再热蒸汽温度控制系统

合集下载

3、锅炉主、再热蒸汽调节解析

3、锅炉主、再热蒸汽调节解析

• 喷 嘴
二、烟道挡板
烟 道 挡 板 是 利 用改变流过尾部 烟道中的烟气量 来调节汽温,现 代锅炉上主要用 来调节再热蒸汽 温度。
二、烟道挡板 • 调节烟道挡板,可以改变流经两个烟道的烟气 流量,也就是改变 2 个并联烟道中的烟气分配 比率,从而调节再热汽温。 • 烟气流量的改变,也会影响到过热汽温,但可 调节减温器的喷水量来维持过热汽温稳定。 • 再热器进口的喷水减温器正常下是不运行的, 只是在再热器出口温度上升,并且不能被挡板 控制的情况下作为紧急减温器使用。
多管式喷水减温器 1-多孔管;2-混合管;3-减温器联箱 多孔喷管上开有若干喷水孔,喷孔一般在背向汽流方向 的一侧,以使喷水方向和汽流方向一致。喷孔直径通常 为5~7mm,喷水速度为3~5m/s。
再 热 器 微 量 及 事 故 喷 水
莫诺克喷头
• B a b c o c k 的 喷 水 减 温 器
过热器(或再热器)的温度特性
• 过热器(或再热器)出口汽温与锅炉负荷的变化规 律称为过热器(或再热器)的温度特性。 • 对流过热器:随着锅炉负荷的增大,燃料消耗量增 大,烟气流速和流量都增大,同时烟气温度升高, 对流传热量增加,相对于每千克蒸汽的对流吸热量 增加,因此对流过热器的出口汽温随锅炉负荷的增 大而增大。 • 辐射过热器:辐射过热器的出口汽温随锅炉负荷的 增大而降低。因为当锅炉负荷增加时,炉膛火焰的 平均温度增加有限,辐射传热量增加不多,跟不上 蒸汽流量的增加,使工质的焓增减少。 • 半辐射过热器:其汽温特性介于对流过热器和辐射 过热器之间,汽温特性较平稳。 • 采用适当比例的辐射和对流受热面是为了获得较平 稳的汽温特性。


火焰中心位置:火焰中心位置升高,炉内辐射吸热份额下降,布置在炉膛上的部和水平烟道内 的再热器会因为传热温压增加而多吸热,使其出口再热汽温升高。反之,火焰中心位置下移, 再热汽温将下降。

再热蒸汽温度pid控制系统设计

再热蒸汽温度pid控制系统设计

再热蒸汽温度pid控制系统设计
要设计一个再热蒸汽温度的PID控制系统,首先需要确定控制的目标是什么。

再热蒸汽温度是指在汽轮机高压缸和低压缸之间再加热后的蒸汽温度。

该温度的控制对于保证汽轮机的运行稳定性和有效性至关重要。

控制系统可以使用PID控制器来实现。

PID控制器由比例(P)、积分(I)和微分(D)3个部分组成。

控制器将当前的温度与设定的目标温度进行比较,然后根据误差来调整再热蒸汽的加热流量。

具体的PID控制器参数需要根据实际情况来确定。

常用的调节方法是试误法,即不断地使用不同的PID参数进行试验,直到得到满意的控制效果。

除此之外,还需要考虑控制器的输出信号如何作用于加热流量控制系统。

通常需要使用执行器、控制阀门等设备来将信号转换成实际的控制作用。

总之,再热蒸汽温度的PID控制系统设计需要考虑多方面的因素,包括控制器参数的确定、控制信号的传递和执行器的配置等等。

只有全面考虑这些因素,才能实现稳定、高效的控制系统。

电厂热工自动控制系统

电厂热工自动控制系统

电厂热工自动控制系统电厂热工自动控制系统单元机组的自动调节系统¾ ¾ ¾ ¾ ¾机组功率-转速调节系统汽温控制系统(过热、再热)水位控制系统(凝汽器、除氧器、汽包)燃烧控制系统(燃料、风量、炉膛压力及一、二次风配比控制)其它单回路控制系统第一部分汽温控制系统一、过热汽温控制系统1. 任务温度过高,可能造成过热器、蒸气管道和汽轮机的高压部分金属损坏;温度过低,会引起电厂热耗上升,并使汽轮机轴向推力增大造成推力轴承过载,还会引起汽轮机末级叶片蒸汽湿度增加,降低汽轮机内效率,加剧对叶片的腐蚀控制要求:最大控制偏差不超过±10℃,长期偏差不超过±5℃规定要求:2. 静态特性过热器的传热形式、结构、布置将直接影响其静态特性。

大容量锅炉一般采用对流过热器、辐射过热器和屏式过热器交替串连布置。

过热器出口温度对流式3. 动态特性蒸汽流量变化、热烟气的热量变化、减温水流量变化相同点:均为有迟延的惯性环节辐射式不同点:特性参数有较大区别蒸汽流量变化扰动下,汽温的迟延和惯性较小烟气扰动与蒸汽流量扰动相似,汽温反映较快减温水流量扰动由于管道较长,汽温反应较慢4. 控制方案串级控制导前微分控制过热器减温器出口温度TE4001TE4025末级过热器出口温度TE4024LDC指令过热器减温水阀控制逻辑静态特性:纯对流特性动态特性:更容易受负荷、燃烧工况等干扰的影响,温度变化幅度较大调节手段:烟气再循环、尾部烟道挡板、喷燃器摆角、喷水减温烟气再循环:尾部烟道烟气抽至炉膛底部,降低炉膛温度,减少炉膛的辐射传热,从而提高炉膛出口烟气的温度和流速。

使再热器的对流传热加强,达到调温的目的。

优点:反应灵敏,调温幅度大。

缺点:系统结构复杂尾部烟道挡板:尾部烟道被分割为两部分,主烟道中布置低温再热器,旁路烟道中布置低温过热器,烟气挡板布置在温度较低的省煤器下面。

优点:结构简单,操作方便缺点:调温灵敏度差,幅度小,挡板开度与汽温不成线性关系。

热工过程自动控制复习题·王建国

热工过程自动控制复习题·王建国

10级热动《电厂热工过程自动控制》1.掌握自动控制系统中常用的基本术语。

被控量被控对象给定值扰动控制量控制对象2.掌握自动控制系统常见的分类方法,并能够判别实际系统所属类别。

按生产过程中被控量所希望保证的数值分恒值控制系统(过热汽温控制系统再热汽温控制系统) 程序控制系统随机控制系统根据控制系统内部结构分类闭环控制系统(反馈控制系统)开环控制系统复合控制系统3.掌握被控对象分类方法、各类对象的动态特性曲线及其平衡特性。

有自平衡能力的无自平衡能力的有自平衡能力对象:被控对象收到扰动后平衡被破坏,不需要外来的控制作用,而依靠被控量自身变化使对象重新恢复平衡的特性,称为对象的自平衡特性,具有这种特性的被控对象就是有自平衡能力的被控对象。

¥无自平衡能力对象:当这种被控量平衡关系破坏后,被控量以一定的速度继续变化下去而不会自动地在新的水平上恢复平衡,具有这种现象的对象成为无自平衡能力对象。

4.控制器有哪些基本动作规律各种动作规律的阶跃响应曲线,控制动作的特点、参数变化对其控制过程的影响。

比例控制P(有差调节)比例带减小,控制系统稳定性变差,比例带太小将使系统不稳定,系统稳定时比例带越小静态误差越小但被控量振荡加剧积分控制I(无差调节)积分时间T1越小积分作用越强调节阀的动作越快就越容易引起和加剧振荡但与此同时振荡频率将越来越高而最大动态偏差则越来越小被控量最后都没有静态偏差。

微分控制D(超前调节)有某种程度的预见性5.被控对象控制通道、扰动通道的特性对控制质量的影响。

扰动通道(扰动和被控量之间的信息通道)1、放大系数增大静态偏差也增大所以扰动通道的放大系数越小越好对控制越有利2、时间常数越大阶次m越高,被控量受到扰动后的动态偏差就较小,这将有利于控制。

控制通道(控制作用和被控量之间的信息通道)1、放大系数增大静态偏差减小有利控制2、时间常数越大阶次n越大控制作用就较迟缓控制不灵敏,显然不利控制。

6.》7.复杂控制系统主要包括哪几种串级控制系统比例控制系统前馈-反馈控制系统8.串级控制系统基本组成原理,系统中常见术语及其控制作用分析。

再热汽温调节方法

再热汽温调节方法

再热汽温调节方法
再热汽温调节方法主要包括以下几种:
1. 烟气挡板调节:烟气挡板可以手控或自控,当负荷变化时,调节挡板开度可以改变通过再热器的烟气流量,从而达到调节再热汽温的目的。

例如,当负荷降低时,可以开大再热器侧的烟气挡板开度,使通过再热器的烟气流量增加,提高再热汽温。

2. 烟气再循环调节:利用再循环风机从尾部烟道抽出部分烟气再送入炉膛。

通过对再循环气量的调节,改变经过热器、再热器的烟气量,使汽温发生变化。

3. 摆动式燃烧器:通过改变燃烧器的倾角来改变火焰中心的高度,从而使炉膛出口温度得到改变,以达到调整再热汽温的目的。

4. 再热喷水减温调节:喷水减温器由于其结构简单、调节方便、调节效果好而被广泛用于锅炉再热汽温的细调。

但使用这种方法会使机组热效率降低,因此应尽量减少再热喷水的用量以提高整个机组的热经济性。

以上信息仅供参考,具体采用哪种方法还需要根据实际运行情况来确定。

如需更多信息,建议咨询专业工程师。

300MW单元机组再热汽温控制系统设计新方法及其工程应用

300MW单元机组再热汽温控制系统设计新方法及其工程应用

其他345
参数,才能使烟气挡板预动作量最佳地起到作用。 同理,当再热汽温要达到设定值时,此时要求汽温变化的过程已结束,但由于锅炉迟滞 的作用,此时进入再热器的烟气量将在随后的过程中对再热汽温产生调节过量的影响,因此 还设计了一个“反踢”(类似于“刹车器”)作用。“反踢”动作当下式成立时发生。
△T=厂3(ATo)
关键词:代数等价观测器(AEO);再热汽温自动调节;大惯性:大迟滞
引Байду номын сангаас

在单元机组中,再热器蒸汽温度是一个很重要的参数,它的控制品质直接关系着机组的
安全运行和经济效益,同时由于电网调度对电厂协调控制系统提出了更高的运行要求,对再 热汽温的控制也就要求得更高了。近年来,针对锅炉蒸汽温度受控对象通常具有大惯性、大 迟延、参数慢时变等特点,通常采用现代控制理论[1.2]中基于观测器的状态反馈与传统的 PID控制相结合的方法[3-7],将汽温惰性区动态特性由状态观测器代替。但对于锅炉再热 汽温采用烟气挡板再循环为主要调节手段的系统来说,机组再热蒸汽温度调节系统通常还要 依靠微量喷水或紧急喷水,采用非喷水调节手段的再热蒸汽温度控制系统的实践成果还缺少 工程范例。 针对这一实际问题,认真分析了锅炉汽温控制系统的理论研究和工程实践的现有成果, 运用增量式函数观测器(IFO—KAx)[5]和代数等价观测器Is,9](AEO)的概念指导状态反 馈和状态观测器的参数整定D03,并应用于一台300MW单元机组的锅炉再热器蒸汽温度控 制系统中,取得了一定的效果。 本文在前述工作的基础上,借鉴并引人“加速器”、“正踢”“反踢”、“模拟柔性模糊控 制”等概念[1l ̄13],和变参数PID调节器共同组成一个综合型再热汽温自动调节系统,并利 用通用的计算机分散控制系统(DCS)中的标准算法模块对其功能进行了实现,更加有效地

主蒸汽、再热蒸汽系统

主蒸汽、再热蒸汽系统

主蒸汽、再热蒸汽系统一、作用1、从蒸汽发生器向汽轮机供给蒸汽;2、正常运行时向汽水分离再热器供汽;3、在机组事故冷却时向大气排汽;4、在汽机抽汽未投入时向厂用蒸汽系统供汽;5、在事故时将发生事故的蒸汽发生器隔离;6、防止蒸汽发生器超压。

二、工作原理2.1 主蒸汽系统工作原理主蒸汽系统包括从锅炉过热器出口联箱至汽轮机进口主汽阀的主蒸汽管道、阀门、疏水装置及通往进汽设备的蒸汽支管所组成的系统。

对于装有中间再热式机组的发电厂,还包括从汽轮机高压缸排汽至锅炉再热器出口联箱的再热冷段管道、阀门及从再热器出口联箱到汽轮机中压缸进口阀门的再热热段管道、阀门。

主蒸汽系统采用“2-1—2”布置。

主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。

发电厂常用的主蒸汽系统有四种形式:(1)集中母管制系统。

其特点是发电厂所有锅炉的蒸汽先引至一根蒸汽母管集中后,再由该母管引至汽轮机和各用汽处。

这种系统通常用于锅炉和汽轮机台数不匹配,而热负荷又必须确保可靠供应的热电厂以及单机容量在6MW以下的电厂。

(2)切换母管制系统。

其特点为每台锅炉与其对应的汽轮机组成一个单元,正常时机炉成单元运行,各单元之间装有母管,每一单元与母管相连处装有三个切换阀门。

它们的作用是当某单元锅炉发生事故或检修时可通过这三个切换阀门由母管引来邻炉蒸汽,使该单元的汽轮机继续运行,也不影响从母管引出的其他用汽设备。

该系统适用于装有高压供汽式机组的发电厂和中、小型发电厂采用。

(3)单元制系统。

其特点是每台锅炉与对应的汽轮机组成一个独立单元,各单元间无母管横向联系,单元内各用汽设备的新蒸汽支管均引自机炉之间的主汽管。

单元制系统的优点是系统简单、管道短、阀门少(引进型300MW级机组有的取消了主汽阀前的电动隔离阀)能节省大量高级耐热合金钢;事故仅限于本单元内,全厂安全可靠性较高;控制系统按单元设计制造,运行操作少,易于实现集中控制;工质压力损失少,散热少,热经济型较高;维护工作量少,费用低;无母管,便于布置,主厂房土建费用少。

再热蒸汽系统工作原理

再热蒸汽系统工作原理

再热蒸汽系统工作原理过热蒸汽进入汽机做完功后,蒸汽的压力温度下降,为了循环利用,把这一部分蒸汽引回锅炉的再热器,进行加热,提高蒸汽品性,从而再次做功。

简而言之,通过再热器的蒸汽,就叫再热蒸汽。

再热蒸汽系统的工作原理主要涉及蒸汽在汽轮机中做功后的循环利用过程。

具体过程如下:1.过热蒸汽进入汽轮机首先,过热蒸汽进入汽轮机并在其中膨胀做功,压力和温度降低。

2.肯定蒸汽引出当蒸汽在汽轮机高压缸中膨胀至某一中间压力后,被引出并引回锅炉的再热器。

3.再热过程在再热器中,蒸汽被加热,其温度通常升高至机组额定温度。

这一过程提高了蒸汽的品质,使其能够再次在汽轮机中膨胀做功。

4.返回汽轮机加热后的蒸汽被送回汽轮机的低压缸中继续膨胀做功,直至达到凝汽器的压力。

5.循环继续通过这种方式,蒸汽在汽轮机和锅炉之间形成一个循环,提高了整个动力装置的循环热效率和汽轮机的功率。

6.控制系统在实际操作中,再热蒸汽的温度控制是一个重要的环节,需要根据不同负荷、不同速率下的变负荷过程及特殊工况进行控制。

7.主蒸汽系统对于装有中间再热式机组的发电厂,还包括从汽轮机高压缸排汽至锅炉再热器进口联箱的再热冷段管道、阀门及从再热器出口联箱至汽轮机中压缸进口阀门的再热热段管道、阀门。

综上,再热蒸汽系统通过在汽轮机内部分阶段引出蒸汽进行加热,然后再次引入汽轮机继续做功,实现能量的循环利用和效率的提升。

为了避免再热蒸汽温度与主蒸汽温度互相影响,在快速、稳定控制主蒸汽温度的前提下,投入再热蒸汽温度控制。

再热蒸汽控制系统通过烟气再循环系统的低温烟气调整燃料的放热量,以增强对流换热,从而实现对再热蒸汽温度的有效调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

再热蒸汽温度控制系统
1.再热蒸汽温度控制的目的及原则
对于大容量、高参数机组,为了提高机组循环效率,防止汽机未级带水,大都采用了中间再热系统,新蒸汽以过高压缸作功后,再回到锅炉再热器吸热,被加热后的再热蒸汽送往中、低压缸继续作功。

采用一次中间再热,可使热经济提高约5%。

无论是无中间再热,还是采用一次再热,提高蒸汽温度对提高循环热效率都是有利的,但受金属材料的性能限制,蒸汽温度一般都不能超过580℃。

目前,一般机组都将蒸汽或再热汽温度限制在560℃以下。

再热蒸汽温度系统的目的是为了将再热蒸汽温度控制在某个定值上,不可过高,以防止损坏设备;亦不可过低,以保证机组有较高的效率。

锅炉的尾部烟道由分隔墙分成再热烟道和过热烟道。

再热器及初级过热器,分别安装在这两个烟道中,再热蒸汽温度控制的主要手段是通过改变尾部烟道出口处再热烟道挡板及过热烟道挡板的开度,改变流过再热器通道的烟气流量,从而改变再热蒸汽与烟气换热,达到控制再热汽温的目的。

喷水减温作为辅助控制手段,在挡板开度已无法(或不及)将再热汽温控制住,再热汽温又高过一定值时,则施以喷水,以快速降低再热汽温。

众所周知,再热器用喷水减温控制温度会降低机组循环热效率,是不宜经常采用的一种方法,因此,在这里只是用于温度过高的情况下,所以又称再热减温水为紧急或事故喷水。

2.控制方案及运行特点
图1为控制方案方框图。

2.1 正常情况下,再热蒸汽温度的控制
再热蒸汽温度定值通常是主蒸汽流量的函数。

这个函数关系由图1中的函数发生器f (x )①来描述,图2给出了f (x )①的特性曲线。

再热蒸汽定值也可由运行人员在事故喷水站⒂上手动给出。

究竟采用什么定值,将由图1中切换开关②选择。

当站发出串级“CASCADE ”信号时,切换开关将选用f (x )①的输出,否则是运行人员给定的值。

热再热蒸汽实测温度与其定值在减法器③中求偏差后分别送PID 调节器④和⑤进行P 、I 、D 运
算,以最终消除误差。

很显然,由于再热器布置于对流区,流经再热器的烟气流量的变化会影响到再热汽温,烟气流量增加,会使再热汽温升高。

因此,控制系统中采用了总风量信号特性化后的值,作为控制再热挡板及过热挡板开度的前馈信号。

特性化是由函数发生器f (x )⑥实现。

图3表示了f (x )⑥的特性。

在加法器⑦中,PID 调节器④的输出与前馈信号叠加,其输出经函数发生器f (x )⑧特性化以后,作为过热挡板开度指令。

在加法器⑾中,PID 调节器⑤
的输出与前馈信号叠加,其输出经函数发生器f (x )⑾特性化以后,作为再热挡板开度指令。

当机组负荷较低时,由于对流换热比例较小,再热汽温也比较低。

PID 调节器④和⑤的输出处于反向饱和(0%),送风前馈指令亦较小,所以加法器⑦和⑾的输出值都较小,此时再热器挡板全开,而将过热挡板关到一个较小的开度,以保证让大部分烟气从再热烟道过,从而提高再热蒸汽温度。

随着机组负荷增加,对流换热比例增加,将使再热汽温升高,并可能超过当时负荷下要求的定值,这将使PID 调节器④和⑤的输出增加,加上风量前馈信号增加的因素,加法器⑦、⑩的输出将增加,再热挡板逐渐关小,以减省流经再热器的烟气,降低再热汽温。

过热烟道挡板随之开大。

无论何时过热挡板开度不可以关得太小,从f (x )⑧可以看出,输出最小自动信号为
20%。

一方面是为了给烟气贸下一定的通道,另一方面是因为挡板开度在020%范围变化时,对烟气通流量的影响是极为明显的。

因而,在低负荷下,对初过出口的过热汽温、未过出口的汽温以及再热汽温影响明显,即调节、回路增益较高,对系统动态品质不利,此外若过热挡板关得矿小,很可能使再热汽温升高太多,而使过热汽温很低,而对汽轮机来说,应避免过热汽温与再热汽温之间出现负偏差。

手动时为了防止误将过热挡板完全关闭,所以也应加20%的最小开
度限制。

2.2
2.2.1 当对锅炉进行吹扫
时,BMS 将发出一信号使再热烟道挡板和过热烟道挡板处于全开位置,对应的控制站进入手动方式。

此外,当MFT 时,挡板锁定,两挡板的控制站进入手动方式。

MFT 复位后,将挡板释放至可控制状态。

在锅炉吹扫结束后,BMS 发出一信号,使再热挡板关闭,再热挡板数字控制站面板上的“跟踪”灯亮。

2.2.2 对于本机组来说,冷态起动时,由于旁路不能用,因此,在冲转前再热器中无蒸汽流动,再热器处于干烧状态,此时,虽然锅炉负荷很低,但亦有可能使再热器金属超温,这时可采用两种措施,以避免再热器金属被高温损坏。

一是通过然烧调整,控制炉膛出口的烟温不超过一定温度(约538℃);二是手动使再热烟道挡板处于关闭状态。

2.2.3 如果烟道挡板开度调整难以使再热蒸汽湿度保持在设定值上,那么,当再热蒸汽温度高过定值一定的值(图1中的偏差A )以后,将对再热器入口施以喷水,以快速降低再热蒸汽温度。

PID ⒁的控制信号,将使再热汽温降至“温度定值+A ”的水平上,其后,若挡板调整能使再热汽温继续下降的话,PID 喷水减温系统所用减温水,取自再热器减温水母管。

母管水是从给水示的某一抽头引入的,因而有足够的压头。

减温水以关断阀和调节阀喷向再热器冷端,如图5所示。

2.2.3.1 减温水关断阀控制逻辑① 锅炉蒸汽流量>10%MCR ② 无MFT (主燃料跳闸)。

③ 控制系统对减温水调节阀有一定开度(>2%)。

上述任一条件不满足,(对应③,是指指令<1%),或者实际上调节阀已关闭时,则发出指令,将关断阀关闭。

2.2.3.2 减温调节阀的运行
当下列条件全部满足时,允许对调节阀进行控制。

① 锅炉蒸汽流量>10%MCR (最大连续出力)。

② 无MFT (主燃料跳闸)。

否则,系统发出关闭调节阀的信号,数字控制站面板上的“跟踪”状态灯亮。

减温水控制站处于手动方式。

“跟踪”灯亮时,不可手动改变控制站输出。

3.手/自动控制站运行
3.1再热烟道挡板控制站
显示:PV柱,无。

SP柱,无。

CO柱,显示再热烟道挡板位置信号。

投入自动的条件:无下列信号
①再热烟道挡板位置、总风量、再热汽温测量系统发出“置手动”信号。

②BMS系统在吹扫或MFT时。

否则站切手动,若站不在“跟踪”状态,则可手动改变控制输出。

3.2过热烟道挡板控制站
显示:PV柱,无。

SP柱,无。

CO柱,显示过热烟道挡板位置信号。

投入自动的条件:无下列信号
①过热烟道挡板位置、总风量、再热汽温测量系统发出“置手动”信号。

②BMS系统在吹扫或MFT时。

否则站切手动,若站不在“跟踪”状态,则可手动改变控制输出。

3.3减温水控制站
显示:PV柱,再热蒸汽温度。

SP柱,温度定值(℃)。

CO柱,显示减温水阀控制信号(%)。

投入自动的条件:
①再热汽温测量系统未发出“置手动”信号。

②锅炉蒸汽流量>10%MCR。

③无MFT。

否则站处于手动方式。

手动时,若“跟踪”状态灯不亮。

则可手动改变控制输出。

相关文档
最新文档