人教版高中数学必修二2.1 平面 PPT课件
合集下载
高中数学人教A版必修课件:平面

②判断点在直线上.
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
随堂练习
1.如图,用符号表示下列图形中点、直线、平面之 间的位置关系.
a
B A
l
(1)
al
P
b
(2)
解:在(1)中, l,a A,a B.
平面公理 文字语言
存在性
基本性质2 过不在一条直线上的三点,有且只有一个平
面. 作用?
图形语言
确定平面的主要依据.
B
唯一性
A C
符号语言
不再一条直线上的三个点A、B、C所确定的平面, 可以记成“平面ABC”.
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
D A
C B
为了增强立体感,常常把被遮挡部分用虚线 画出来.
D
FC
A
E
B
被遮挡部分 用虚线表示
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
平面的表示
常把希腊字母α、β、γ等写在代表平面的平行四边 形的一个角上,如平面α、平面β等;也可以用代表平 面的四边形的四个顶点,或者相对的两个顶点的大写 英文字母作为这个平面的名称.
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
文字语言
平面公理
基本性质1 如果一条直线上的两点在一个平面内, 那么这条直线在此平面内.
作用?
判定直线是否在平面内.
图形语言
符号语言
高中数学人教A版必修2课件:2.1.1平 面(共2 2张PPT )
高中数学 2.1.1 平面 课件 新人教A版必修2

第三十页,共55页。
变式训练3:如图,已知平面α、β相交于l,设梯形ABCD中,AD∥BC,
且AB
α,CD β.
求证:AB、CD、l相交于一点.
第三十一页,共55页。
证明:∵梯形ABCD中,AD∥BC,AB、DC是梯形ABCD的两腰,∴AB
、DC必相交于一点,设AB∩DC=M,又∵AB α,CD
第十页,共55页。
3.准确理解公理的含义 公理1是判定直线在平面内的依据.证明一条直线在某一平面内,只
需证明这条直线上有两个不同的点在该平面内.“直线在平 面内”是指“直线上的所有点都在平面内”. 公理2的作用是确定平面,是把空间问题化归成平面问题的重要 依据.并可用来证“两个平面重合”.特别要注意公理2中“不在 一条直线上的三个点”这一条件.
∴P在平面ABC与平面α的交线上. 同理可证Q和R均在这条交线上. ∴P\,Q\,R三点共线.
第二十九页,共55页。
规律技巧:解决点共线或线共点的问题是平面性质的应用.解决点共
线一般地先确定一条直线,再用平面的基本性质,证明其他的点 也在该直线上.直线共点问题的步骤:一先说明直线相交,二让交 点也在其他直线上.
第十七页,共55页。
变式训练1:判断下列说法是否正确?并说明理由.
(1)平面的形状是平行四边形;
(2)任何一个平面图形都是一个平面;
(3)圆和平面多边形都可以表示平面;
(4)因为
ABCD的面积大于
ABCD大于平面A′B′C′D′;
A′B′C′D的面积,所以平面
(5)用平行四边形表示平面,以平行四边形的四条边作为平面的边 界线.
第四十四页,共55页。
7.三条直线相交于一点,可确定的平面有________个. 答案:1或3
变式训练3:如图,已知平面α、β相交于l,设梯形ABCD中,AD∥BC,
且AB
α,CD β.
求证:AB、CD、l相交于一点.
第三十一页,共55页。
证明:∵梯形ABCD中,AD∥BC,AB、DC是梯形ABCD的两腰,∴AB
、DC必相交于一点,设AB∩DC=M,又∵AB α,CD
第十页,共55页。
3.准确理解公理的含义 公理1是判定直线在平面内的依据.证明一条直线在某一平面内,只
需证明这条直线上有两个不同的点在该平面内.“直线在平 面内”是指“直线上的所有点都在平面内”. 公理2的作用是确定平面,是把空间问题化归成平面问题的重要 依据.并可用来证“两个平面重合”.特别要注意公理2中“不在 一条直线上的三个点”这一条件.
∴P在平面ABC与平面α的交线上. 同理可证Q和R均在这条交线上. ∴P\,Q\,R三点共线.
第二十九页,共55页。
规律技巧:解决点共线或线共点的问题是平面性质的应用.解决点共
线一般地先确定一条直线,再用平面的基本性质,证明其他的点 也在该直线上.直线共点问题的步骤:一先说明直线相交,二让交 点也在其他直线上.
第十七页,共55页。
变式训练1:判断下列说法是否正确?并说明理由.
(1)平面的形状是平行四边形;
(2)任何一个平面图形都是一个平面;
(3)圆和平面多边形都可以表示平面;
(4)因为
ABCD的面积大于
ABCD大于平面A′B′C′D′;
A′B′C′D的面积,所以平面
(5)用平行四边形表示平面,以平行四边形的四条边作为平面的边 界线.
第四十四页,共55页。
7.三条直线相交于一点,可确定的平面有________个. 答案:1或3
高中数学人教B版必修2配套课件:2.1.2平面直角坐标系中的基本公式

第二章 2.1.2
平面直角坐标系中的基本公式
第二章
平面解析几何初步
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修2
课前自主预习
课堂典例讲练
方法警示探究 思想方法技巧
易错疑难辨析
课后强化作业
第二章
2.1 2.1.2
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修2
课前自主预习
[ 解析]
(1)∵|AB|= -7+32+22= 20,
|BC|= 1+32+6+22= 80, |AC|= 1+72+62= 100=10, ∴|AB|2+|BC|2=|AC|2, ∴△ABC是以∠B为直角的直角三角形. (2)∵△ABC为直角三角形,∴其外心为斜边AC的中点,
1-7 6+0 其坐标为 , 2 ,即(-3,3). 2
第二章
2.1 2.1.2
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修2
[正解]
(4,3)或(-2,-1)或(0,-5)
①当(1,1)与(2,-
1)为一条对角线的两端点时,第四个顶点的坐标为(4,3);②当 (1,1)与(-1,-3)为一条对角线的两端点时,第四个顶点的坐 标为 ( - 2 ,- 1) ;③当 (2 ,- 1) 与 ( - 1 ,- 3) 为一条对角线的
.又设C(x0,y0),则M为AC的中点,
x0=7 ,∴ y0=0
.∴C点坐标为(7,0).
第二章
2.1 2.1.2
成才之路 ·高中新课程 ·学习指导 ·人教B版 ·数学 ·必修2
[ 点评]
若给出平行四边形 ABCD 四点中三个 A、 B、 C ,
则 D 点是惟一的,如果该题不指出哪三个点,求第四个点坐 标,则第四个点坐标不惟一.
高中数学必修2第二章点直线平面之间的位置关系211平面及其表示法(含习题课)PPT课件

1,2,3(1)(2)
21
补充练习金太:阳教育网
l 1、A为直线 l上的点,又点A不在平面
与 的公共点最多有 _______1个.
品质来自专业 信赖源于诚信
内,则
2、四条直线过同一点,过每两条直线作一个平
面,则可以作_____1_或___4_或___6个不同的平面 .
22
金太阳教育网
品质来自专业 信赖源于诚信
2
金实太阳教例育网引入
品质来自专业 信赖源于诚信
观察活动室里的地面,它呈现出怎样的形象?
3
一.平面金太的阳教育概网 念:
品质来自专业 信赖源于诚信
光滑的桌面、平静的湖面等都是我们
熟悉的平面形象,数学中的平面概念是现
实平面加以抽象的结果。
二.平面的特征:
平面没有大小、厚薄和宽窄,平面在空 间是无限延伸的。
文字语金言太阳:教育网 公理1.如果一条直线上两点品信质赖在来源自于专诚一业信 个平面内,那么这条直线在此平
面内(即这条直线上的所有的点
23
点、线金、太阳面教之育网间的位置关系及语言表达
品质来自专业
信赖源于诚信
文字语言表达 图形语言表达 符号语言表达
点A在直线a上 点A不在直线a上
A
a
A
a
A∈a A∈a
点A在平面α上 点A不在平面α上 直线a在平面α内
α
A
α
α
A
a a
A∈α A∈ α
aα
a b∩α=A
直线a在平面α外 α
A α
a∩α=φ 或 a∥α24
B A
B
CαA
C
公理2.过不在同一直线上的三点,有且只有一个平面.
高中数学必修二第二章第一节课件

如图2 1 21,已知两点Px1, y1 , Qx2, y2 ,如果 x1 x2,那么直线PQ 的斜率 slope为
k y2 y1 x1 x2 .
x2 x1
如果x1 x2,那么直线PQ的斜率不
存在(图2 1 22).
图2 1 2
y
l
第 2章 平面解析几何初步
如 果 代 数 与 几 何 各 自 分开 发 展, 那 它 的 进 步 将 十 分 缓 慢,而 且 应 用 范 围 也 很 有 限.但 若 两 者 互 相 结 合 而 共同 发 展, 则 就 会 互 相加 强, 并 以 快速 的 步 伐 向 着 完 美 化 的 方 向 猛 进.
点的集合是一条曲线.
我 们 知 道, 直 线 和 圆 是 基 本 的 几 何图 形.那 么 如何建立它们的方程? 如何通过方程来研究它们的性质?
2.1 直线与方程
高二(19)
直 线 是 最 常 见 的 图 形, 过 一 点 沿 着 确 定 的 方 向 就 可 以 画 出 一 条 直 线.
为 什 么?
在直角坐标系中, 对于一条与x 轴相交的直线,把 x 轴所在 的 直 线 绕 着 交 点 按 逆 时针 方 向 旋 转 到 和 直 线 重合 时 所 转
过的最小正角称为这条直线的倾 斜 角(inclination),并规定:
y B
A
O
N
图2 1 51
与 x 轴 平 行 或 重 合 的 直 线 的倾 斜 角 为00 . 由定义可知,直线的倾斜角 的取值范 围是00 1800 . 当 直 线 的 斜 率 为 正 时, 直 线 的 倾 斜 角
x 为锐角图2 1 51,此时,
k y BN tan .
k y2 y1 x1 x2 .
x2 x1
如果x1 x2,那么直线PQ的斜率不
存在(图2 1 22).
图2 1 2
y
l
第 2章 平面解析几何初步
如 果 代 数 与 几 何 各 自 分开 发 展, 那 它 的 进 步 将 十 分 缓 慢,而 且 应 用 范 围 也 很 有 限.但 若 两 者 互 相 结 合 而 共同 发 展, 则 就 会 互 相加 强, 并 以 快速 的 步 伐 向 着 完 美 化 的 方 向 猛 进.
点的集合是一条曲线.
我 们 知 道, 直 线 和 圆 是 基 本 的 几 何图 形.那 么 如何建立它们的方程? 如何通过方程来研究它们的性质?
2.1 直线与方程
高二(19)
直 线 是 最 常 见 的 图 形, 过 一 点 沿 着 确 定 的 方 向 就 可 以 画 出 一 条 直 线.
为 什 么?
在直角坐标系中, 对于一条与x 轴相交的直线,把 x 轴所在 的 直 线 绕 着 交 点 按 逆 时针 方 向 旋 转 到 和 直 线 重合 时 所 转
过的最小正角称为这条直线的倾 斜 角(inclination),并规定:
y B
A
O
N
图2 1 51
与 x 轴 平 行 或 重 合 的 直 线 的倾 斜 角 为00 . 由定义可知,直线的倾斜角 的取值范 围是00 1800 . 当 直 线 的 斜 率 为 正 时, 直 线 的 倾 斜 角
x 为锐角图2 1 51,此时,
k y BN tan .
人教A版高中数学必修2第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系课件

C D
B A
C1 D1
B1 A1
知识小结
实例引 入平面
平面的画 法和表示
点和平面的 位置关系
平面三 个公理
空间图形
文字叙述
符号表示
2.1.2空间中两直线的位置 关系
平面有知识(复习 )
判断下列命题对错: 1、如果一条直线上有一个点在一个平面上,则这条直线上
的所有点都在这个平面内。( )
2、将书的一角接触课桌面,这时书所在平面和课桌所在平
直线。(既不相交也不平行的两条直线) 判断:
(1)
m
β
m
l
α
l
直线m和l是异面直线吗?
(2)
,则 与 是异面直线
(3)a,b不同在平面 内,则a与b异面
异面直线的画法:
通常用一个或两个平面来衬托,异面直线
不同在任何一个平面的特点
a
b
b
a
b
a
2、空间中两直线的三种位置关系
1、相交
m P
l
2、平行
m l
b′
平
a′ θ O
移
若两条异面直线所成角为90°,则称它们互相垂直。 异面直线a与b垂直也记作a⊥b 异面直线所成角θ的取值范围:
例 3 在正方体ABCD—A1B1C1D1中指出下列各对线段所
成的角:
D1
C1
1)AB与CC1; 2)A1 B1与AC; A1
B1
3)A1B与D1B1。
1)AB与CC1所成的角 = 9 0°
4、平面的基本性质
公理3 如果两个不重合的平面有一个公共点,
那么它们有且只有一条过该点的公共直线.
符号表示为:
P l, Pl.
高中数学必修二2.1.1课件

(2)在“A∈α,A∉α,l⊂α”中视“A”为平面 α(集合)上的点(元 素),直线 l(集合)视为平面 α(集合)的子集.明确这一点,才能正确 使用集合符号.
典例剖析 题型一 平面概念的理解 【例 1】 下列对平面的描述语句: ①平静的太平洋面就是一个平面; ②8 个平面重叠起来比 6 个平面重叠起来厚; ③四边形确定一个平面; ④平面可以看作空间的点的集合,它当然是一个无限集. 其中正确的是________. 思路点拨:利用平面的概念来解答.
BD.
①
②
2.点、线、面之间的关系 (1)直线在平面内概念: 如果直线 l 上的_所__有__点___都在平面 α 内,就说直线 l 在平面 α 内,或者说___平__面___α_经__过__直__线___l__.
(2)一些文字语言与数学符号的对应关系:
文字语言表达 数学符号表示
文字语 言表达
数学符号表示
【解析】
序号 正误
原因分析
①
×
太平洋面只是给我们以平面的形象,而 平面是抽象的,可无限延展的
② × 平面是无大小、无厚薄之分的
③
×
如三棱锥的四个顶点相连的四边形不能 确定一个平面
④ √ 平面是空间中点的集合,是无限集
【答案】AC
要点阐释 1.平面的概念 “平面”是一个只描述而不定义的原始概念(像“点”、“直 线”、“集合”等概念一样),常见的桌面、黑板面、平静的水面 等都给我们以平面的形象,几何里的平面就是从这些物体抽象出来 的.
2.平面的画法及表示 当我们从适当的角度和距离观察桌面或黑板面时,感到它们都 很像平行四边形,因此立体几何中我们通常用平行四边形来表示平 面.当平面水平放置时,通常把平行四边形的锐角画成 45°,横边 画成邻边的 2 倍长.如图 1 所示.
典例剖析 题型一 平面概念的理解 【例 1】 下列对平面的描述语句: ①平静的太平洋面就是一个平面; ②8 个平面重叠起来比 6 个平面重叠起来厚; ③四边形确定一个平面; ④平面可以看作空间的点的集合,它当然是一个无限集. 其中正确的是________. 思路点拨:利用平面的概念来解答.
BD.
①
②
2.点、线、面之间的关系 (1)直线在平面内概念: 如果直线 l 上的_所__有__点___都在平面 α 内,就说直线 l 在平面 α 内,或者说___平__面___α_经__过__直__线___l__.
(2)一些文字语言与数学符号的对应关系:
文字语言表达 数学符号表示
文字语 言表达
数学符号表示
【解析】
序号 正误
原因分析
①
×
太平洋面只是给我们以平面的形象,而 平面是抽象的,可无限延展的
② × 平面是无大小、无厚薄之分的
③
×
如三棱锥的四个顶点相连的四边形不能 确定一个平面
④ √ 平面是空间中点的集合,是无限集
【答案】AC
要点阐释 1.平面的概念 “平面”是一个只描述而不定义的原始概念(像“点”、“直 线”、“集合”等概念一样),常见的桌面、黑板面、平静的水面 等都给我们以平面的形象,几何里的平面就是从这些物体抽象出来 的.
2.平面的画法及表示 当我们从适当的角度和距离观察桌面或黑板面时,感到它们都 很像平行四边形,因此立体几何中我们通常用平行四边形来表示平 面.当平面水平放置时,通常把平行四边形的锐角画成 45°,横边 画成邻边的 2 倍长.如图 1 所示.
新人教版高中数学必修二全册教学课件ppt

答案
返回
题型探究
重点难点 个个击破
类型一 旋转体的结构特征 例1 判断下列各命题是否正确: (1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线; 解 错. 由圆柱母线的定义知,圆柱的母线应平行于轴.
解析答案
(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几 何体是圆台; 解 错. 直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与 一个圆锥组成的简单组合体,如图所示.
答案
球的结构特征
球
图形及表示
定义:以 半圆的直径 所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做球体, 简称球
相关概念: 球心:半圆的 圆心 半径:半圆的 半径 直径:半圆的 直径
图中的球表示为: 球O
答案
知识点五 简单组合体
思考 下图中的两个空间几何体是柱、锥、台、球体中的一种吗? 它们是如何构成的?
课
时
上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我
开 关
们就来学习旋转体与简单组合体的结构特征.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
问题 1 如图所示的空间几何体叫做圆柱,那么圆
柱是怎样形成的呢?与圆柱有关的几个概念是
为旋转轴,将直角梯形绕旋转轴旋转一周而形成的旋转
体叫做圆台
相关概念:
圆台的轴: 旋转轴
圆台的底面: 垂直于轴 的边旋转一周所形成的圆面
圆台的侧面: 不垂直于轴 的边旋转一周所形成的曲面 图中圆台表示为:
母线:无论旋转到什么位置,不垂直于轴的边
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用1: 几位同学的一次野炊活动,带去一 张折叠方桌,不小心弄坏了桌脚,有一生提 议可将几根一样长的木棍,在等高处用绳 捆扎一下作桌脚(如图所示),问至少要
答:至少3根
应用2:过空间中一点可以做几个平面? 过空间中两点呢?三点呢?
结论:过空间中一点或两点可以做无数 个平面,过空间中不共线的三点只能做一个, 否则有无数个。
A
B
结论2 :空间中线与面的位置关系
直线a在平面a内 记作:a
直线a在平面a外
记作:a a
a
强调: 空间中点与线(面)只有∈和 空间中线与面只有 与 推导符号“ 条件
关系 的关系
”的使用: 条件1 结论 结论 条件2
}
思考2:固定一扇门需要几样东西?
回答:确定一个平面需要什么条件?
第二章空间点、直线、平面之间的位置关系
复习引入
1、初中《几何》中我们认识了哪些平面几何图形? 三角形、四边形、多边形、圆形、椭圆等。
点、线 平面内基本图形: 2、高中《几何》中我们认识了哪些立体几何图形? 棱柱、棱锥、棱台、圆柱、圆锥、圆台、球等。
空间中基本图形: 点、线、面
一、平面的表示方法
公理2:过不在同一条直线上的三点,有 且只有一个平面。
B
A
C
A、B、C不共线 A、B、C确定一个平面 作用:用于确定一个平面.
强调:推导符号跟着结论一起换行。
确定一平面还有哪些方法?
公理2.不共线的三点确定一个平面.
B
A
C
推论1.一条直线和直线外一点确定一个平面。 推论2.两条相交直线确定一个平面。 推论3.两条平行直线确定一个平面。
1.特点:平面是无限延展,没有厚度的. (但常用平面的一部分表示平面) 2.画法:水平或竖直的平面常用平行四边形表示. D D C C
3.记法: B ①平面α、平面β、平面γ(标记在边上) ②平面ABCD、平面AC或平面BD
A
B
A
巩固: 判断下列各题的说法正确与否,在正 确的说法的题号后打 ,否则打 . 1、一个平面长 4 米,宽 2 米; ( )
2、平面有边界;
3、一个平面的面积是 25 cm 2; 4、平面是无限延展、没有厚度的 ; ( )
(
(
)
)
5、一个平面可以把空间分成两部分. (
)
结论1:空间中点与线、点与面的位置关系
图形 文字语言(读法) 符号语言
A
A
a a
点在直线上 点在直线外 点在平面内 点在平面外
A a A a A
记作:a a
a
强调: 空间中点与线(面)只有∈和 空间中线与面只有 与 推导符号“ 条件
关系 的关系
”的使用: 条件1 结论 结论 条件2
}
布置作业
1、课后作业: 课本P56习题2.1 A组 1、2、
5
2、预习作业: 课本48页-52页
思考:B组 3
∴直线AB、BC、AC共面于a A
B
C
例3:△ABC在平面a外, AB∩a =P, BC ∩a=Q, AC∩a =R,求证:P、Q、R三点共线.(共线问题) 证明:∵P∈AB 且 AB 平面ABC ∴ P∈平面ABC 又P∈a ∴ P∈平面ABC∩a (公理3) 设平面ABC∩a = l C l R A
思考3:如图所示,两个平面 、 交于一点,则会发生什么现象?
,若相
l
P
公理3:若两个不重合平面有一个公共点, 则它们有且只有一条过该点的公共直线。 即: P∈a且P∈b I=l且l
P∈a
P∈b
} {
I=l
P∈l
作用:用于证明点在线上或多点共线.
用符号表示下列图形中点、直线、 例 1: 平面之间的位置关系。
P∈b
} {
I=l
P∈l
作用:用于证明点在线上或多点共线
结论1:空间中点与线、点与面的位置关系
图形 文字语言(读法) 符号语言
A
A
a a
点在直线上 点在直线外
A a A a A
A A
点在平面内
点在平面外
A
结论2 :空间中线与面的位置关系
直线a在平面a内 记作:a
直线a在平面a外
作用:用于判定线在面内
A
B
A和a确定一平面.
小结:公理2及其推论 A,B,C不共线 A,B,C确定一平面. A∈ a
A
B
C
A
a a
a
P b
aIb=P a和b确定一平面. a∥b a和b确定一平面.
作用:用于确定一个平面.
b
公理3:若两个不重合平面有一个公共点, 则它们有且只有一条过该点的公共直线。 即: P∈a且P∈b I=l且l P∈a
β
B
α
α
A
a
a
P
b
β
P48练习1- 4
例2:求证两两相交于不同点的三条直线 必在同一个平面内(共面问题) 已知: AB∩AC=A,AB∩BC=B,AC∩BC=C.
求证:直线AB、BC、AC共面.
证明∵AB∩AC=A ∴AB和AC确定一平面a(公理2的推论2)
∵B∈AB a,C∈AC a ∴BC a(公理1)
B
P
则 P∈ l
Байду номын сангаас
Q
同理 Q∈l 且 R ∈ l Q、R三点共线于直线l 故 P、
小结:平面的基本性质 若一条直线的两点在一个平面内,则 公理1:
这条直线上所有的点都在这个平面内, 即:这条直线在这个平面内 即 : A ∈ a且 B ∈ a AB a
A AB B
A A
A
思考1:把一根木条固定在墙面上需要几根钉子?
二、平面的基本性质
公理1:若一条直线的两点在一个平面内, 则这条直线上所有的点都在这个平面内, 即:这条直线在这个平面内。 即 : A ∈ a且 B ∈ a AB a
A AB B
作用:用于判定线在面内