相关记忆的存储和提取过程中。

这些神经元的活动和连接的塑性变化可以帮助动物记忆运动序列和动作技巧。

另外,运动记忆的形成与海马体的神经活化模式有关。

实验研究发现,动物进行运动学习时,海马体神经元的放电模式会发生明显的改变,这种改变与运动记忆的形成密切相关。

2. 技能学习:技能学习是指通过不断练习和训练获得的一种熟练的运动技能。

海马体在技能学习过程中也扮演重要的角色。

研究揭示,海马体的神经活动与技能学习密切相关。

通过实验发现,动物在进行技能学习时,海马体神经元的活动会发生调整,特别是在新技能学习的早期阶段。

此外,海马体神经元的活动在技能学习过程中也表现出时空特异性。

海马体神经元的可塑性与学习记忆

海马体神经元的可塑性与学习记忆

海马体神经元的可塑性与学习记忆海马体是大脑中一个非常重要的区域,被广泛研究和关注。

它在学习和记忆过程中扮演着关键的角色。

海马体神经元的可塑性是指神经元连接改变和功能调节的能力,这个过程在学习和记忆中起到了重要的作用。

本文将探讨海马体神经元的可塑性与学习记忆之间的关系。

一、海马体神经元的结构与功能海马体位于脑内颞叶内侧,是大脑中一个弯曲的结构。

它由许多神经元和突触组成,这些神经元之间的连接形成了复杂的网络。

海马体与学习和记忆密切相关,通过不同的神经元活动,参与了信息的处理和存储。

海马体神经元的可塑性使其能够适应不同的学习和记忆任务,这是海马体起到重要作用的基础。

二、长时程增强(LTP)和长时程抑制(LTD)长时程增强(LTP)和长时程抑制(LTD)是海马体神经元可塑性的两个重要表现形式。

LTP是指在神经元之间的连接强度增加,在学习和记忆过程中起到重要作用。

这种强化的连接可以持续较长时间,从而促进信息的传递和存储。

而LTD则是神经元之间的连接强度减弱,通常发生在连接不再需要或相关信息存在竞争的情况下。

三、突触可塑性与信息存储突触可塑性是指神经元之间突触连接的改变和调节。

这种可塑性是学习和记忆过程中信息存储的基础。

在学习过程中,海马体神经元的突触连接可以通过增强或削弱来存储相关的信息。

这种可塑性使得我们能够在一段时间内存储和回忆特定的学习内容。

四、神经元的活动模式和记忆编码神经元的活动模式和记忆编码是海马体神经元可塑性的重要方面。

研究表明,海马体神经元的活动模式在学习和记忆编码过程中起着关键作用。

不同的活动模式对应着不同的学习内容,这些模式通过神经元之间的连接强度来编码和存储信息。

通过对神经元活动的模拟和调节,可以进一步揭示海马体神经元的学习和记忆机制。

五、海马体神经元可塑性与神经疾病海马体神经元的可塑性与神经疾病之间存在紧密的关系。

许多神经疾病,如老年痴呆症和帕金森病,会导致海马体神经元的可塑性受损。

大脑海马体的结构和功能综述

大脑海马体的结构和功能综述

大脑海马体的结构和功能综述大脑是人类神经系统的核心组织,其中的海马体作为边缘系统的重要部分,扮演着重要的角色。

本文将对大脑海马体的结构和功能进行综述。

一、海马体的结构海马体位于大脑内侧,由左右两侧对称的结构组成,形状类似于海马。

它由海马回、海马旁回和齿状回等多个区域组成。

海马体内部包含着众多的神经元和突触连接。

同时,海马体与其他脑区,如大脑皮层等,通过突触连接形成复杂的神经网络。

二、海马体的功能1. 存储和学习能力:海马体是记忆的重要部分。

它能够存储和检索事物的记忆,并参与学习过程。

研究表明,大脑海马体的损伤会导致记忆力下降和学习能力减弱。

2. 空间导航:海马体与空间导航有着密切的关系。

它能够帮助我们识别和记忆环境中的地点和路径,并参与空间导航的规划和执行过程。

3. 情绪调节:海马体与情绪调节紧密相关。

它与大脑中的情绪中枢相互作用,参与情绪的产生和调控。

一些精神疾病,如抑郁症和焦虑症,与海马体功能异常有关。

4. 认知功能:海马体也与认知功能密切相关。

它参与记忆、学习、思维等高级认知过程,对大脑的认知功能发挥着重要作用。

三、海马体的研究进展近年来,随着神经科学的发展,对海马体的研究取得了重要的突破。

通过采用功能性磁共振成像(fMRI)、电生理实验和行为学实验等技术手段,研究者们深入探索了海马体的结构和功能。

他们发现,海马体不仅在记忆和学习中发挥重要作用,还与其他脑区相互作用,在人类行为和认知过程中发挥着重要的调控作用。

同时,一些疾病的研究也证实了海马体在疾病发生和发展中的重要作用。

例如,在阿尔茨海默病的早期阶段,海马体就会发生变化,这成为早期诊断和治疗的一个重要依据。

四、结论综上所述,大脑海马体作为大脑的重要组成部分,不仅在认知、学习和记忆等方面发挥着重要功能,还参与了空间导航和情绪调节等过程。

随着神经科学研究的不断深入,海马体的结构和功能也得到了更深入的了解。

我们对大脑的认知将因为对海马体的研究而更上一层楼。

海马体与学习揭示记忆形成的奥秘

海马体与学习揭示记忆形成的奥秘

海马体与学习揭示记忆形成的奥秘记忆是人类认知系统中至关重要的一部分,它帮助我们存储和提取过去的经验和信息,从而构建我们的知识和个人认识。

然而,记忆是如何形成的,这是一个长期以来令人费解的问题。

近年来的研究表明,海马体在学习和记忆形成中起着重要的作用。

本文将探讨海马体与学习揭示记忆形成的奥秘。

一、海马体的功能和结构海马体是大脑中颞叶内侧的一部分,其功能和结构对学习和记忆形成至关重要。

海马体由海马回和海马旁回组成,这两个结构与其他大脑区域之间通过多个通路相互连接。

海马体功能的独特之处在于其对于空间记忆和事件记忆的加工与整合。

海马体与其他相关结构的协同作用,促进了记忆的形成和提取。

二、海马体在学习中的作用海马体在学习过程中发挥着至关重要的作用。

研究表明,海马体参与了新信息的编码和存储过程。

当我们学习新的知识或者经历新的事件时,海马体对于这些信息进行加工和整合,并将其储存在神经网络中。

这种加工和整合的过程对于记忆的稳定性和长期保存起到了关键性的作用。

三、海马体与记忆形成的机制尽管我们已经知道海马体在学习和记忆中的作用,但是具体的记忆形成机制仍然是一个充满争议的问题。

有几种解释被提出来解释海马体的作用。

一种解释是双重编码理论,它认为海马体通过将新信息与已有的记忆进行链接,促进了新信息的存储和提取。

另一种解释是时空容量理论,它认为海马体具有独特的时空容量,通过将信息放置在特定的空间和时间背景中,帮助我们更好地记住这些信息。

四、海马体与神经可塑性的关系神经科学研究显示,神经可塑性是学习和记忆形成的基础。

传统上,海马体被认为是一个相对稳定的脑区,不易发生可塑性变化。

然而,近年来的研究表明,海马体具有神经可塑性,并能够通过神经递质的释放和突触增强来产生记忆形成的效应。

这一发现进一步增加了对海马体在记忆形成中的重要性的认识。

五、海马体在相关疾病中的作用海马体的功能异常与许多与记忆相关的疾病有关。

例如,阿尔茨海默病患者的海马体会出现萎缩,这一现象与他们的记忆缺损有着密切的关系。

海马体在幼儿大脑发育中的重要性探究

海马体在幼儿大脑发育中的重要性探究

海马体在幼儿大脑发育中的重要性探究海马体是大脑内部的一个重要结构,位于颞叶内侧,扮演着记忆和学习过程中的关键角色。

在幼儿大脑的发育过程中,海马体的发育和功能对于学习、记忆和认知能力的形成和提高至关重要。

1. 海马体的结构和功能海马体是大脑内部的一个孪生结构,形状类似于海马。

它由海马回和海马旁回组成,与其他脑区相互连接并共同参与大脑功能的调控。

海马体在大脑中起到关键的作用,主要负责记忆的形成和存储。

它接收来自大脑其他区域的刺激和信息,并将其转化为长期记忆。

同时,海马体还参与了空间导航、认知和情绪调节等重要功能。

2. 幼儿大脑发育中海马体的变化幼儿大脑的发育是一个复杂而长期的过程,其中海马体也经历了显著的变化。

在胚胎期和婴儿期,海马体的发育主要体现在细胞数量和连接的增加。

研究表明,早期的刺激和经验对于海马体的发育至关重要。

幼儿在与外界环境的互动中,刺激了海马体网络的发育和连接的建立。

在进入儿童期和青少年期,海马体的体积和形态继续发生着明显的变化。

海马体的体积逐渐增大,而且结构也更加成熟。

这一时期,海马体的发育与记忆力的增强密切相关。

3. 海马体与学习、记忆的关系海马体在幼儿大脑发育中的重要性体现在其对学习和记忆过程的影响。

研究表明,海马体对于形成和存储空间记忆有着关键作用。

幼儿在探索环境、进行空间导航等活动时,海马体负责将环境信息转化为记忆,并提供后续的回忆和导航能力。

此外,海马体还参与了上下文记忆和事件记忆的形成。

通过和大脑其他区域的联系,海马体能够将不同信息进行整合和关联,帮助幼儿将学到的知识与现实场景相联系,提高学习效果。

4. 海马体的发育与儿童认知能力的发展海马体的发育对儿童认知能力的提高有着重要的影响。

随着海马体的发育和功能的成熟,儿童的学习和记忆能力也相应增强。

海马体作为记忆的关键结构,能够帮助儿童更好地理解和应用所学知识,提高学习的效果和质量。

此外,海马体的发育还与儿童的空间导航能力和情绪调节有关。

海马体与大脑皮层的相互作用

海马体与大脑皮层的相互作用

海马体与大脑皮层的相互作用大脑是人类最重要的神经器官之一,其内部结构复杂而精密。

在大脑中,海马体和大脑皮层被认为是相互作用最为紧密的两个区域。

本文将探讨海马体与大脑皮层之间的相互作用,并探讨其在学习、记忆等方面的重要作用。

一、海马体的功能海马体位于大脑内侧,是大脑边缘系统的一部分。

海马体在人类的学习和记忆中起着重要的作用。

研究表明,海马体对空间记忆和空间导航具有关键的作用。

通过与大脑皮层的相互作用,海马体能够将来自不同感官的信息整合,形成完整的记忆。

二、大脑皮层的功能大脑皮层是大脑的外层组织,由数十亿个神经元组成。

大脑皮层负责人类的高级认知功能,如思维、言语和意识等。

大脑皮层可以接收来自感官和其他脑区的信息,并通过不同的神经回路进行处理和整合。

三、海马体与大脑皮层的连接海马体与大脑皮层之间存在多个连接通路,其中最重要的是海马体-皮层回路。

这个回路可以将信息从大脑皮层传递到海马体,同时也可以将海马体中的信息反馈给大脑皮层。

这种双向的信息传递机制为学习和记忆的过程提供了重要的神经基础。

四、学习和记忆的形成学习和记忆是复杂的神经过程,涉及多个脑区的协同工作。

在学习的过程中,大脑皮层负责信息的接收、处理和分析。

然后,这些信息会被传递到海马体,海马体通过强化突触联系的方式将信息加强存储,并将其反馈到大脑皮层中。

五、海马体与大脑皮层的作用海马体和大脑皮层之间的相互作用是学习和记忆的关键。

海马体在学习过程中可以整合来自大脑皮层的不同信息,并形成持久的记忆。

同时,海马体中的记忆也会通过反馈机制影响大脑皮层的功能。

六、其他功能除了学习和记忆,海马体和大脑皮层之间的相互作用还涉及到其他脑功能。

例如,海马体的损伤与阿尔茨海默病等记忆障碍疾病有关。

同时,在情绪与记忆的调节中,海马体和大脑皮层也紧密相连。

综上所述,海马体与大脑皮层之间的相互作用在学习和记忆等神经功能中起着重要的作用。

海马体通过与大脑皮层的连接及信息的传递,实现了不同脑区之间的协调和整合。

海马体的发育与认知发展

海马体的发育与认知发展

海马体的发育与认知发展海马体是大脑中一种重要的结构,它在认知发展中起着关键的作用。

本文将介绍海马体的发育过程以及其与认知发展之间的关系。

一、海马体的发育海马体位于大脑内侧颞叶中,分为左右两侧。

海马体的发育是一个复杂的过程,通常在胎儿期开始并持续到青少年时期。

在胚胎期,海马体最初形成于大脑的胚芽层。

随着胚胎的发展,海马体逐渐扩张并分化成不同的区域,其中包括海马回和嗅门回等结构。

在出生后的早期,海马体继续发育并增长。

这一阶段,海马体的细胞开始分化,并形成神经元和胶质细胞。

这些神经元会长出突触连接其他脑区,形成神经回路。

随着年龄的增长,海马体的细胞层次结构逐渐建立起来。

同时,神经元的数量也在不断增加,并且与其他脑区的连接变得更为复杂。

这种网络的形成为后续的认知发展奠定了基础。

二、海马体的功能与认知发展的关系海马体在认知发展中起着重要的作用。

它参与了记忆的编码、存储和检索等过程,并对空间导航和新陈代谢等认知能力起着调节作用。

1. 记忆的编码与存储:海马体是记忆编码与存储的重要区域之一。

研究发现,海马体对于空间记忆和事件记忆的形成具有关键作用。

海马体的神经元通过形成突触连接,将信息编码并存储在脑内。

这一过程对于个体的学习和记忆能力至关重要。

2. 记忆的检索与整合:除了编码与存储,海马体还参与了记忆的检索与整合。

当我们试图回忆一个特定的事件或事物时,海马体会通过调控其他脑区的活动来帮助我们找到正确的记忆。

这种能力使得我们能够将过去的经验与现实环境相联系,更好地适应于不同的情境。

3. 空间导航与认知能力:除了记忆功能外,海马体还与空间导航和认知能力有关。

研究表明,海马体的活动与个体在空间中的定向和定位有关。

它通过整合来自不同感觉系统的信息,帮助我们建立空间认知地图。

这些认知地图对于我们准确定位和导航具有重要意义。

4. 认知发展中的海马体:随着年龄的增长,海马体的发育与认知能力的提升密切相关。

儿童和青少年期是海马体发育的关键时期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海马与学习记忆的关系摘要:海马(hippocampus)并非指传统中医药理论指导临床运用的中药海马,而是指人类大脑颞内侧以及腹侧卷曲的海马回及齿状区。

在与学习记忆有关的脑区中,海马结构的作用显得特别突出[1]。

海马结构,属大脑边缘系统,近年来,AD与海马的神经生化和形态结构的联系是AD防治的研究热点。

蒋云娜报道,Alcl3痴呆小鼠经中药治疗后,海马CA1区锥体细胞层神经元树突得以改善。

这说明海马在AD发病和治疗上是一个值得关注的领域。

海马与记忆有着密切的联系。

海马通过脑干网状结构系统及皮质下行纤维接受来自视、听、触、痛等多种感觉信息,并参与调节内分泌活动。

海马与记忆关系的研究,是近年来神经生理心理方面一个有趣而重要的进展。

本文就心理学、神经生理学、神经解剖学、病理学等反方面来阐述海马与学习记忆的关系,并提出相关的提高学习记忆的方法。

关键词:海马学习和记忆心理学神经生理学神经解剖学病理学学习记忆是大脑最基本也是最重要的高级神经功能之一,是中枢神经系统功能的整合.海马与学习记忆的关系密切,众多研究表明,损毁双侧海马动物的学习记忆能力明显下降,对大鼠的分辨学习、防御条件反应的保持及空间习得能力都有破坏.脑缺血是危害人类健康的常见病、多发病,患者常有相应的运动、感知觉及学习记忆功能障碍,其中学习记忆障碍最为常见持久,且严重影响患者的预后及生活质量.诸多研究表明,康复治疗对缺血性脑梗死患者在改善感觉、运动、行为能力方面已获得明显的疗效.本实验即通过光化学法诱导的双侧海马梗死模型,观察大鼠双侧海马梗死后康复训练对学习记忆功能的影响.1材料和方法1.1材料1.1.1自制冷光源由本科室和西安飞秒光电集团联合研制,光源为一充气氙灯,输出功率: Min 0008 W/cm2, Max 037 W/cm2,输出波长490~550 nm,波峰530 nm,输出端连一直径06 mm的石英光纤.1.1.2实验动物及主要试剂2级SD大鼠30只,体质量为(210±10) g ,海马与学习记忆的关系指导老师:王少辉1雄性,周龄8~10 wk,由本校实验动物中心提供;四氯四碘荧光素钠(虎红,RB,北京化工厂,批号: 870627),密封避光保存,使用前用生理盐水稀释为25 g/L 的浓度.1.2器材1.2.1Morris水迷宫为一直径150 cm、高70 cm的圆池,内有乳白色溶液,水深47 cm.池壁上标有东南西北4个入水点,它们将水池分为4个象限.直径8 cm、高45 cm的白色站台,随机置于圆池内某一象限并固定,站台没于水面下2 cm.训练期间周围参照物保持不变.1.2.2明暗箱一箱为明室,另一箱为暗室,均为35 cm×25 cm×30 cm,两室有一拱形小门相通,室底均为铜栅,先将大鼠放置在箱中适应 3 min,然后通电5 min(50 V,交流电),并记录5 min内的钻洞次数(即错误反应次数),24 h 后进行测试,记录潜伏期和5 min内大鼠的钻洞次数.1.3方法1.3.1双侧海马梗死模型制作方法大鼠用20 g/L戊巴比妥钠按50 mg/kg 常规麻醉后,将其俯卧于脑立体定位仪上,沿头颅正中切开头皮暴露颅骨,在前囟后48 mm、中线向左旁开36 mm处,用牙科钻轻轻钻一个直径约1 mm的骨窗,光纤管尾端至皮层下32 mm(海马CA1区),再定位右侧与之对称的位置,并开一个骨窗.于尾iv虎红(浓度为70 mg/kg)后,立即通过光纤管照射一侧海马组织,照射完毕时再补充原虎红剂量的一半,然后立即进行另一侧的冷光源照射.光照强度: Max,照射时间:各30 min.术后缝合头皮,正常喂养.1.3.2水迷宫训练第1日让大鼠自由游泳适应2 min,从第2日开始,从站台所占象限外的另3个象限随机选择一个入水点,将大鼠面向池壁放入池中,观察并记录大鼠寻找并爬上平台的潜伏期.如2 min内找不到站台,则将其在站台海马与学习记忆的关系上放置30 s后再放回笼中,这时潜伏期记为120 s.训练时分别从3个不同的入水点入水,每次不同动物的入水点相同,训练顺序固定.此项主要训练大鼠的学习记忆功能和游泳能力.1.3.3动物分组将30只大鼠于造模后随机分为康复组和制动组,各15只.于造模3 d后开始分别给予康复训练或制动,康复组每天上午训练3次,每次间隔10 min;制动组进入制动笼(长40 cm,直径6 cm的网状笼)中饲养,在头端有一容器给予食物和水,四肢和身体处于固定状态.1.3.4学习记忆行为测试采用避暗法,该方法是测试被动回避反应;先将大鼠放置在箱中适应3 min,然后通电5 min(50 V,交流电),并记录5 min内的钻洞次数(即错误反应次数),24 h后进行测试.如大鼠进入暗室,因暗室底通有微弱的电流刺激大鼠,故大鼠逃出暗室,5 min以内不进入暗室,就完成了学习,24 h后的测试就是记忆能力;把大鼠放入明室始至进入暗室的时间称作潜伏期,进入暗室的次数为错误次数.我们分别在大鼠造模前、造模后3 d(训练前)、康复训练后7,14,21 d进行学习记忆能力测试.统计学处理: 采用SPSS120软件对明暗箱测试成绩进行统计,结果用 x±s 表达,对造模前及造模3 d后的组内资料按配对设计进行配对t检验;对造模后各时间点数据进行重复测量数据的方差分析.2结果2.1明暗箱测试潜伏期康复组和制动组造模3 d后潜伏期明显较梗死前下降(t值分别为3364,4326;P值分别为0005,0001);从方差分析结果看,康复组与制动组之间的潜伏期存在明显差别(F=5158,P=0031),两组大鼠的记忆潜伏期均随时间逐渐恢复,但康复组较制动组恢复显著(Tab 1).表1康复、制动组不同时间的明暗箱测试潜伏期指导老师:王少辉2海马与学习记忆的关系指导老师:王少辉32.2明暗箱测试错误次数康复组和制动组造模3 d后明暗箱错误次数明显增多(t值分别为-3873,-4000;P值分别为0002,0001);从方差分析结果看,康复组较制动组的错误次数明显减少(F=4699,P=0039),两组大鼠的学习成绩均随时间逐渐恢复,但康复组较制动组恢复显著(Tab 2).表2康复、制动组不同时间的明暗箱测试错误次数3讨论学习记忆是大脑最基本也是最重要的高级神经功能之一,是中枢神经系统功能的整合.海马与学习记忆的关系密切,众多研究表明,损毁双侧海马动物的学习记忆能力明显下降,对大鼠的分辨学习、防御条件反应的保持及空间习得能力都有破坏.而且研究表明海马与近期记忆有关,损伤海马可引起近期记忆的高度丧失,致使动物或患者丧失了学习新事物和新技巧的能力.在大鼠实验中还观察到海马参与了近期记忆中的情节记忆过程,与空间位置的学习有关.海马损伤或切除海马,将造成顺行性遗忘症.在脑中风等脑缺血性疾病时,由于谷氨酸兴奋毒性作用,产生大量的自由基、兴奋性氨基酸,导致细胞内钙离子超载,造成神经细胞变性坏死,影响了神经元之间的信息传递,并最终引致脑功能障碍.海马CA1区对缺氧缺血特别敏感,刘汇波等发现大鼠双侧颈总动脉结扎后存活30 d时动物的海马CA1区神经元数目显著减少,大量神经细胞的轴突缺如,海马锥体细胞密度减低,模型大鼠还存在着与神经元损伤成正相关的学习记忆障碍.诸多研究表明,康复治疗对缺血性脑梗死患者在改善感觉、运动、行为能力方面已获得明显的疗效;记忆是中枢神经的整合,记忆细胞和分子基础定位于突触,记忆形成的基础是突触效应增强.行为学习改变了树突和突触形态结构,增加了运动皮层和海马突触数密度和面密度,活化海马和运动皮层的传入通路;以及NMDA受体密度的增多,加强了NMDA受体依赖的LTP的产生.余茜等的研究亦发现,康复训练可使梗死大鼠海马突触界面曲率和突触后致密物厚度增大以及穿海马与学习记忆的关系孔性突触的百分率增多,使不同活性区传递功能大大增强,同时海马NMDA受体通道开放电导水平、开放时间和开放概率的改变,进一步增强了突触传递功能,使其习得性LTP形成速度明显快于对照组,其结果是影响整个脑的场电位P300而影响梗死大鼠的学习记忆行为.本实验室既往的研究也证实康复训练能促进神经功能及学习记忆的恢复.Morris水迷宫是英国心理学家Morris和其同事于20世纪80年代初设计并应用于学习记忆脑机制研究的.此后,该迷宫系统被广泛运用在神经生物学领域的基础和应用研究中,实验动物主要是大鼠,是常用的检测空间学习记忆的装置.Morris水迷宫实验模型的优点是,能排除动物在完成作业而经过的途中所留下的排泄物和所分泌的外激素对其他动物作业成绩产生的影响.Chang等观察到长期的迷宫训练能促进神经元的树突发出侧支,何海蓉等发现,适宜温度游泳能改善衰老动物学习记忆能力,可见水迷宫训练对神经信息回路的重建有积极意义.因此,在本实验中,我们采用Morris水迷宫训练作为康复训练手段,观察了康复训练对双侧海马梗死后大鼠学习记忆功能的影响.本实验结果表明,双侧海马梗死后,大鼠出现了明显的学习记忆能力下降,证实了海马对学习记忆功能的重要作用.从时间上看,两组大鼠于训练后均出现潜伏期逐渐延长,错误次数逐渐减少,但康复组较制动组恢复明显.有研究发现损毁双侧海马导致的空间作业习得的损害,会随着训练次数的增加而逐渐减弱、消失.而且海马不同区域对学习和记忆的参与是不同的,如,损毁海马腹部大鼠分辨学习的保存明显受到破坏,而海马背部损毁其分辨学习的保存则不受影响;又如,应用电刺激和电毁损法发现,CA1区与分辨学习有关,齿状回则与分辨学习的反转有关,而CA3区则在长时记忆的保持中起重要作用.本实验模型为双侧海马CA1区局灶性梗死,可能因为梗死灶仅局限于海马CA1区,功能环路未完全破坏,或者大脑其他功能区参与了学习记忆的代偿,再加上大鼠本身功能恢复较快,导致制动组学习记忆成绩也逐渐恢复,但与康复组比较,其学习记忆成绩明显较差,仍能证实康复训练对学习记忆功能恢复的促进作用.康复训练可能通过改变梗死大鼠海马的突触结构,活化突触间传递通路,促进习得性LTP的产生,进而指导老师:王少辉4海马与学习记忆的关系指导老师:王少辉5增强海马突触效应的可塑性,改善大鼠认知功能,最终促进了海马梗死大鼠学习记忆功能的恢复.1 从心理学、神经生理学讨论海马LTP效应1973年Bliss和Lmo在麻醉家兔海马结构时发现了这种单突触诱发反应长时间易化现象,将之定义为长时程突触增强(Long-term potentiation,LTP)。

随后生理学、心理学研究围绕证明LTP是学习记忆的一种神经基础展开。

通常认为LTP 可分为习得性LTP和非习得性(强直性)LTP。

相关文档
最新文档