排列组合ppt.
合集下载
人教版三年级数学上册《排列组合》PPT课件

穿法二
穿法三
穿法四
穿法五
穿法六
2×3﹦6(种)
要求:小组中一人记录,其他同学陈述自己的点。
用1,2,3可以组合成哪些两位数?
B
A
小组合作讨论二:
12
13
21
23
31
32
十位
十位
十位
个位
个位
个位
猜一猜:
我今年读九年级了,我的班级是由1、2、3这三个数字组成的一个三位数,请你猜一猜我读的是多少班?
有的问题需要考虑到顺序,也就是结果和顺序有关,例如组成几位数这样的问题等
今后我们在遇到这些问题的时候一定要认真审题,看清楚问题的“隐含条件”
这节课我们学了什么
作业:
同学们回家后仔细观察周围环境中可搭配和组合的实物,自己搭配和组合。
123
132
213
231
312
321
考考你:饮料和点心只能各选一样,有几种不同的搭配方式?
3×2=6(种)
⑥
①
②
③
④
⑤
下
M
能组成哪几个不同的两位数呢?
48 96 98
28
26
46
43
93
从宁波到北京一共有几种走法?
北京 上海 火车 火车 8种
轮船
宁波
飞机
火车
飞机
汽车
我们知道了:
有的问题不用考虑到顺序,也就是说结果和顺序无关,例如握手、比赛等问题
排列与组合
点击此处添加正文,文字是您思想的提炼,请尽量言简意赅的阐述观点。
学习目标:
01
我能找出简单事物的组合数。
02
我能用排列与组合的知识解决生活中的实际问题。
高中数学排列组合-平均分组分配问题优选课堂.ppt

(n m 1)
Cnm
n! m!(n
m)!
我们规定:Cn0 1.
简定易辅理导 1:
C C m
nm
n
n
1
c c c 性质2 m m m1
n1
n
n
证明:
Cmn
Cm1 n
n!
n!
m!(n m)! (m 1)![n (m 1)]!
n!(n m 1) n!m (n m 1 m)n!
所以分组后要除以Amm,即m!,其中m表示组数。
简易辅导
5
点拨提高
一、均分无分配对象的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法?
(1)
C
142C
84C
4 4
A
3 3
12! 8! 1 5775
4!·8! 4!·4! 3!
解:(2)先拿3个指标分给二班1个,三班2个, 然后,问题转化为7个优秀指标分给三个班,
每班至少一个.由(1)可知共有 C62 种15分法
注:第一小题也可以先给每个班一个指标,
然后,将剩余的4个指标按分给一个班、两
个班、三个班、四个班进行分类,共有
C61
3C62
3C63
C 4
简易6辅导
126
种分法. 18
C
2 4
C
2 2
=90
简易辅导
7
三、部分均分有分配对象的问题
例3 12支笔按3:3:2:2:2分给A、B、C、D、E五 个人有多少种不同的分法?
方法:先分再排法。分成的组数看成元素的个数·
解:均分的五组看成是五个元素在五个位置上 作排列
组合数学课件-第一章:排列与组合

积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。
大学排列组合ppt课件

排列与组合的综合实例解析
总结词
通过综合实例,理解排列与组合在实际 问题中的应用。
VS
详细描述
通过一个复杂的问题,如安排一场活动或 者组织一次旅行,综合运用排列和组合的 知识来解决实际问题,并强调排列与组合 在解决实际问题中的重要性和关联性。
05
排列组合的解题技巧
解题思路分析
明确问题要求
01
首先需要清楚题目是关于排列还是组合的问题,排列需要考虑
04
排列组合的实例解析
排列实例解析
总结词
通过具体实例,深入理解排列的概念和计算方法。
详细描述
通过实际生活中的例子,如学生选课、物品的排列等,解释排列的概念,并介绍排列的计算公式,以及如何应用 这些公式解决实际问题。
组合实例解析
总结词
通过具体实例,深入理解组合的概念和计算方法。
详细描述
通过实际生活中的例子,如彩票中奖概率、选举代表等,解释组合的概念,并介绍组合的计算公式, 以及如何应用这些公式解决实际问题。
少?
答案解析
答案1
从5个人中选3个人参加会议共有 $C_{5}^{3} = 10$种不同的选法。
答案3
大于2000的三位数,首位数字可以为 2,3或4,共有$A_{3}^{1} times A_{4}^{2} = 36$种。
答案2
将4把椅子排好,共有$A_{5}^{3} = 60$种坐法。
答案4
不同的分法种数为$A_{5}^{4} = 120$种。
常见错误解析与避免方法
混淆排列与组合
遗漏情况
排列和组合是不同的概念,需要明确 题目要求,正确使用公式。
在解题过程中,需要注意不要遗漏某 些情况,例如在排列时需要考虑元素 的顺序,在组合时需要考虑元素的取 法。
排列组合ppt课件

排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量
。
学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。
排列与组合ppt课件

数。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。
排列组合公式课件

斯特林数、贝尔数等特殊计数方法介绍
1 2 3
第一类斯特林数 表示将n个不同元素分成k个圆排列的方案数,记 作$s(n,k)$。
第二类斯特林数 表示将n个不同元素分成k个集合的方案数,记作 $S(n,k)$。
贝尔数 表示将n个元素分成任意个集合的方案数,记作 $B_n$。
排列组合在计算机科学中应用举例
组合性质
C(n,m)=C(n,n-m),C(n,0)+C(n,1)+...+C(n,n)=2^n。
组合公式推导过程
推导思路
通过排列数公式A(n,m)与组合数公 式C(n,m)之间的关系,推导出组合 公式C(n,m)=A(n,m)/m!。
推导过程
首先明确排列数公式A(n,m)的定义及 性质,然后利用排列数与组合数之间 的关系,推导出组合公式,并解释公 式中各符号的含义。
典型例题分析与解答
例题选择
选择具有代表性和针对性 的例题,如基础题型、易 错题型等;
解题步骤
详细阐述解题思路和步骤, 包括问题建模、公式应用、 计算过程等;
答案解析
给出最终答案,并对解题 过程进行解析和评价。
PART 03
组合公式详解
组合定义及性质
组合定义
从n个不同元素中取出m(m≤n)个元素的所有不同取法,记作C(n,m)。
分组竞赛
将学生分成若干小组,每组选一名 代表上台解题,看哪一组解得又快 又准,增强学生的团队协作和竞争 意识。
PART 05
知识拓展与延伸
阶乘、双阶乘等相关概念引入
阶乘
n!=n×(n-1)×...×2×1,0!=1。
双阶乘
n!!,当n为奇数时,n!!=n×(n-2)×...×3×1;当n为偶数时,n!!=n×(n-2)×...×4×2。
《高三排列组合复习》课件

3... times m}$
应用
计算在n个不同元素中取出m个 元素进行组合的不同方式的数目
。
示例
在5个不同元素中取出3个元素进 行组合的不同方式的数目为 $C_{5}^{3} = frac{5 times 4
times 3}{1 times 2 times 3} = 10$。
排列组合的逆序数计算
逆序数的定义
排列与组合的差异
排列考虑顺序,组合不考虑顺 序;
排列数的计算需要考虑取出的 元素顺序,而组合数的计算则 不需要考虑取出的元素顺序;
在实际应用中,排列和组合各 有其适用场景,需要根据具体 问题选择使用。
02
排列组合基本公式的应用
排列数公式的应用
排列数公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
06
复习总结与展望
本章重点回顾
排列组合的基本概念
排列组合的解题思路
排列和组合的定义、排列数和组合数 的计算公式等。
如何根据问题类型选择合适的解题方 法,如分步乘法计数原理、分类加法 计数原理等。
排列组合的常见问题类型
如分组、分配、排列、组合等问题。
学习心得体会
通过本次复习,我更加深入地理解了 排列组合的基本概念和计算方法,对 于常见问题类型也有了更清晰的认识 。
定序问题
总结词
解决定序问题需要使用定序法,根据题意确定元素的顺序。
详细描述
在排列组合问题中,有时需要特别注意元素的顺序。例如,有5个不同的书和4 个不同的笔,要求书和笔的顺序为“书-笔-书-笔-书”,则只要使用分组法,将元素分成若干组进行排列。
详细描述
求函数 y = x^2 - 4x + 4 在区间 [0,4] 的最值点
应用
计算在n个不同元素中取出m个 元素进行组合的不同方式的数目
。
示例
在5个不同元素中取出3个元素进 行组合的不同方式的数目为 $C_{5}^{3} = frac{5 times 4
times 3}{1 times 2 times 3} = 10$。
排列组合的逆序数计算
逆序数的定义
排列与组合的差异
排列考虑顺序,组合不考虑顺 序;
排列数的计算需要考虑取出的 元素顺序,而组合数的计算则 不需要考虑取出的元素顺序;
在实际应用中,排列和组合各 有其适用场景,需要根据具体 问题选择使用。
02
排列组合基本公式的应用
排列数公式的应用
排列数公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
06
复习总结与展望
本章重点回顾
排列组合的基本概念
排列组合的解题思路
排列和组合的定义、排列数和组合数 的计算公式等。
如何根据问题类型选择合适的解题方 法,如分步乘法计数原理、分类加法 计数原理等。
排列组合的常见问题类型
如分组、分配、排列、组合等问题。
学习心得体会
通过本次复习,我更加深入地理解了 排列组合的基本概念和计算方法,对 于常见问题类型也有了更清晰的认识 。
定序问题
总结词
解决定序问题需要使用定序法,根据题意确定元素的顺序。
详细描述
在排列组合问题中,有时需要特别注意元素的顺序。例如,有5个不同的书和4 个不同的笔,要求书和笔的顺序为“书-笔-书-笔-书”,则只要使用分组法,将元素分成若干组进行排列。
详细描述
求函数 y = x^2 - 4x + 4 在区间 [0,4] 的最值点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小试身手
1.从 a , b , c三个不同的元素中取出两个元 素的所有组合分别是: ab,ac,bc (3个) 2.已知4个元素a , b , c , d ,写出每次取出 两个元素的所有组合.
a
b c d
b
c d
c
d
ab,ac,ad,bc,bd,cd
(6个)
概念讲解
组合数:
从n个不同元素中取出m(m≤n)个元素的 有组合的个数,叫做从n个不同元素中取出m m 个元素的组合数,用符号 C n 表示. 注意: m Cn 是一个数,应该把它与“组合”区别开来. 如:从 a , b , c三个不同的元素中取出两个元 素的所有组合是: ab,ac,bc 如:已知4个元素a 、b 、 c 、 d ,写出每次取 2 出两个元素的组合数是: C4 6
练一练 写出从a,b,c,d 四个元素中任取三个元素 的所有组合. c a b c c
d
abc , abd, acd, bcd . d
b
d
C
3 4
4
组合
排列
abc
abd
acd
bcd
abc acb abd adb acd adc 你发现了 bcd 什么 ? bdc
bac bca bad bda cad cda cbd cdb
* m n ,这个公 这里 m、n N ,且 式叫做组合数公式.
A 因此: C A
m n
m n m m
n( n -1)( n - 2) ( n - m 1) m!
概念讲解
A
m n
n! ( n m )!
组合数公式:
A n(n 1)(n 2) (n m 1) C A m!
湖南科技大学
吕渊
复习引入
2.排列数及其公式:
一般地,从n个不同元素中取出m (m≤n)
个元素的所有不同排列的个数叫做从n个不
同元素中取出m个元素的排列数.
n! A n(n - 1)(n - 2) (n - m 1) (n m )! * * (n N , m N , m n )
m n
A 可看作是“取出m个元素”的方法数m1,与"按照一
定顺序将m个不同元素排成一列"的方法数m 2的乘积.
m n
概念讲解
组合定义:
一般地,从n个不同元素中取出m(m≤n) 个元素并成一组,叫做从n个不同元素中取 出m个元素的一个组合.
思考一:排列 与组合的概念有 什么共同点与不 同点?
概念讲解 排列定义: 一般地,从n个不同元素中取出m (m≤n)个元素,按照一定的顺序排成一列,叫做 从n个不同元素中取出m个元素的一个排列. 组合定义: 一般地,从n个不同元素中取出m (m≤n)个元素并成一组,叫做从n个不同元素中 取出m个元素的一个组合. 共同点: 都要“从n个不同元素中任取m个元素” 不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.
概念讲解
思考二:ab与ba是相同的排列还是相同的组合? 为什么? 思考三:两个相同的排列有什么特点?两个相 同的组合呢? 1)元素相同; 2)元素排列顺序相同. 思考四:组合与排列有联系吗? 构造排列分成两步完成,先取后排;而构 造组合就是其中的第一步. 元素相同
判断下列问题是组合问题还是排列问题? (1)设集合A={a,b,c,d,e},则集合A的含有3个元 组合问题 素的子集有多少个? (2)某铁路线上有5个车站,则这条铁路线上共需 排列问题 准备多少种车票? 组合问题 有多少种不同的火车票价? 组合是选择的结果,排列 (3)10名同学分成人数相同的数学和英语两个学习 是选择后再排序的结果 . 组合问题 小组,共有多少种分法? (4)10人聚会,见面后每两人之间要握手相互问候, 组合问题 共需握手多少次? (5)从4个风景点中选出2个游览,有多少种不同的 组合问题 方法? (6)从4个风景点中选出2个,并确定这2个风景点的 游览顺序,有多少种不同的方法? 排列问题
n( n 3 1)( 2) n 8 7 n 6(n 21) 5 4 6
(3) 已知 C A ,求 n .
21
例3
m1 nm
求证:C n
m
m
证明: Cn
m 1
n!
m 1 m 1 C n nm
n!
m !( n m )!
C n
m1
1 这位教练从这 17 名学员中可以形成多少种学员
m n m n m m
n! C m !(n m )!
m n
我们规定:C 1.
0 n
例1.甲、乙、丙、丁4支足球队举行单循环赛, (1)列出所有各场比赛的双方;
(2)列出所有冠亚军的可能情况.
解: (1)甲乙、甲丙、甲丁、
乙丙、乙丁、丙丁
(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁
乙甲、丙甲、丁甲、丙乙、丁乙、丁丙
n m (m 1)!(n m 1)! m 1 n! ( m 1)! ( n m )( n m 1)!
C n
m
m 1 m 1 C n nm
n! m !(n m ) !
例 4 一位教练的足球队共有17名初级学员, 他们中 以前没有一人参加过比赛 , 按照足球比赛规则 ,比赛 时一个足球队的上场队员是11人,问 :
例题分析
例2.求值或解方程:
4 (1)C7
(2) 3C 8 2 C 5
3 n 2 n
3
2
4 3 7 22 4 3 65 35. 解: (2) 2 解: (1) 解: (3)C3 由 , 有 CC 8 5 n n CA 7 4321
3 2 1 即n 2a dac dca dbc dcb
不写出所有组合,怎样才能知道组合的种数?
组合数公式推导 概念讲解 排列与组合是有区别的,但它们又有联系. 一般地,求从n个不同元素中取出m个元素的排 列数,可以分为以下2步: 第1步,先求出从这n个不同元素中取出m个元素的 m 组合数 m1 Cn m 第2步,求每个组合中m个元素的全排列数 m2 Am m m m A m m C A 1 2 n m 根据分步乘法计数原理得到 n