第4章 随机变量的数字特征

合集下载

最新第四章-随机变量的数字特征总结

最新第四章-随机变量的数字特征总结

第四章 随机变量的数字特征㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置. 1、数学期望的定义(1) 定义 离散型和连续型随机变量X 的数学期望定义为{}⎪⎩⎪⎨⎧==⎰∑∞∞- d )( )()( ,,连续型离散型x x xf x X x X kk k P E其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在. ①常见的离散型随机变量的数学期望1、离散型随机变量的数学期望设离散型随机变量的概率分布为,若,则称级数为随机变量的数学期望(或称为均值),记为, 即2、两点分布的数学期望设服从0—1分布,则有,根据定义,的数学期望为.3、二项分布的数学期望设服从以为参数的二项分布,,则。

4、泊松分布的数学期望设随机变量服从参数为的泊松分布,即,从而有。

①常见的连续型随机变量的数学期望1)均匀分布设随机变量ξ服从均匀分布,ξ~U [a ,b ] (a <b ),它的概率密度函数为:= 则=∴ E (ξ)=(a+b )/2. 即数学期望位于区间的中点.2)正态分布设随机变量ξ服从正态分布,ξ~N(μ,σ2),它的概率密度函数为:(σ>0,- <μ<+ )则令得∴ E(ξ)=μ .3)指数分布设随机变量服从参数为的指数分布,的密度函数为,则.(2) 随机变量的函数的数学期望设)(xgy=为连续函数或分段连续函数,而X是任一随机变量,则随机变量)(XgY=的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出Y的概率分布再求其数学期望;对于二元函数),(YXgZ=,有类似的公式:(){}⎪⎩⎪⎨⎧===⎰∑∞∞.;(连续型)离散型-d)()()()(xxfxgxXxgXgY kkkPEE()(){}()()()()⎪⎩⎪⎨⎧====⎰⎰∑∑∞∞-∞∞-.;连续型离散型dd,,,,,yxyxfyxgyYxXyxgYXgZi jjijiPEE设(,)X Y为二维离散型随机变量,其联合概率函数(,),,1,2,,i j ijP X a Y b p i j====如果级数(,)i j ijj ig a b p∑∑绝对收敛,则(,)X Y的函数(,)g X Y的数学期望为[(,)](,)i j ijj iE g X Y g a b p=∑∑;特别地();()i ij j iji i j iE X a p E Y b p==∑∑∑∑.设X为连续型随机变量,其概率密度为()f x,如果广义积分()()g x f x dx+∞-∞⎰绝对收敛,则X的函数()g X的数学期望为[()]()()E g X g x f x dx+∞-∞=⎰.设(,)X Y 为二维连续型随机变量,其联合概率密度为(,)f x y ,如果广义积分(,)(,)g x y f x y dxdy+∞+∞-∞-∞⎰⎰绝对收敛,则(,)X Y 的函数(,)g X Y 的数学期望为[(,)](,)(,)E g x y g x y f x y dxdy+∞+∞-∞-∞=⎰⎰; 特别地()(,)E x xf x y dxdy +∞+∞-∞-∞=⎰⎰,()(,)E Y yf x y dxdy+∞+∞-∞-∞=⎰⎰.注:求E(X,Y)是无意义的,比如说二维(身高,胖瘦)的数学期望是无意义的,但是二维随机变量函数Z= E(X,Y)是有意义的,他表示的是函数下的另一个一维意义。

第4章随机变量的数字特征

第4章随机变量的数字特征

xi
xn
一、数学期望的定义 复习:
1
第4章 随机变量的数字特征
8
2
3 3
4
一、数学期望的定义
第4章 随机变量的数字特征
9
例2
一、数学期望的定义 解
第4章 随机变量的数字特征
10
一、数学期望的定义
第4章 随机变量的数字特征
11
一、数学期望的定义
第4章 随机变量的数字特征
12
一、数学期望的定义
55
一、协方差
第4章 随机变量的数字特征
56
在实际计算协方差时,更多的是使用下列公式,
一、协方差
第4章 随机变量的数字特征
57
定理1 协方差具有下列性质:
1 2
3
4
一、协方差 证明
01
OPTION
第4章 随机变量的数字特征
58
02
OPTION
03
OPTION
一、协方差
OPTION
第4章 随机变量的数字特征
第4章 随机变量的数字特征
97
定义4
总结/summary
第4章 随机变量的数字特征
98
理解 离散型、连续型随机变量的数学期望的 定义及其概率含义 熟悉 数学期望的性质 掌握 随机变量函数的期望公式 熟练 常用随机变量的数学期望 理解 熟悉 掌握 熟练 随机变量方差的定义及方差的概率含义 方差的性质 随机变量的方差计算公式 常用随机变量的方差
1
第4章 随机变量的数字特征
48
2
3 4
二、方差的性质
第4章 随机变量的数字特征
49
例2 解
那么,由方差的性质得

北京理工大学《概率论与数理统计》课件-第4章随机变量的数字特征

北京理工大学《概率论与数理统计》课件-第4章随机变量的数字特征

北京理工大学《概率论与数理统计》分布函数能够完整地描述随机变量的统计特性,但在某些实际问题中,不需要全面考查随机变量的变化,只需知道它的随机变量的某些数字特征也就够了.评定某企业的经营能力时,只要知道该企业例如:年平均赢利水平研究水稻品种优劣时,我们关心的是稻穗的平均粒数及平均重量考察一射手的水平,既要看他的平均环数是否高,还要看他弹着点的范围是否小,即数据的波动是否小.由上面的例子看到,平均盈利水平、平均粒数、平均环数、数据的波动大小等,都是与随机变量有关的某个数值,能清晰地描述随机变量在某些方面的重要特征,这些数字特征在理论和实践上都具有重要意义.另一方面,对于一些常用的重要分布,如二项分布、泊松分布、指数分布、正态分布等,其中的参数恰好就是某些数字特征,因此,只要知道了这些数字特征,就能完全确定其具体的分布.第四章随机变量的数字特征4.1随机变量的平均取值——数学期望4.2随机变量取值平均偏离平均值的情况——方差4.3 描述两个随机变量之间的某种关系的数——协方差与相关系数4.1 数学期望一离散型随机变量的数学期望二连续型随机变量的数学期望三常见分布的数学期望四随机变量函数的数学期望五数学期望的性质六、数学期望的应用一离散型随机变量的数学期望引例射击问题设某射击手在同样的条件下,瞄准靶子相继射击90次,(命中的环数是一个随机变量).射中次数记录如下命中环数Y0 1 2 3 4 5命中次数n k 2 13 15 10 20 30频率n k/n2/90 13/90 15/90 10/90 20/90 30/90试问:该射手每次射击平均命中靶多少环?解:平均命中环数这是以频率为权的加权平均命中环数Y0 1 2 3 4 5命中次数n k2 13 15 10 20 30频率n k /n 2/90 13/90 15/90 10/90 20/90 30/900211321531042053090×+×+×+×+×+×=21315102030012345909090909090=×+×+×+×+×+×50k k n k n =⋅∑ 3.37.==射中靶的总环数射击次数平均射中环数频率随机波动随机波动“平均射中环数”的稳定值?=由频率的稳定性知:当n 很大时:频率n k /n 稳定于概率p k 稳定于50k k n k n =⋅∑50k k k p =⋅∑50k k n k n =⋅∑“平均射中环数”等于射中环数的可能值与其概率之积的累加定义1 设X 是离散型随机变量,它的概率分布是:P {X =x k }=p k , k =1,2,…如果绝对收敛,则称它为X 的数学期望或均值.记为E (X ), 即如果发散,则称X 的数学期望不存在.1k k k x p ∞=∑1()k k k E X x p ∞==∑1||k k k x p∞=∑注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.注1:随机变量X 的数学期望完全是由它的概率分布确定的,而不应受X 的可能取值的排列次序的影响,因此要求绝对收敛1k k k xp ∞=<+∞∑11111(1)1ln 2234212n n−+−++−→− 1111111(2)1ln 22436852−−+−−+→注2.E (X )是一个实数,而非随机变量,它是一种以概率为权的加权平均,与一般的算术平均值不同,它从本质上体现了随机变量X 取可能值的真正的平均值,也称均值.当随机变量X 取各个可能值是等概率分布时,X 的期望值与算术平均值相等.假设X 1P80 85 90 1/4 1/4 1/21()800.25850.25+900.586.25E X =×+××=X 2P80 85 901/3 1/3 1/32()85.E X =注3.数学期望E(X)完全由随机变量X的概率分布确定,若X服从某一分布,也称E(X)是这一分布的数学期望.乙射手甲射手例1.甲、乙两个射击手,他们射击的分布律如下表所示,问:甲和乙谁的技术更好?击中环数8 9 10概率0.3 0.1 0.6击中环数8 9 10概率0.2 0.5 0.3单从分布列看不出好坏,解:设甲,乙两个射击手击中的环数分别为X 1,X 2E (X 1)=8×0.3+9×0.1+10×0.6=9.3(环)E (X 2)=8×0.2+9×0.5+10×0.3=9.1(环)例2.1654年职业赌徒德.梅尔向法国数学家帕斯卡提出一个使他苦恼很久的分赌本问题:甲、乙两赌徒赌技相同,各出赌注50法郎,每局中无平局.他们约定,谁先赢三局,则得到全部100法郎的赌本.当甲赢了2局,乙赢了1局时,因故要中止赌博.现问这100法郎如何分才算公平?解:假如比赛继续进行下去,直到结束为止. 则需要2局.这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.设:X、Y分别表示甲和乙得到的赌金数. 则分布律分别为:X0 100 P1/4 3/4Y0 100 P3/4 1/4这时,可能的结果为:甲甲,甲乙,乙甲,乙乙即:甲赢得赌局的概率为3/4,而乙赢的概率为1/4.E(X)=0×1/4+100×3/4=75E(Y)=0×3/4+100×1/4=25即甲、乙应该按照3:1的比例分配全部的赌本.例3.确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为30%,可得利润8万元,失败的机会为70%,将损失2万元.若存入银行,同期间的利率为5%,问是否做此项投资?解:设X 为此项投资的利润,则存入银行的利息:故应该选择该项投资.(注:投资有风险,投资须谨慎)X 8 −2P0.3 0.7此项投资的平均利润为:E (X )=8×0.3+(−2)×0.7=1(万元)10×0.05=0.5(万元)设X 是连续型随机变量,密度函数为f (x ).问题:如何寻找一个体现随机变量平均值的量.将X 离散化.二、连续型随机变量的数学期望在数轴上取等分点:…x −2<x −1<x 0<x 1<x 2<…x k +1−x k =∆x ,k =0,±1,….,并设x k 都是f (x )的连续点.则小区间[x i ,x i+1)阴影面积近似为f (x i )∆x i1()i x x f x dx+=∫()i f x x≈∆P {x i <X ≤x i +1}定义一个离散型随机变量X *如下:其数学期望存在,且绝对收敛时,P {X *=x i }=P {x i ≤X <x i +1} ≈f (x i )∆x对于X *,当当分点越来越密,即∆x →0时,可以认为X *=x i 当且仅当x i ≤X <x i +1(*)i i ix P X x =∑(*){*}i i iE X x P X x ==∑()i i ix f x x ≈∆∑0=lim ()i i x ix f x x ∆→∆∑则其分布律为E (X *) →E (X ) *0=lim x EX EX ∆→即有:+()xf x dx∞−∞=∫定义2:设X 是连续型随机变量,其密度函数为f (x ),如果绝对收敛,则称的值为X 的数学期望,如果积分发散,则称随机变量X 的数学期望不存在.+()xf x dx ∞−∞∫+||()x f x dx∞−∞∫即+()()E X xf x dx∞−∞=∫+()xf x dx ∞−∞∫记为E (X ).注意:随机变量的数学期望的本质就是加权平均数,它是一个数,不再是随机变量.三、常见分布的数学期望1.0−1分布设随机变量X服从参数为p的0−1分布,求EX.解:X的分布律为X0 1P1−p p则:E(X)=0×P{X=0}+1×P{X=1}=P{X=1}=p概率是数学期望的特例(第五章)2.二项分布X 的分布律为P {X =k }=C n k p k (1−p )n−k ,k =0,1,…,n .解:设随机变量X ~b (n ,p ),求EX .0{}nk EX kP X k ==∑0(1)n k k n k n k kC p p −=−∑1!(1)!()!n k n kk n k p p k n k −=−−∑1(1)(1)1(1)!(1)(1)!()!nk n k k n np p p k n k −−−−=−−−−∑11(1)1(1)n l k l ln ln l np Cp p −=−−−−=−∑1[(1)]n np p p −=+−np=抛掷一枚均匀硬币100次,能期望得到多少次正面3.泊松分布则解:X 的分布律为设随机变量X ~π(λ),求EX .{},0,1,2,!kP X k e k k λλ−=== 00(){}!k k k e E X kP X k k k λλ−∞∞=====∑∑11(1)!k k ek λλλ−∞−==−∑1!ii k i e i λλλ∞=−−=∑=e e λλλλ−=1!k k e k k λλ−∞==∑泊松分布的参数是λ4.几何分布解:X 的分布律为P {X =k }=q k −1p ,k =1,2,….p+q =1设随机变量X 服从参数为p 的几何分布,求EX .111(){}k k k E X kP Xk k pq∞∞−=====⋅∑∑11k k p k q∞−=⋅∑1=()kk p q ∞=′∑1=()k k p q ∞=′∑()1q p q′=−211(1)p q p=−重复掷一颗骰子平均掷多少次才能第一次出现6点设X ~U (a , b ),求E (X ).解:X 的概率密度为:X 的数学期望为:数学期望位于区间(a ,b )的中点.5.均匀分布1()0a xb f x b a<<=− 其它()()2bax a b E X xf x dx dx b a +∞−∞+===−∫∫设X 服从指数分布,求E (X ).分部积分法6.指数分布当概率密度表示为:对应的数学期望为θ.,0()0,x e x f x x λλ− >=≤ 0xxedx λλ+∞−=∫()()E X xf x dx +∞−∞=∫1λ=1,0()0,0xe xf x x θθ− > = ≤解:X 的概率密度为:设X ~N (μ,σ2),求E (X ).解:X 的概率密度为被积函数为奇函数,故此项积分为0.7.正态分布22()21()2x f x eµσπσ−−=()()E X xf x dx +∞−∞=∫22()212x xedxµσπσ−+∞−−∞=∫221()2x t t t edtµσσµπ−=+∞−−∞+∫ 2222122t t tedt edt σµππ+∞+∞−−−∞−∞+∫∫µ=N (0,1)的密度函数积分为1.注意:不是所有的随机变量都有数学期望例如:Cauchy 分布的密度函数为但发散故其数学期望不存在.21(),(1)f x x x π=−∞<<+∞+2||||()(1)x x f x dx dx x π+∞+∞−∞−∞=+∫∫四随机变量函数的数学期望设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?一种方法是,因为g(X)也是随机变量,故应有概率分布,它的分布可以由已知的X的分布求出来. 一旦我们知道了g(X)的分布,就可以按照期望的定义把E[g(X)]计算出来.例4.某商店对某种家用电器的销售采用先使用后付款的方式,记该种电器的使用寿命为X (以年计),规定:X ≤1,一台付款1500元;1<X ≤2,一台付款2000元2<X ≤3,一台付款2500元;X >3,一台付款3000元设X 服从指数分布,且平均寿命为10年,求该商店一台电器的平均收费.解:设该商店一台电器的收费为Y .要求E (Y )X 的分布函数为:1101,()0,0x e x F x x − −>=≤设该商店一台电器的收费为YX ≤1,一台付款1500元1 <X ≤2,一台付款2000元2 <X ≤3,一台付款2500元X >3,一台付款3000元1101,0()0,0x ex F x x − −>=≤P {Y =1500}=P {X ≤1}=F (1)=1−e −0.1=0.0952P {Y =2000}=P {1<X ≤2}=F (2)−F (1)=0.0861P {Y =2500}=P {2<X ≤3}=F (3)−F (2)=0.0779P {Y =3000}=P {X >3}=1−F (3)=0.7408设X 服从指数分布,且平均寿命为10年.Y 的分布律为所以该商店一台电器的平均收费,即Y 的数学期望为Y 1500 2000 2500 3000P0.0952 0.0861 0.0779 0.7408()15000.095220000.086125000.0779 30000.74082732.15E Y =×+×+×+×=使用上述方法必须先求出g(X)的分布,有时这一步骤是比较复杂的.那么是否可以不先求g(X)的分布,而只根据X的分布求E[g(X)]呢?例5.设离散型随机变量X 的概率分布如下表所示,求:Z=X 2的期望.X−11P214141E (Z )= g (0)×0.5+g (-1)×0.25+g (1)×0.25解:=0.5注:这里的.)(2x x g =(1)当X 为离散型随机变量时,分布律为P {X = x k }=p k ,k =1,2,⋯(2)当X 为连续型随机变量时,概率密度函数为f (x ).定理:设Y 是随机变量X 的函数,Y =g (X )(g 是连续函数)若级数绝对收敛,则有若积分绝对收敛,则有1()[()]()kkk E Y E g X g x p∞===∑()[()]()()E Y E g X g x f x dx+∞==∫1()k k k g x p ∞=∑()()g x f x dx+∞−∞∫该公式的重要性在于:当求E [g (X )]时,不必知道g (X )的分布,而只需知道X 的分布就可以了,这给求随机变量函数的期望带来很大方便.k k k g x p X E Y E g X g x f x dx X 1(),()[()]()(),∞=+∞−∞== ∑∫离散型连续型例6.设随机变量X~b(n, p),Y=e aX,求E(Y).解:因为X的分布律为所以有{}(1), 0,1,...,k k n knP X k C p p k n−==−= ()E Y=(1)nak k k n knke C p p−=−∑()(1)nk a k n knkC e p p−=−∑[(1)]a npe p=+−={}nakke P X k==∑例7.设X ~U [0,π],Y=sinX ,求E (Y ).解:因为X 的概率密度为所以有1,0()0,x f x ππ≤≤ =其他()sin ()E Y xf x dx +∞−∞=∫01sin x dx ππ⋅∫2π=定理:设Z 是随机变量X 和Y 的函数,Z =g (X,Y )(g 是连续函数),Z 是一维随机变量(1)若(X,Y )是二维离散型随机变量,概率分布为(2)若(X,Y )是二维连续型随机变量,概率密度为f (x, y ),则有这里假定上两式右边的积分或级数都绝对收敛11()[(,)](,)ijijj i E Z E g X Y g x y p∞∞====∑∑()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫{,},,1,2,i j ij P X x Y y p i j ====则有几个常用的公式()[(,)](,)(,)E Z E g X Y g x y f x y dxdy+∞+∞−∞−∞==∫∫(,)EX xf x y dxdy+∞+∞−∞−∞=∫∫(,)EY yf x y dxdy+∞+∞−∞−∞=∫∫22()(,)E Y y f x y dxdy+∞+∞−∞−∞=∫∫22()(,)E X x f x y dxdy+∞+∞−∞−∞=∫∫()(,)E XY xyf x y dxdy+∞+∞−∞−∞=∫∫例8.设二维随机变量(X ,Y )的密度函数为求E (X ),E (Y ),E (X +Y ),E (XY ).解:21(13),02,01,(,)40,x y x y f x y +<<<< =其它()(,)E X xf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4x xdx y dy =⋅+∫∫43=()(,)E Y yf x y dxdy+∞+∞−∞−∞=∫∫212001(13)4xdx y y dy +∫∫58=数学期望的性质注意:X ,Y 相互独立()()(,)E X Y x y f x y dxdy+∞+∞−∞−∞+=+∫∫(,)(,)xf x y dxdy yf x y dxdy+∞+∞+∞+∞−∞−∞−∞−∞+∫∫∫∫()()E X E Y +45473824=+=()(,)E XY xyf x y dxdy +∞+∞−∞−∞=∫∫2120011(13)22x xdx y y dy=⋅⋅+∫∫455386=⋅=()()E X E Y ⋅设X =(X 1,…, X n )为离散型随机向量,概率分布为≥ 1nnj j j j n P X =x ,,x =p ,j ,,j .11{()}1Z = g (X 1,…, X n ),若级数绝对收敛,则.<∞∑ nnnj j j j j j g x ,,x p 111()=∑ nnnn j j j jj j E Z =E g X ,,X g x ,,x p 1111()(())()设X =(X 1,…, X n )为连续型随机向量,联合密度函数为 n f x x 1(,,)Z = g (X 1,…, X n ),若积分绝对收敛,则+∞+∞−∞−∞∫∫n n ng x x f x x x x 111(,,)(,,)d d n E Z E g X X 1()=((,,))+∞+∞−∞−∞=∫∫n n ng x x f x x x x 111(,,)(,,)d d五数学期望的性质1.设C 是常数,则E (C )=C 4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X )3.E (X +Y )=E (X )+E (Y )注意:由E (XY )=E (X )E (Y )不一定能推出X ,Y 独立推广(诸X i 相互独立时)推广11[]()nni i i i i i E C X C E X ===∑∑11[]()n ni i i i E X E X ===∏∏性质4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定相互独立.反例XY p ij -1 0 1-10181818181818181810p • j838382p i•838382X Y P-1 0 1828284EX EY ==0;E XY ()=0;=E XY EX EY ()但P X Y 1{=-1,=-1}=8≠=P X P Y 23{=-1}{=-1}8××=30+2103-3+5=92X XY Y X XY Y E(3+2-+5)=3E()+2E()-E()+E(5)性质2和3×××EX EY =310+2-3+5性质4例9.设X ~N (10,4),Y ~U [1,5],且X 与Y 相互独立,求E (3X +2XY -Y +5).解:由已知,有E (X )=10, E (Y )=3.例10: 设X 1 , X 2…,X n 相互独立且都服从B (1, p ),求Z = X 1 + X 2+…+X n 的数学期望E (Z ).解:注: 由二项分布的可加性易知Z = X 1 + X 2+…+X n ~B (n, p ).EZ = E (X 1 + X 2+…+X n )= E (X 1 ) +E ( X 2)+…+E (X n )= p +p +…+p =n p求二项分布的数学期望的又一种方法.例11.(超几何分布的数学期望)设一批同类型的产品共有N 件,其中次品有M 件.今从中任取n (假定n ≤N −M )件,记这n 件中所含的次品数为X ,求E (X ).则有所以解: 引入X =X 1+X 2+…+X n且易知抽签模型,概率与试验次数无关例10和例11:将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.1,,1,2,,0,i i X i n i ==第件是次品第件不是次品iMP X N{1}==1()ni i EX E X ==∑ni i P X 1{1}==∑1ni M N ==∑nM N =为普查某种疾病,N 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验N 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例13.六、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.。

第四章随机变量的数字特征

第四章随机变量的数字特征

f (x)dx 1
0
1
0dx (ax b)dx 0dx 1
0
1
(a 2
x2
bx)
1 0
1
a 2
b
1
a
2b
2

联立① ②可解得: a 2,b 0
于是:
f
(x)
2x 0
0 x 1 其他
例7:设随机变量X的概率密度为
1
f (x) (1 x2 )
x (, )
试求E( X ) .
解:显然商场内获利情况是清楚的,我们只需要计 算商场外的获利情况,并进行比较.
设X表示商场外举行促销活动的获利金额. 则:
X
10
-4
P
0.6
0.4
由数学期望的求法:
2
E( X ) xi pi 100.6 (4)0.4 4.4 i 1
比较这两种方式的获利金额
4.4 2
因此选择在商场外举行促销活动. (此题没考虑风险)
解:讨论(2)所需要的化验次数. 设X表示每个人需化验的次数,则:
X
1/k
1+1/k
P
qk
1 qk
由题意知,呈阳性的概率是p,则呈阴性的概率 是1-p,记为q=1-p
那么k个人化验呈阴性的概率是 qk
则: P{X 1} qk
k
则X期望是
2
E( X ) xi pi
i 1
1 qk (1 1 ) (1 qk )
1
2
3
P 0.3 0.4 0.2 0.1
(2)由数学期望的求法:
4
E( X ) xi pi i 1 00.310.4 20.2 30.1

概率论与数理统计第4章 随机变量的数字特征与极限定理

概率论与数理统计第4章  随机变量的数字特征与极限定理
4.2.1 随机变量方差的概念 数学期望是随机变量重要的数字特征.但是,在 刻画随机变量的性质时,仅有数学期望是不够的.例如, 有两批钢筋,每批各10根,它们的抗拉强度指数如下:
25
定义4.3 设X是随机变量,若E[X-E(X)]2存 在,则称它为X的方差,记为D(X),即
由定义4.2,随机变量X的方差反映了X的可能取值 与其数学期望的平均偏离程度.若D(X)较小,则X的 取值比较集中,否则,X的取值比较分散.因此,方差 D(X)是刻画X取值离散程度的一个量.
3
定义4.1 设离散型随机变量X的分布律为
4
5
6
7
8
9
4.1.2 几个常用分布的数学期望 1.0—1分布 设随机变量X服从以p为参数的(0—1)分布,则X 的数学期望为
2.二项分布 设随机变量X~B(n,p),则X的数学期望为
10
3.泊松分布 设随机变量X~P(λ)分布,则X的数学期望为
41
Hale Waihona Puke 424.3 协方差、相关系数及矩
4.3.1 协方差 对于二维随机变量(X,Y),除了分量X,Y的数 字特征外,还需要找出能体现各分量之间的联系的数字 特征.
43
44
4.3.2 相关系数 定义4.5 设(X,Y)为二维随机变量,cov (X,Y),D(X),D(X)均存在,且D(X)>0,D(X) >0,称
15
16
17
定理4.2 设(X,Y)是二维随机变量,z=g(x,y) 是一个连续函数. (1)如果(X,Y)为离散型随机变量,其联合分布 律为
18
19
20
4.1.4 数学期望的性质 数学期望有如下常用性质(以下的讨论中,假设所 遇到的数学期望均存在):

概率教材第4章随机变量的数字特征

概率教材第4章随机变量的数字特征

第4章随机变量的数字特征前面我们讨论的随机变量的分布函数,能够完整地描述随机变量的统计规律性,但是在许多实际问题中,人们并不需要去全面考察随机变量的变化情况,而只要知道它的某些特征即可.例如,评定射击运动员的射击水平时,常感兴趣的是他命中的环数的平均值,以及命中点的集中程度.命中环数的平均值越大,说明运动员的水平越高;命中点越集中,说明运动员水平越稳定.这些与随机变量有关的数值,我们称之为随机变量的数字特征,这些数字特征在概率论与数理统计中起着重要的作用.本章主要介绍随机变量的数学期望和方差、随机变量的矩以及两个随机变量的协方差和相关系数.4.1随机变量的数学期望一、离散型随机变量的数学期望平均值是日常生活中最重要的数字特征之一,已经广泛应用于社会生活和生产实践的各个领域,它对评判事物、做出决策等具有重要作用.例如,在某次教师技能大奖赛上,七位评委为某选手打出的分数如下:9.5,8.9,9.5,9.8,9.6,9.5,9.7,去掉一个最高分和一个最低分后,该教师的平均分是多少?如果用随机变量X表示有效分数,则X的概率分布为:X9.59.69.7P0.60.20.2这时该选手的平均分为:39.519.619.75⨯+⨯+⨯=0.69.50.29.60.29.79.56⨯+⨯+⨯=这个平均分数称为随机变量的数学期望,不难看出,它等于随机变量的取值与对应概率乘积的和,下面我们把这个现象用分析的语言描述出来.定义1设离散型随机变量X 的概率分布为:X 1x 2x …n x …P1p 2p …np …即{},1,2,i i P X x p i ===…,若级数11221iin n i x px p x p x p ∞==++⋅⋅⋅++⋅⋅⋅∑绝对收敛(即1iii x p∞=<+∞∑),则称其和为X 的数学期望,简称期望,也叫均值,记作EX ,即1i ii EX x p ∞==∑(4.1)否则,称X 的数学期望不存在.例1设随机变量X 服从参数为p 的0—1分布,求EX .解由题设知,X 的概率分布为:于是0(1)1EX p p p =⋅-+⋅=.例2一批产品中有一、二、三等品及废品四种,相对应的比例分别为%%%60,20,10和%10,若各等级产品对应的产值分别为6元,4.8元,4元和0元,求产品的平均产值.X 01P1p-p解设产品的产值为X 元,根据题意X 的概率分布为:X 04 4.86P0.10.10.20.6于是40.1 4.80.260.6 4.96EX =⨯+⨯+⨯=(元).例3设随机变量~(,)X B n p ,求EX .解因为~(,)X B n p ,所以X 的概率分布为:{}(1),0,1,2,,.k kn k n P X k C p p k n -==-= 于是00!(1)(1)!()!nnkkn kk n knk k kn EX kC p p p p k n k --===-=--∑∑1(1)(1)1(1)!(1)(1)![(1)(1)]!k n k nk np n p p k n k ----=--=----∑1[(1)]n np p p np -=+-=.例4设随机变量X 服从参数为λ的泊松分布,求EX .解根据题意,X 的概率分布为:{},0,1,2,,.!m e P X m m n m λλ-=== 于是101!(1)!m m m m e EX m e e e m m λλλλλλλλλ--∞∞--======-∑∑.二、连续型随机变量的数学期望定义2设连续型随机变量X 的概率密度为()f x ,若()xf x dx +∞-∞⎰绝对收敛(即()xf x dx +∞-∞<+∞⎰),则称()xf x dx +∞-∞⎰为X 的数学期望,记作EX ,即()EX xf x dx+∞-∞=⎰(4.2)否则,称X 数学期望不存在.例5设随机变量X 服从区间[,]a b 上的均匀分布,求EX .解根据题意得1,,~()0,a xb X f x b a⎧≤≤⎪=-⎨⎪⎩其他,于是1()baEX xf x dx x dx b a+∞-∞==⋅-⎰⎰2122b ax a bb a +==-.该例表明,一维均匀分布的期望为该随机变量取值区间的中点.例6设随机变量X 服从参数0λλ>()的指数分布,求EX .解根据题意得,0,~()0,x e x X f x λλ-⎧>=⎨⎩其他,于是()x EX xf x dx xe dxλλ+∞+∞--∞==⎰⎰xx xe e dx λλ+∞+∞--=-+⎰+011xeλλλ∞-=-=.例7已知连续型随机变量X 的分布函数0,01(),0221,2x F x x x x ≤⎧⎪⎪=<≤⎨⎪>⎪⎩,求EX .解根据题意随机变量X 的密度函数为1,02,()()20,x f x F x ⎧<≤⎪'==⎨⎪⎩其他,所以222001()124x EX xf x dx x dx +∞-∞==⋅==⎰⎰.例8已知随机变量X 的概率密度为:,01()0,ax b x f x +≤≤⎧=⎨⎩其他且7=12EX ,求a 与b 的值.解根据题意1()()12af x dx ax b dx b +∞-∞=+=+=⎰⎰1207()()3212a b EX xf x dx ax bx dx +∞-∞==+=+=⎰⎰解关于a 与b 的方程组得,1a =,1=2b .定义3在考虑n 维随机向量12(,,,)Tn X X X 时,若每个iEX (1,2,,)i n = 都存在,则称12(,,,)T n EX EX EX 为n 维随机向量12(,,,)T n X X X 的数学期望或均值.三、随机变量函数的数学期望设X 是随机变量,()g x 为实函数,则()Y g X =也是随机变量.理论上,可以通过X 的分布求出()Y g X =的分布,再按定义求出数学期望[()]E g X ,但是这种求法一般比较复杂,下面的定理给出了一种直接求解方法.定理1设X 是随机变量,Y 是随机变量X 的函数,()Y g X =,其中()y g x =是一元连续函数.(1)若X 为离散型随机变量,其概率分布为{}i i P X x p ==,1,2,i = ,如果无穷级数1()iii g x p∞=∑绝对收敛,即1|()|iii g x p∞=<+∞∑,则Y 的数学期望为1[()]()i i i EY E g X g x p ∞===∑.(4.3)(2)若X 为连续型随机变量,其概率密度为()f x ,如果广义积分()()g x f x dx +∞-∞⎰绝对收敛,即|()|()g x f x dx +∞-∞<+∞⎰,则Y 的数学期望为[()]()()EY E g X g x f x dx +∞-∞==⎰.(4.4)根据定理1,求随机变量()Y g X =的数学期望时,只需知道X 的分布,无需求Y 的分布,这给我们计算提供了极大的方便.上述定理可以推广到二元或二元以上随机变量函数的情形.定理2设(,)X Y 是二维随机向量,Z 是关于随机向量X 和Y 的函数,(,)Z g X Y =,其中(,)Z g x y =是二元连续函数.(1)若(,)X Y 是二维离散型随机向量,其概率分布为{,}i j ij P X x Y y p ===,,1,2i j = ,,并且11|(,)|i j ij i j g x y p ∞∞==<+∞∑∑,则11[(,)](,)i j ij i j EZ E g X Y g x y p ∞∞====∑∑.(4.5)(2)若(,)X Y 是二维连续型随机向量,其概率密度为(,)f x y ,并且|(,)|(,)g x y f x y dxdy +∞+∞-∞-∞<+∞⎰⎰,则[(,)](,)(,)EZ E g X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.(4.6)定理1和定理2的证明超出本书范围,略.例9设(,)X Y 的概率分布为:Y X 0123103838031818求EX ,EY ,2EX 和()E XY .解关于X 和Y 的边缘分布为:于是31313442EX =⨯+⨯=,13313=0+1+2+3=88882EY ⨯⨯⨯⨯22231=1+3=344EX ⨯⨯,331()(10)0(11)(12)(13)0(30)88819(31)0(32)0(33).84E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=例10随机变量X 服从区间],0[π上的均匀分布,求EX ,2EX ,)(sin X E 及2)]([X E X E -解1()2EX xf x dx x dx πππ+∞-∞==⋅=⎰⎰,22221()3EX x f x dx x dx πππ+∞-∞==⋅=⎰⎰,0112(sin )sin ()sin (cos )0E X xf x dx x x πππππ+∞-∞==⋅=-=⎰⎰X 13i p ⋅3414Y 0123jp ⋅18383818222201[()]()()2212E X E X E X X dx πππππ-=-=-⋅=⎰.例11假定国际市场对我国某种商品的需求量是随机变量X (单位:吨),它服从区间[2000,4000]上的均匀分布,每销售出一吨该商品,可为国家赚取外汇3万元,若销售不出去,则每吨商品需贮存费1万元,问如何计划出口量,能使国家收益最大?解设计划年出口量为t 吨,国家年收益Y 万元,根据题意20004000t ≤≤,且有120004000,~()20000,x X f x ⎧≤≤⎪=⎨⎪⎩,其它,3,=()4,t X t Y g X X t X t ≥⎧=⎨-<⎩,,于是由(4.4)式有400020001()()()2000EY g x f x dx g x dx +∞-∞==⎰⎰400020001(4)32000tt x t dx tdx ⎡⎤=-=⎢⎥⎣⎦⎰⎰()26170004101000t t =-+-⨯易得当3500t =时,EY 达到最大,所以计划出口量为3500吨时,国家年收益最大.例12已知随机变量X 表示某电子元件的使用寿命(单位:小时),并且服从参数为0.001的指数分布,若规定使用寿命X 在500小时以下为废品,产值为0元;在500到1000小时之间为次品,产值为10元;在1000到1500小时之间为二等品,产值为30元;在1500小时以上者为一等品,产值为40元,求该电子元件的平均产值.解设该电子元件的产值为Y 元,由题设知0.0010.001,0,~()0,0,x e x X f x x -⎧>=⎨≤⎩0,500,10,5001000,()30,10001500,40,1500.X X Y g X X X <⎧⎪≤<⎪==⎨≤<⎪⎪≥⎩于是由(4.4)式有()()EY g x f x dx +∞-∞=⎰50010000.0010.00105000(0.001)10(0.001)x x e dx e dx --=⋅+⋅⎰⎰15000.001100030(0.001)xedx -+⋅⎰0.001150040(0.001)x e dx+∞-+⋅⎰15.65≈(元).该例表明,在利用定理1求[()]E g X 时,允许函数()y g x =不连续.例13设,01,01,(,)~(,)0,x y x y X Y f x y +≤≤≤≤⎧=⎨⎩其他,求2EX ,()E X Y +及()E XY .解由(4.6)式,有11222005(,)()12EX x f x y dxdy x x y dxdy +∞+∞-∞-∞==+=⎰⎰⎰⎰,112007()()(,)()6E X Y x y f x y dxdy x y dxdy +∞+∞-∞-∞+=+=+=⎰⎰⎰⎰,11001()(,)()3E XY xyf x y dxdy xy x y dxdy +∞+∞-∞-∞==+=⎰⎰⎰⎰.四、数学期望的性质设,,a b c 为常数,X 和Y 是随机变量,且EX 和EY 都存在,则数学期望有下列性质:性质1Ec c =.(4.7)性质2()E aX b aEX b +=+.(4.8)性质1请读者自己证明,下面给出性质2的证明.证明令Y aX b =+,因为y ax b =+是单调的,所以可以排除X 是连续型随机变量而Y 却是离散型随机变量的可能,也就是说只需分两种情况来证明,即X 与Y 都是离散型随机变量或者X 与Y 都是连续型随机变量.1.当X 为离散型随机变量时,设X 的概率分布为{}1,2,i i P X x p i === ,.则Y 的概率分布为{}i i P Y ax b p =+=,1,2i = .于是1()()i ii EY E aX b ax b p ∞==+=+∑11i i i i i a x p b p ∞∞===+∑∑aEX b =+.2.当X 为连续型随机变量时,设~()X X f x ,并且不失一般性地假设0a ≠(显然Eb b =),则1~()()Y X y bY f y f a a-=.于是()()Y EY E aX b yf y dy +∞-∞=+=⎰1[(X y by f dy a a+∞-∞-=⎰()()X y ax b ax b f x dx +∞-∞=++⎰令()()X X a xf x dx b f x dx+∞+∞-∞-∞=+⎰⎰aEX b =+.性质3()E X Y EX EY ±=±.(4.9)性质3可以推广到任意有限个随机变量的情况,即1212()()()()n n E X X X E X E X E X ±±⋅⋅⋅±=±±⋅⋅⋅±.(4.10)性质4设X 与Y 相互独立,则()E XY EX EY =⋅.(4.11)性质4可以推广到任意有限个相互独立的随机变量的情况,即设12,,,n X X X ⋅⋅⋅相互独立,则1212()()()()n n E X X X E X E X E X ⋅⋅⋅=⋅⋅⋅.(4.12)下面我们来证明性质3和性质4.证明仅就(,)X Y 为二维连续型随机向量的情形加以证明.设二维连续型随机向量(,)X Y 的概率密度为(,)f x y ,其关于X 和关于Y 的边缘概率密度分别为()X f x 和()Y f y ,则()()(,)E X Y x y f x y dxdy +∞+∞-∞-∞±=±⎰⎰(,)(,)xf x y dxdy yf x y dxdy+∞+∞+∞+∞-∞-∞-∞-∞=±⎰⎰⎰⎰EX EY =±.性质3得证.又若X 与Y 相互独立,此时(,)()()X Y f x y f x f y =⋅.于是()(,)E XY xyf x y dxdy+∞+∞-∞-∞=⎰⎰()()X Y xf x dx yf y dy +∞+∞-∞-∞=⋅⎰⎰EX EY =⋅.性质4得证.注意到:只要将证明中的“积分”用“和式”代替,就能得到(,)X Y 为二维离散型随机向量情形的证明.性质4的逆命题不成立,即由()E XY EX EY =⋅不能得到X 与Y 一定独立.例如,在例9中,我们已经计算得()94E XY EX EY =⋅=,但{1,0}0,P X Y ==={1}3{0}18,P X P Y ====显然{1,0}{1}{0}P X Y P X P Y ==≠=⋅=,故X 与Y 不独立.例14已知X 与Y 的概率分布分别为并且()8.5E X Y +=,求(1)EX ,(2)E X ,EY ;(2)2(23)E Y +.解(1)10.320.530.2 1.9EX =⨯+⨯+⨯=.由(4.8)式及(4.9)式,有(2)22 1.9 3.8E X EX ==⨯=,()8.5 1.9 6.6EY E X Y EX =+-=-=.(2)由于60.40.6 6.6EY a =⨯+⨯=,故7a =.由(4.3)式,有222(23)(263)0.4(273)0.690.6E Y +=⨯+⨯+⨯+⨯=.这里我们也可以利用定义1计算(2)E X 和2(23)E Y +,只是需要先求出2X 和223Y +的概率分布.例15设(,)X Y 等可能地取(1,0)-,(0,1)-,(1,0)和(0,1),试判断(1)()E XY 与EX EY ⋅是否相等;(2)X 与Y 是否独立.解由题设知(,)X Y 的概率分布为:Y X 1-011-0140014014114X 123P0.30.50.2Y 6a P0.40.6()(1)(1)0E XY =-⨯-⨯11(1)0(1)100(1)00044+-⨯⨯+-⨯⨯+⨯-⨯+⨯⨯1014+⨯⨯1(1)0+⨯-⨯11011004+⨯⨯+⨯⨯=,11(1)0(1)(1)0044EX EY ==-⨯+-⨯+-⨯+⨯1000104+⨯+⨯+⨯111004+⨯+⨯=,于是()E XY EX EY =⋅.(2)由于{0,0}0P X Y ===,并且111{0}{0}0442P X P Y ====++=,于是{0,0}{0}{0}P X Y P X P Y ==≠=⋅=,故X 与Y 不独立.这里已知(,)X Y 的概率分布,也可以利用期望的定义4.1计算()E XY ,EX 和EY .4.2随机变量的方差上一节我们介绍了随机变量的数学期望,它主要用来描述随机变量的平均特征,但是在许多实际问题中,仅仅知道平均值是不够的,为此本节我们引入方差的概念,用它来描述随机变量取值的离散程度.一、方差的概念先看一个例子.设甲、乙两位射击运动员打中靶的环数分别为1X ,2X ,其概率分布为:1X 78910P0.40.30.20.12X 05610计算两位运动员打中靶的环数的期望为170.480.390.2100.18EX =⨯+⨯+⨯+⨯=200.0450.1660.2100.68EX =⨯+⨯+⨯+⨯=虽然两位运动员打中靶环数的期望相同,但是比较两组数据可知甲射手比乙射手技术稳定,因此甲打中靶的环数比较集中.可见在实际问题中,仅仅靠期望来描述随机变量的分布特征还不够完善,还需要进一步研究其离散程度,通常人们关心的是随机变量X 对均值EX 的离散程度.定义4如果随机变量X 的数学期望EX 存在,则称X EX -为随机变量X 的离差.显然,随机变量X 离差的期望为零,即()=0E X EX -.(4.13)这样,如果用()E X EX -来度量X 与EX 的偏差,结果是正负偏差相互抵消,为了消除离差X EX -的符号,通常用2()E X EX -来度量X 与EX 的偏差.定义5设X 是一个随机变量,若2()E X EX -存在,则称其为X 的方差,记作DX 或VarX ,即2()DX E X EX =-.(4.14)为X 的标准差或均方差.由定义5知,方差实际上就是随机变量函数2()X EX -的数学期望,所以可以用求随机变量函数2()X EX -的数学期望的方法来求随机变量X 的方差.1.设X 为离散型随机变量,其概率分布为{}i i P X x p ==,1,2,,i = P 0.040.160.20.6若21()ii i x EX p +∞=-<+∞∑,则21()i i i DX x EX p +∞==-∑.(4.15)2.设X 为连续型随机变量,其概率密度为()f x ,若2()()x EX f x dx +∞-∞-<+∞⎰,则2()()DX x EX f x dx +∞-∞=-⎰.(4.16)可见,随机变量的方差是一个非负数.当X 的可能值密集在它的期望值EX 附近时,方差较小,反之则方差较大.因此,方差刻画了随机变量的取值的离散程度.由方差的定义式容易得到下面的常用计算式22()DX EX EX =-.(4.17)证明2()DX E X EX =-22[2()]E X X EX EX =-⋅+222()EX EX EX EX =-⋅+22()EX EX =-.(4.17)式表明2EX 不小于2()EX ,而且提供了一种计算方差的主要方法,即它把方差的计算归结为计算两个容易求得的期望EX 和2EX .例16设随机变量X 服从参数为p 的0—1分布,求DX .解由题设知,X 的概率分布为X 01P1p-p由例1知,EX p =,再由(4.3)式2220(1)1EX p p p =⋅-+⋅=,于是222()(1)DX EX EX p p p p =-=-=-.例17在本节开始所举甲、乙两位射击运动员射击一例中,求1DX 及2DX .解前面已经计算过128EX EX ==,又22222170.480.390.2+100.165EX =⨯+⨯+⨯⨯=22222200.0450.1660.2+100.671.2EX =⨯+⨯+⨯⨯=,所以22111()1DX EX EX =-=,22222()7.2DX EX EX =-=.例18设X 服从区间[,]a b 上的均匀分布,求DX .解由题设知1,,~()0,a xb X f x b a⎧≤≤⎪=-⎨⎪⎩其他.由(4.4)式,有222221()3ba a ab b EX x f x dx x dx b a +∞-∞++==⋅=-⎰⎰,由例5知,2a bEX +=,于是222222()()()3212a ab b a b b a DX EX EX +++-=-=-=.*例19设随机变量~()X P λ,其中0λ>,求DX .解X 的概率分布为{}!m P X m e m λλ-==,(0,1,2,...)m =.由例4可知=EX λ,根据(4.3)式2201(11)!(1)!m m i i EX m e m em m λλλλ∞∞--====-+-∑∑21(2)!(1)!m m m m e e m m λλλλ∞∞--===+--∑∑2122010(2)!(1)!m m m m e e m m λλλλλλ--∞∞---=-==+--∑∑2λλ=+.因此利用(4.17)式有2222()()DX EX EX λλλλ=-=+-=.即=EX DX λ=.例20设X 服从参数为λ的指数分布,即X 的概率密度为,0,()0,x e x f x λλ-⎧>=⎨⎩其他.其中0λ>,求DX .解由例6可知1=EX λ,再由(4.4)式,有2220()x EX x f x dx x e dxλλ+∞+∞--∞==⎰⎰220xx x e xe dxλλ+∞--+∞=-+⎰22λ=.因此,利用(4.17)式有2221()DX EX EX λ=-=.*例21设随机变量2~(,)X N μσ,即X的概率密度为22()2(),x f x μσ--=(x -∞<<+∞),其中μ,σ为实数,并且0σ>,求,EX DX .解根据题意得22()2()x EX xf x dx dxμσ--+∞+∞-∞-∞==⎰⎰令x y μσ-=,则dxdy σ=,由泊松积分221y dy -+∞-∞=⎰,有22y EX dy-+∞-∞=⎰2222y y yedyμ--+∞+∞-∞-∞=+⎰μ=.由(4.16)式,有2()()DX x EX f x dx+∞-∞=-⎰22()22x e dxμσ--+∞-∞=⎰2222y y e d y-+∞-∞⎰=222y de σ-+∞-∞=-⎰222222y y ye dyσ--+∞-∞+∞=+-∞⎰2σ=.特别地,若~(0,1)X N ,则0EX =,1DX =.定义4.6在考虑n 维随机向量12(,,,)Tn X X X 时,若每个i DX (1,2,)i = 都存在,则称12(,,,)T n DX DX DX 为n 维随机向量12(,,,)T n X X X 的方差.二、方差的性质关于方差,我们有下面几个重要性质.设X ,Y 是随机变量,a ,b ,c 为实值常数,则性质10Dc =.(4.18)性质22()D aX a DX =.(4.19)性质3()D X b DX +=.(4.20)性质1到性质3的证明留给读者自己完成.性质42()D aX b a DX +=.(4.21)证明222()[()()][()]D aX bE aX b E aX b E a X EX +=+-+=-222()a E X EX a DX =-=.性质5若X 与Y 相互独立,则()D X Y DX DY ±=+.(4.22)证明由(4.17)式,有22()()[()]D X Y E X Y E X Y ±=±-±2222(2)[()2()]E X XY Y EX EX EY EY =±+-±⋅+2222[2()][()2()]EX E XY EY EX EX EY EY =±+-±⋅+2222[()][()]2[()]EX EX EY EY E XY EX EY =-+-±-⋅2[()]DX DY E XY EX EY =+±-⋅.由X 与Y 独立,有()E XY EX EY =⋅.于是()D X Y DX DY ±=+.性质5的逆命题不成立,即由()D X Y DX DY ±=+,不能得到X 与Y 相互独立.但是它可以推广到任意有限个相互独立的随机变量的情形,即若12,,,n X X X 相互独立,则11()n niii i D X DX===∑∑.(4.23)例22设随机变量~(,)X B n p ,求DX .解根据题意{}ii n in P X i C p q-==,(0,1,,)i n = ,则X 可以理解为n 重伯努利试验中“成功”的次数.若令1,1,2,,,0,i i X i n i ⎧==⎨⎩ 第次成功,第次失败,则12n X X X X =++⋅⋅⋅+,并且(1,2,,)i X i n = 相互独立同服从参数为p 的0—1分布,于是i EX p =,i DX pq =,(1,2i = ,).由(4.10)式及(4.23)式,有11()nni ii i EX E X EXnp =====∑∑,11()nni ii i DX D X DXnpq =====∑∑.例23设随机变量X 与Y 相互独立,并且0EX EY ==,2DX DY σ==,求2()E X Y -.解由(4.9)式,有()0E X Y EX EY -=-=,由X 与Y 独立,得222()2D X Y DX DY σσσ-=+=+=,于是2222()()[()]202E X Y D X Y E X Y σσ-=-+-=+=.4.3常用分布及其数学期望与方差表为了方便今后查询,现将七种常用分布的期望与方差总结为下表.表4—1常用分布及其数学期望与方差总结表4.4协方差与相关系数前面我们介绍了随机变量的数学期望和方差,本节将讨论反映多维随机变量的两个分量之间关系的强弱的数字特征.一、协方差在证明方差的性质时,我们已经知道,在X 与Y 相互独立的条件下,有[()()]0E X EX Y EY --=,可知,当[()()]0E X EX Y EY --≠时,X 与Y 一定不独立.这说明[()()]E X EX Y EY --在一定程度上反映了随机变量X 与Y 之间的关系.定义7设(,)X Y 为二维随机向量,EX 和EY 均存在,若数学期望[()()]E X EX Y EY --存在,则称数值[()()]E X EX Y EY --为X 与Y的协方差,记作cov(,)X Y ,即cov(,)[()()]X Y E X EX Y EY =--.(4.24)显然,cov(,)X X DX=(4.25)由定义7知,X 与Y 的协方差实际上就是二元随机变量函数()()X EX Y EY --的数学期望,因此由定理2有(1)设(,)X Y 是二维离散型随机向量,其概率分布为{,}i j ij P X x Y y p ===,,1,2,i j = ,并且|()()|ij ijijx EX y EY p--<+∞∑∑,则cov(,)()()i j ij ijX Y x EX y EY p =--∑∑.(4.26)(2)设(,)X Y 是二维连续型随机向量,其概率密度为(,)f x y ,并且|()()|(,)x EX y EY f x y dxdy +∞+∞-∞-∞--<+∞⎰⎰,则cov(,)()()(,)X Y x EX y EY f x y dxdy +∞+∞-∞-∞=--⎰⎰.(4.27)此外,协方差还有下面常用性质:1.cov(,)()X Y E XY EX EY =-⋅.(4.28)证明cov(,)()()X Y E X EX Y EY =--()E XY XEY YEX EX EY =--+⋅()E XY EX EY =-⋅.公式(4.28)提供了一种计算协方差的主要方法,即它将协方差的计算归结为计算三个数学期望EX ,EY 和()E XY .2.cov(C,X)0,=C 为任意常数.3.cov(X,X)DX =.4.设X 与Y 独立,则cov(,)0X Y =.5.()2cov(,)D X Y DX DY X Y ±=+±.(4.29)6.对称性cov(,)cov(,)X Y Y X =.(4.30)7.齐次性cov(,)cov(,)aX bY ab X Y =.(4.31)8.可加性cov(,)cov(,)cov(,)X Y Z X Z Y Z ±=±.(4.32)性质2至性质8的证明留给读者自行完成.二、相关系数和相关性协方差在一定程度上反映了X 与Y 相互间的关系,但它还受X 与Y 本身度量单位的影响.例如,kX 和kY 之间的统计关系与X 和Y 之间的统计关系应该是一样的,但协方差却扩大了2k 倍,即2cov(,)cov(,)kX kY k X Y =为了克服这一缺点,可将每个随机变量标准化,即取*X=*Y =并将**cov(,)X Y 作为X 和Y 之间相互关系的一种度量,而********cov(,)()()()()X Y E X Y E X E Y E X Y =-=E===此结果表明,可利用标准差对协方差进行修正,从而得到一个新的数字特征—相关系数.定义8设(,)X Y 为二维随机向量,0DX >,0DY >,则称为X 与Y 的相关系数,记作XY ρ,也可简记为ρ,即XYρ==(4.33)显然,XY ρ的协方差.定理3设X 与Y 是两个随机变量,并且XY ρ存在,则有||1XY ρ≤.证明由定义8知,只需证明2cov (,)X Y DX DY ≤⋅.由于任何随机变量的方差都是一个非负实数,所以对任意实数k ,恒有()D Y kX -2()E Y kX EY kEX =--+222[()2()()()]E Y EY k Y EY X EX k X EX =----+-0≥,即22cov(,)0DY k X Y k DX -+≥.上面不等式的左边是一个关于k 的一元二次函数,因此该不等式成立的充分必要条件为判别式0∆≤,即2[2cov(,)]40X Y DX DY ∆=--⋅≤,于是2cov (,)X Y DX DY ≤⋅.定理4设Y 是随机变量X 的线性函数:Y aX b =+,则当0a >时,1XY ρ=;当0a <时,1XY ρ=-.证明由定义7知cov(,)()()X Y E X EX Y EY =--()[()()]E X EX aX b E aX b =-+-+2()aE X EX =-aDX =.因为2()DY D aX b a DX =+=,所以||||XY aDX aa DX a ρ===,即当0a >时,1XY ρ=;当0a <时,1XY ρ=-.以上两个定理表明,当Y aX b =+时,XY ρ的绝对值达到最大值1.事实上,还可以证明定理4的逆命题也是成立的.因此,X 与Y 的相关系数XY ρ反映了X 与Y 线性关系的密切程度.定义9设XY ρ为X 与Y 的相关系数.(1)如果0XY ρ≠,则称X 与Y 是相关的(实为一定程度的线性相关).其中当||1XY ρ=时,称X 与Y 是完全相关的;当0XY ρ>时,称X 与Y 正相关;当0XY ρ<时,称X 与Y 负相关.(2)如果0XY ρ=,则称X 与Y 不相关(实为线性无关).显然,若X 与Y 相互独立,则0XY ρ=.例24设(,)X Y 的概率分布为Y X 1231-0.10.20.1000.20.110.20.1求X 与Y 的协方差及相关系数.解由(,)X Y 的概率分布,不难得到其关于X 和关于Y 的边缘概率分布为于是(1)0.400.310.30.1EX =-⨯+⨯+⨯=-,10.320.530.2 1.9EY =⨯+⨯+⨯=.由(4.3)式及(4.5)式,有222(1)0.410.30.7EX =-⨯+⨯=,222210.320.530.2 4.1EY =⨯+⨯+⨯=,()(1)10.1(1)20.2(1)30.1010020.2E XY =-⨯⨯+-⨯⨯+-⨯⨯+⨯⨯+⨯⨯030.1110.2120.11300.4+⨯⨯+⨯⨯+⨯⨯+⨯⨯=-.于是222()0.7(0.1)0.69DX EX EX =-=--=,222() 4.11.90.49DY EY EY =-=-=,cov(,)()0.40.11.90.21X Y E XY EX EY =-⋅=-+⨯=-,0.210.360.830.7XY ρ-===-⨯.例25已知随机变量X 服从区间[0,2]π上的均匀分布,并且sin Y X =,sin()Z X k =+,k 为常数,求Y 与Z 的相关系数YZ ρ.解由题设知1,[0,2],~()20,X x X f x ππ⎧∈⎪=⎨⎪⎩其他.由(4.4)及(4.6)式,有201(sin )sin 02EY E X xdx ππ===⎰,X 1-01P0.40.30.3Y 123P0.30.50.2201[sin()])02EZ E X k x k dx ππ=+=+=⎰,222201(sin )sin 0.52EY E X xdx ππ===⎰,222201[sin ()]sin ()0.52EZ E X k x k dx ππ=+=+=⎰,()[sin sin()]E YZ E X X k =+201sin sin()2x x k dx ππ=+⎰201[cos cos(2)]4k x k dxππ=-+⎰1cos 2k =.于是22()0.5DY EY EY =-=,22()0.5DZ EZ EZ =-=,cov(,)()Y Z E YZ EY EZ =-⋅1cos 2k =,1cos 2cos YZ k k ρ==.若2k π=,则0YZ ρ=,此时221Y Z +=.但由于Y 与Z 满足关系221Y Z +=,所以Y 与Z 不独立.例26对于二维随机向量(,)X Y ,设X 服从[1,1]-上的均匀分布,并且2Y X =,证明0XY ρ=.证明由题设知1,[1,1],~()20,X x X f x ⎧∈-⎪=⎨⎪⎩其他.于是0EX =.由(4.4)式及(4.28)式,有13311()02E X x dx -==⎰,cov(,)()X Y E XY EX EY =-⋅3()0E X ==,因此0XY ρ=.但由于X 与Y 满足关系2Y X =,所以X 与Y 不独立.上两例表明,X 与Y 不相关,但它们不独立.因此,由X 与Y 不相关不能得到X 与Y 相互独立.事实上,X 与Y 不相关是指没有线性关系,但并不排除存在其他关系,如平方关系.*例27设二维随机向量1212(,)~(,,,,)X Y N μμσσρ,求X 与Y 的相关系数XY ρ.解根据二维正态分布的边缘概率密度知221212,,,EX EY DX DX μμσσ====而12cov(,)()()(,)X Y x y f x y dxdyμμ+∞+∞-∞-∞=--⎰⎰12()()x y μμ+∞+∞-∞-∞=--⎰222112211()exp 2y x x dxdy μμμρσσσ⎡⎤⎫---⎥⨯--⎪⎥⎭⎦令211211,,y x x t u μμμρσσσ⎛⎫---=-=⎪⎭则有222()/21121cov(,)()2ut X Y u e dtduσσρσσπ+∞+∞-+-∞-∞=+⎰⎰2221222()()2u tu e du e dt ρσσπ+∞+∞---∞-∞=⎰⎰2222)()u tue du te dt +∞+∞---∞-∞⎰⎰12ρσσ==于是XYρρ==.注 1.二维正态分布随机向量(,)X Y 的概率密度中的参数ρ是X 与Y 的相关系数,X 和Y 的各自的数学期望、方差及它们的相关系数可以确定二维正态随机向量的分布;2.在第三章已经讲过,若(,)X Y 服从二维正态分布,则X 和Y 相互独立的充分必要条件为0ρ=.现知XY ρρ=,故对于二维正态随机向量(,)X Y 来讲,X 和Y 不相关与X 和Y 相互独立是等价的.4.5矩、协方差矩阵与相关矩阵本节在推广随机变量的期望、方差和两个随机变量的协方差、相关系数等数字特征基础上,引入矩、协方差矩阵和相关矩阵这些概念.一、矩定义10设X 为随机变量,若1,2,k EX k =,…存在,则称其为X 的k 阶原点矩,(简称k 阶矩),也记作k v .若()2,3,k E X EX k -=,…存在,则称其为X 的k 阶中心矩,也记作k μ.若2,3,kE X EX k -=,…存在,称其为X 的k 阶绝对中心矩.对于二维随机向量X Y (,),若(,1,2,k l E X Y k l =),…存在,则称其为X 和Y 的+k l 阶混合矩.若[()(),1,2,k l E X EX Y EY k l --=],…存在,则称其为X 和Y 的+k l 阶混合中心矩.注1.随机变量X 的数学期望EX 是X 的一阶原点矩;2.随机变量X 的方差DX 是X 的二阶中心矩.二、协方差矩阵与相关矩阵定义11设12(,,,)n X X X 是n 维随机向量,并且(1,2,,)i DX i n = 存在,则以cov(,)i j X X 为元素的n 阶矩阵111212122212.....................n n n n nn v v v v v v V v v v ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,ii i v DX =,cov(,)ij i j v X X =,,1,2,,i j n = 称为该n 维随机向量的协方差矩阵,记作V .显然,协方差矩阵V 是对称矩阵,即ij ji v v =,,1,2,,i j n = .定义12设12(,,,)n X X X 是n 维随机向量,其任意两个分量i X 与j X 的相关系数ij ρ(,1,2,,i j n = )都存在,则以ij ρ为元素的n 阶矩阵111212122212.....................n n n n nn R ρρρρρρρρρ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦称为该n 维随机向量的相关矩阵,记作R .由于cov(,)i i i X X DX =,1,2,,i n =,因此1ii ρ==,(1,2,,i n = ),ij ρ==(,1,2,,i j n = ).对于协方差矩阵和相关矩阵,我们主要讨论2n =的情况.例28已知二维随机向量(,)X Y 的协方差矩阵为251236a V ⎡⎤=⎢⎥⎣⎦,求参数a 以及相关矩阵R .解根据题意知11221ρρ==,1221120.456ρρ====⨯又由对称性知12a =,因此10.40.41R ⎡⎤=⎢⎥⎣⎦.例29已知随机变量X 的方差2DX σ=,并且32Y X =-,求(,)X Y 的协方差矩阵及相关矩阵.解211v DX σ==,222(32)4v DY D X σ==-=.由于32Y X =-为线性函数,所以1XY ρ=-,即12211ρρ==-.于是2122112cov(,)2XY v v X Y ρρσ===-.因此222221222424V σσσσσ-⎡⎤-⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦,1111R -⎡⎤=⎢⎥-⎣⎦.例30计算例24中(,)X Y 的协方差矩阵V .解由于110.69v DX ==,220.49v DY ==,12cov(,)0.21v X Y ==-,因此0.690.210.210.49V -⎡⎤=⎢⎥-⎣⎦.例31设(,)X Y 的概率密度为221,1,(,)0,x y f x y π⎧+≤⎪=⎨⎪⎩其他,求(,)X Y 的相关矩阵R .解由(4.6)式,有11()()0E XY dy -==⎰11()0EX EY dy -===⎰于是cov(,)()0X Y E XY EX EY =-⋅=显然0DX DY =>,所以120ρ==于是1001R ⎡⎤=⎢⎥⎣⎦.习题四1.盒中有5个球,其中有3个白球、2个黑球,从中一次任取两个球,求取得白球数X 的数学期望与方差.2.设随机变量X 的概率分布为{}1(2,4,,18,20),10P X k k ===…求EX .3.袋中有5个乒乓球,编号为1,2,3,4,5,现从中一次任取3个,用X 表示取出的3个球中最大编号,求EX .4.设随机变量X 的概率分布为求EX ,2EX 和2(35)E X +.5.连续型随机变量X 的概率密度为,01()0,kx x f x α⎧<<=⎨⎩其他,,0k α>(),且0.75EX =,求(1),k α;(2)DX .6.一个螺丝钉的重量是随机变量,平均重10克,标准差为1克,求100个同型号螺丝钉重量的数学期望和方差.7.设随机变量X 的概率密度为110()1010x x f x x x +-≤<⎧⎪=-≤≤⎨⎪⎩,,,其他,求EX 和DX .8.设随机变量||1~()0x X f x <=⎩,其他,求EX 和DX .X 2-02P0.40.30.39.设随机变量X 的概率密度为0()00,x e x f x x -⎧≥=⎨<⎩,,,求:(1)2Y X=的数学期望;(2)2XY e-=的数学期望.10.设随机变量X 与Y 相互独立,概率密度分别为01()0,X x x f x ≤≤⎧=⎨⎩2,,,其他和55()05,y Y e y f y y -⎧>=⎨≤⎩,,,求()E XY .11.设随机变量X 与Y 相互独立,概率密度分别为01()0,X x f x ≤≤⎧=⎨⎩1,,,其他和0()00,y Y e y f y y -⎧>=⎨≤⎩,,,求()E X Y +.12.设随机变量X 服从柯西分布,即其概率密度为21()(),(1)f x x x π=-∞<<+∞+试证明X 的数学期望不存在.13.设随机变量X 的分布函数为10()0x e x F x λ-⎧->=⎨⎩,,其他,求EX 和DX .14.一台实验仪器中有3个元件,各元件发生故障是相互独立的,其概率分别为0.2,0.3,0.4,求发生故障的元件数的数学期望及方差.15.同时掷2颗骰子,设随机变量X 表示出现点数的最大值,求EX 和DX .16.把4只球随机的投入4个盒子中,设X 表示空盒子的个数,求EX 和DX .17.一批零件中有9个合格品和3个废品,在安装机器时,从这批零件中任取1个,如果取出的是废品就不再放回去.求在取得合格品以前,已经取出废品数的数学期望和方差.18.调查结果表明:某地区的科技人员年龄X 具有如下概率密度4(24)(84),2484,()0,k x x x f x ⎧--≤≤=⎨⎩其他,(1)求常数k 的值;(2)计算该地区科技人员的平均年龄.19.设随机变量X 服从参数为λ的指数分布,并且Y =,求Y 的数学期望与方差.20.设随机变量X 服从区间[0,2]上的均匀分布,并且|1|Y X =-,求EY 和DY .21.对某一目标进行射击,每次射击相互独立并且击中概率为p ,(1)若直到击中为止,求射击次数的数学期望与方差;(2)若直到击中k 次为止,求射击次数的数学期望与方差.22.设X 服从参数为2的泊松分布,32Y X =-,试求,,EY DY cov(,)XY X Y ρ及.23.设随机向量(,)X Y 的概率密度为1(),02,02(,)80,x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩,其他,试求,,cov(,)()XY EX EY X Y D X Y ρ+,,.24.设随机向量(,)X Y 的概率密度为(),0,0,(,)0,x y e x y f x y -+⎧<<+∞<<+∞=⎨⎩其他,求cov(,)X Y .25.设随机变量X 的方差16DX =,随机变量Y 的方差25DY =,又X 与Y 的相关系数0.5XY ρ=,求()D X Y +与()D X Y -.26.设随机向量(,)X Y 服从单位圆域{}22(,)1x y x y +≤上的均匀分布,试证明X ,Y 不相关.27.将3个球随机地放入4个盒子,记(1,2)i X i =表示第i 个盒子内球的个数,求随机向量12(,)X X 的协方差矩阵.28.设随机变量X 的概率密度为0.5,02()0,x x f x <<⎧=⎨⎩其他,求随机变量X 的1至4阶原点矩和中心距.29.设随机变量X 服从拉普拉斯分布,即其概率密度为1(),2xf x e x λλ-=-∞<<+∞,其中0λ>为常数,求X 的k 阶中心距.30.设随机向量21.502,01(,)~(,)0xy x y X Y f x y ⎧≤≤≤≤=⎨⎩,,其他,求随机向量(,)X Y 的均值和协方差矩阵.31.设随机向量22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y Ae -+++-+-=,试确定A 的值,并求X 与Y 的相关矩阵.32.设二维随机向量(,)X Y 的概率密度为sin()(,)(,)0A x y x y Df x y +∈⎧=⎨⎩,,其他,其中D 为矩形区域(,)0,022x y x y ππ⎧⎫≤≤≤≤⎨⎬⎩⎭.(1)求系数A ;(2)求EX EY DX 及DY ;(3)求cov(,)X Y 及XY ρ;(4)求协方差矩阵C 及相关系数矩阵R .选做题四1.某流水生产线上每个产品部合格的概率为01p p <<(),各产品合格与否相互独立,当出现一个不合格产品时即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求X 的数学期望E X ()和方差D X ().2.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格产品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数X 的数学期望;(2)从乙箱中任取一件产品是次品的概率.3.设随机变量X 的概率密度函数为()1cos ,0,220,x x f x π⎧≤≤⎪=⎨⎪⎩其他,对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.4.设两个随机变量,X Y 相互独立,且都服从均值为0,方差为12的正态分布,求随机变量X Y -的方差.5.假设二维随机向量,X Y ()在矩形(){},02,01G x y x y =≤≤≤≤上服从均匀分布,记0,,1,X Y U X Y ≤⎧=⎨⎩若若>,0,2,1,2,X Y V X Y ≤⎧=⎨>⎩若若(1)求U V 和的联合分布;(2)求U V 和的相关系数γ.6.箱中装有6个球,其中红、白、黑球个数分别为1,2,3,现从箱中随机地取出2个球,记X 为取出红球的个数,Y 为取出白球的个数.(1)求随机向量,X Y ()的概率分布;(2)求Cov(,)X Y .7.设二维离散型随机向量,X Y ()的概率分布为Y X 012014014101302112112(1)求{}2P X Y =;(2)求Cov(,)X Y Y -.8.设A B 和为随机事件,且()14P A =,()13P B A =,()12P A B =,令110X Y ⎧⎧==⎨⎨⎩⎩, A发生,, B发生,0,A不发生,,B不发生.(1)求二维随机向量(),X Y 的概率分布;(2)求X Y 和的相关系数XY ρ.9.游客乘电梯从底层到电视塔顶层观光,电梯于每个整点的第5分钟、25分钟和55分钟从底层起行.假设一游客在早晨8点的第X 分钟到底层候梯处,且X 在[0,60]上服从均匀分布,求该游客等候时间的数学期望.10.两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自行开动,试求两台记录仪无故障工作的总时间T 的概率密度f t ()、数学期望和方差.11.一商店经销某种商品,每周进货的数量X 与顾客对该种商品的需求量Y 是相互独立的随机变量,且都服从区间[10,20]上的均匀分布,商品每销售出一单位商品获得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获得利润500元,试计算此商点经销该种商品每周所得利润的期望值.12.设,A B 是两个随机事件,随机变量111,1,A B X Y A B ⎧⎧==⎨⎨--⎩⎩,若出现,,若出现,若不出现,若不出现,试证明:随机变量X Y 和不相关的充分必要条件是A B 与相互独立.13.假设随机变量U 在区间[2,2]-上服从均匀分布,随机变量11111,11,1U U X Y U U ≤-≤⎧⎧==⎨⎨->-->⎩⎩,若,,若,若,若,试求:(1)X Y 和的联合概率分布;(2)()D X Y +.14.设随机变量X 的概率密度为()1,10,21,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩,其他,令()2,,Y X F x y =为二维随机向量(),X Y 的分布函数,求:(1)Y 的概率密度()Y y f ;(2)()Cov ,X Y ;(3)1,42F ⎛⎫- ⎪⎝⎭.。

(完整)第四章随机变量的数字特征总结,推荐文档

随机变量的数字特征——总结第四章 随机变量的数字特征㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置.1、数学期望的定义(1) 定义 离散型和连续型随机变量X 的数学期望定义为{}⎪⎩⎪⎨⎧==⎰∑∞∞- d )( )()( ,,连续型离散型x x xf x X x X kk k P E 其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在.①常见的离散型随机变量的数学期望1、离散型随机变量的数学期望 设离散型随机变量的概率分布为,若,则称级数为随机变量的数学期望(或称为均值),记为, 即2、两点分布的数学期望 设服从0—1分布,则有,根据定义,的数学期望为. 3、二项分布的数学期望 设服从以为参数的二项分布,,则。

4、泊松分布的数学期望 设随机变量服从参数为的泊松分布,即,从而有。

①常见的连续型随机变量的数学期望1)均匀分布设随机变量ξ服从均匀分布,ξ~U [a ,b ] (a <b ),它的概率密度函数为:随机变量的数字特征——总结= 则=∴ E(ξ)=(a+b)/2.即数学期望位于区间的中点.2)正态分布设随机变量ξ服从正态分布,ξ~N(μ,σ2),它的概率密度函数为:(σ>0,- <μ<+)则令得∴ E(ξ)=μ .3)指数分布设随机变量服从参数为的指数分布,的密度函数为 ,则.(2) 随机变量的函数的数学期望设为连续函数或分段连续函数,而X是任一随机变)(xgy=量,则随机变量的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出的概)(XgY=Y率分布再求其数学期望;对于二元函数,有类似的公式:),(YXgZ=(){}⎪⎩⎪⎨⎧===⎰∑∞∞.;(连续型)离散型-d)()()()(xxfxgxXxgXgY kkkPEE()(){}()()()()⎪⎩⎪⎨⎧====⎰⎰∑∑∞∞-∞∞-.;连续型离散型dd,,,,,yxyxfyxgyYxXyxgYXgZi jjijiPEE设(,)X Y为二维离散型随机变量,其联合概率函数(,),,1,2,,i j ijP X a Y b p i j====如果级数(,)i j ijj ig a b p∑∑绝对收敛,则(,)X Y的函数(,)g X Y的数学期望为随机变量的数字特征——总结[(,)](,)ijijjiE g X Y g a b p =∑∑; 特别地();()i ijj ijiij iE X a p E Y b p==∑∑∑∑.设X 为连续型随机变量,其概率密度为()f x ,如果广义积分 ()()g x f x dx+∞-∞⎰绝对收敛,则X 的函数()g X 的数学期望为[()]()()E g X g x f x dx+∞-∞=⎰.设(,)X Y 为二维连续型随机变量,其联合概率密度为(,)f x y ,如果广义积分(,)(,)g x y f x y dxdy+∞+∞-∞-∞⎰⎰绝对收敛,则(,)X Y 的函数(,)g X Y 的数学期望为[(,)](,)(,)E g x y g x y f x y dxdy+∞+∞-∞-∞=⎰⎰;特别地()(,)E x xf x y dxdy +∞+∞-∞-∞=⎰⎰,()(,)E Y yf x y dxdy+∞+∞-∞-∞=⎰⎰.注:求E(X,Y)是无意义的,比如说二维(身高,胖瘦)的数学期望是无意义的,但是二维随机变量函数Z= E(X,Y)是有意义的,他表示的是函数下的另一个一维意义。

大学课件概率论与数理统计第4章随机变量的数字特征


(3) Ef (X) g(X) E[f (X)] E[g(X)]
特别地 E[X Y] E[X] E[Y]
E[aX bY c] aE[X] bE[Y] c
(4) 若X, Y相互独立,则E[XY] E[X] E[Y]
(5) 若a X b,则E[X]存在,且a E[X] b
注:这些性质可以推广到多个随机变量上。
E[X] (1) 125 75 2 15 3 1 17 216 216 216 216 216
由于平均赢利小于0,故这一游戏规则对下注 者是不利的。
离散型随机变量函数的数学期望
已知P( X xk ) pk,当 g( xk ) pk 时,
k
g(X)的数学期望为
E[g(X)] g(xk )P(X xk )
E[ X ] 1 0.910 11(1 - 0.910) 7.513 10
结论:分组化验法的次数少于逐一化验法的次数
二、连续型随机变量的数学期望
设X是连续型随机变量,其密度函数为f (x),在
数轴上取很密的分点x0 <x1<x2< …,则X落在小区
间[xi, xi+1)的概率是
阴影面积近似为
9 P(X 9) 10 P(X 10)
由于打出环数的概率不同,所以不 是1到10的算术平均.
1.离散型随机变量的数学期望
设随机变量X的分布律为 P( X xk ) pk ,
若当 xk pk 时,则称 xk pk 为随机
k
k
变量X的数学期望或均值,记作 E[ X ] ,即有
E[ X ] xk pk xk P(X xk )
均匀分布的期望
例7 设X服从均匀分布,其分布密度为
x
b

概率论与数理统计(经管类)复习要点 第4章 随机变量的数字特征

第四章 随机变量的数字特征1. 把刻画随机变量某些方面特征的数值称为随机变量的数字特征,如期望、方差、协方差、相关系数等。

2. 随机变量的期望反映了随机变量取值的集中位置。

离散型随机变量的期望设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…若级数∑ix i p i 绝对收敛(即级数∑i丨x i 丨p i 收敛),则定义X 的数学期望(简称均值或期望)为E (X )=∑ix i p i注:当X 的可能取值为有限多个x 1,x 2,…,x n 时,E (X )=∑=ni 1x i p i 当X 的可能取值为可列多个x 1,x 2,…,x n ,…时,E (X )=∑∞=1i x i p i三种重要离散型随机变量的数学期望:3. 离散型随机变量函数的数学期望 设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…令Y =g (X ),若级数∑∞=1k g (x k )p k 绝对收敛,则随机变量Y 的数学期望为E (Y )= E[g (X )] =∑∞=1k g (x k )p k4. 连续型随机变量的期望三种重要连续型随机变量的数学期望:5. 连续型随机变量函数的数学期望2017.4单解:6. 二维随机变量的期望二维随机变量函数的期望7. 期望的性质(1)常数的期望等于这个常数,即E (C )=C ,其中C 为常数证明 常数C 作为随机变量,它只可能取一个值C ,即P {X =C }=1,所以E (C )=C ⋅1=C(2)常数与随机变量X 乘积的期望等于该常数与随机变量X 的期望的乘积,即E (C X )=C ⋅E (X ) (3)随机变量和的期望等于随机变量期望之和,即E (X +Y )= E (X )+ E (Y ) 推广:E (C 1X +C 2Y )= C 1E (X )+ C 2E (Y ),其中C 1,C 2为常数 一般地,设X 1,X 2,…,X n ,为n 个随机变量,则有E (∑=ni iX 1)=∑=ni iX E 1)(E (∑=ni ii X C 1)=∑=ni iiX E C 1)( 其中C i(i=1,2,…)为常数(4)两个相互独立的随机变量乘积的期望等于期望的乘积,即若X ,Y 是相互独立的随机变量,则E (XY )= E (X )E (Y )由数学归纳法可证得:当X1,X2,…,X n相互独立时有E(X1,X2,…,X n)= E(X1)E(X2)…E(X n)2018.4单解:指数分布的期望值为 1,故E(X)= E(Y)=21,所以E(X Y)= E(X)E(Y)=412018.4计解:(1)平均收益率E(X)=1%×0.1+2%×0.2+3%×0.1+4%×0.3+5%×0.2+6%×0.1=3.6%(2)预期利润10×3.6%=0.36万元2017.10单解:E(-3X +2)=-3 E(X)+2=-3×51+2=572017.4填解:E(X+Y)= E(X)+ E(Y)=20×0.1+2=48. 方差反映了随机变量偏离中心——期望的平均偏离程度。

第四章 随机变量的数字特征

第四章随机变量的数字特征第一节随机变量的数学期望一、内容精要(一)离散型随机变量的数学期望1.定义2.一维离散型随机变量函数的数学期望3.二维离散型随机变量函数的数学期望(二)连续型随机变量的数学期望1.定义2.一维连续型随机变量函数的数学期望3.二维连续型随机变量函数的数学期望(三)随机变量数学期望的性质及常用结论二、 常考题型分析(一) 分布律或概率密度函数已知,求随机变量或其函数的数学期望1. 离散型例1 {}()21=1,2,,.2kX P X k k EX EX ⎛⎫== ⎪⎝⎭设分布律为求和例2 ()(),,.XX B n p E e 设求例3 X Y 随机变量与的概率分布分别为011233X P101111333Y P- {}()()22=1,+.P X Y E XY E X Y =且求和例4 ()12,,max ,,2133X Y X U X Y ⎛⎫ ⎪= ⎪ ⎪⎝⎭设与独立同分布且分布律为记 ()()()min ,.1,;2.V X Y EU EV E X Y =-求2. 连续型例5 ()()1121,0,21,01,211,1,2x x e x X F x x ex --⎧<⎪⎪⎪=≤<⎨⎪⎪-≥⎪⎩设随机变量的分布函数为 ()()2,.E X E X 试求例6 ()()()10.30.7,2x X F x x x -⎛⎫=Φ+ΦΦ⎪⎝⎭设随机变量的分布函数为其中为 (),___________.E X =标准正态分布函数则例7 [],0,1,X Y 设与独立同服从上的均匀分布求()()()()()1;2;3.E X Y E XY E X Y +-例8 ,12,X Y λλ==设与相互独立且分别服从参数和的指数分布令()()()()max ,,min ,,.U X Y V X Y E U V E UV ==+求和例9 ()0,1,.n X N E X EX 若,求例10 ()()2,,,max ,,X Y N U X Y μσ=设与相互独立且分别服从正态分布令()min ,,.V X Y EU EV =求和例11 ()()()2221212,,;,;0.X Y N E XY μμσσ 设随机变量,求(二) 求随机试验中随机变量的数学期望例12 已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求()1X 乙箱中次品件数的数学期望;()2.从乙箱中任取一件产品是次品的概率例13 ()01,p p <<某流水生产线上每个产品不合格的概率为各产品合格与否,.相互独立当出现一个不合格产品时即停止检修设开机后第一次停机时已生产的产品()()2,,.X E X E X 的个数为求(三) 利用分割原理求解数学期望例14 2011,设有人在某个层楼的底层乘电梯上楼电梯在中途只下不上,每个()211,,乘客在哪一层到层下是等可能的且乘客之间相互独立试求电梯需停次数.的数学期望例15 1010,2.10X 将双不同型号的鞋随意分成堆每堆只以表示堆中恰好配,.EX 成一双鞋的堆数试求例16 已知编号为1,2,3,4的4个袋子各有3个白球,2个黑球,先从1,2,3号袋()4,___________.X E X =中任取一球放入号袋中,记4号袋中的白球数为则例17 (),01,p p X <<一射手进行独立重复射击已知每次击中目标的概率为令(),___________.n E X =为第次击中目标所进行射击的次数则(四) 数学期望的应用例18 0.2,假设一部机器在一天内发生故障的概率为机器发生故障时全天停,5,10止工作若一周个工作日里无故障可获利润万元;发生一次故障仍可获得利润5万元;发生两次故障所获利润0元;发生三次或三次以上故障就要亏损2万元.求一周内利润的期望是多少?例19 ,525游客乘电梯从底层到电视塔顶层观光电梯于每个整点的第分钟、分X X 钟和55分钟从底层起行.假设一游客在早晨八点的第分钟到达底层侯梯处,且在[]0,60,.上服从均匀分布求该游客等候时间的数学期望第二节随机变量的方差一、内容精要(一)随机变量方差的定义(二)方差的计算1.定义法2.公式法3.方差的性质4.常见随机变量的方差二、 常考题型分析(一) 公式法例1 []2,2.U -设随机变量在区间上服从均匀分布随机变量 1,11,1,U X U -≤-⎧=⎨>-⎩若,若 1,11,1,U Y U -≤⎧=⎨>⎩若,若().D X Y +求例2 X Y 随机变量与的概率分布分别为124599X P128199Y P124411999XY P().D X Y +求例3 ()()()0,1,1,0,1,1X Y 设随机变量和的联合分布在以点为顶点的三角形,.U X Y =+区域上服从均匀分布试求随机变量的方差(二) 性质法例4 ()212,,,,n X X X X N μσ 设是来自总体的一个简单随机样本,记样本均()11,1,2,,,.ni i i i i X X Y X X i n DY n ===-=∑ 值为记求三、 综合题分析例5 ()1cos ,0,220,,x x X f x X others π⎧≤≤⎪=⎨⎪⎩设随机变量的概率密度为对独立地重 24,,.3Y Y π复观察次用表示观察值大于的次数求的数学期望例6 ()()22,,,.X Y N D X Y D X Y μσ--若和相互独立且均服从求和第三节协方差,相关系数及其它数字特征一、内容精要(一)协方差与相关系数1.协方差2.相关系数3.协方差矩阵4.协方差及相关系数的性质5.不相关定义6.不相关的等价叙述(二)随机变量的矩二、 常考题型分析(一) 计算协方差和相关系数1. 公式法例1 6,箱内有个球其中红、白、黑球的个数分别为1,2,3个,现从箱中随机(),.Cov X Y 的取出2个球,记X 为取出的红球个数,Y 为取出的白球个数,求的概率分布例2 100,某箱装有件产品其中一、二和三等品分别为80,10和10件,现在从中1,,1,2,3.0,,i i X i others ⎧==⎨⎩若抽到等品随机抽取一件,记()121X X 试求:随机变量与的联合分布; ()122.X X 随机变量与的相关系数2. 性质法例3 ,,n X Y 将一枚硬币重复掷次以与分别表示正面向上和反面向上的次数____________.X Y 则与的相关系数等于例4 ()212,,,,n X X X X N μσ 设是来自总体的一个简单随机样本,记样本均()()111,1,2,,,,.ni i i n i X X Y X X i n Cov Y Y n ===-=∑ 值为记求协方差例5 0.9,0.4,X Y Z X Y Z =-设随机变量与的相关系数为若则与的相关系数为___________.(二) 与相关性和独立性有关的问题例6 ,,A B 设是两个随机事件随机变量1,,1,,A X A ⎧=⎨-⎩若出现若不出现 1,,1,B Y B ⎧=⎨-⎩若出现若不出现..X Y A B 试证明随机变量和不相关的充分必要条件是与相互独立例7 ()()()()121,,,,,2X Y f x y x y x y ϕϕ=+⎡⎤⎣⎦设二维随机变量的密度函数为其 ()()12,,,x y x y ϕϕ中和都是二维正态分布的密度函数且它们对应的二维随机变量的相11,,33关系数分别是和-它们的边缘密度函数所对应的随机变量的数学期望都是零方差都是1.()()()121,;X Y f x f x X Y ρ求随机变量和的密度函数和及和的相关系数()2X Y 问和是否独立?为什么?例8 ()212,,,,,X Y N Z aX bY Z aX bY μσ=+=-设相互独立且均服从令其中()212,,,,,X Y N Z aX bY Z aX bY μσ=+=-设相互独立且均服从令其中三、 综合题分析例9011344XP011122Y P()1,=,,.8Cov X Y X Y 且求的联合分布律例10 ()()12,,,01,1,2.i X X X B i p p i <<= 设随机变量与相互独立121120,1,1,1,X X Y X X +=⎧=⎨+≠⎩令 212210,2,1, 2.X X Y X X -=⎧=⎨-≠⎩()12,,.p Cov Y Y 试确定的值使最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一页
下一页
返回
上一页
下一页
返回
(6) 正态分布
上一页
下一页
返回
例4.15 设活塞的直径(以cm计)X~N(22.40,0.032),汽 缸的直径Y~N(22.50,0.042),X,Y相互独立,任取一 只活塞,任取一只气缸,求活塞能装入气缸的概率
解 按题意需求P{X<Y}=P{X-Y<0}.令Z=X-Y,则 E(Z)=E(X)-E(Y)=22.40-22.50=-0.10, D(Z)=D(X)+D(Y)=0.032+0.042=0.052, 即Z~N(-0.10,0.052),故有
上一页
下一页
返回
例4.4 设随机变量X服从柯西(Cauchy)分布,其概 率密度为
试证E(X)不存在. 证 由于
故E(X)不存在.
上一页
下一页
返回
2.随机变量函数的数学期望 定理4.1 设Y是随机变量X的函数,即Y=g(X),g(x) 是连续函数。
上一页
下一页
返回
证 明
设X是连续型随机变量,且y=g(x)满足第二章中定 理的条件。则由定理的结论知Y的概率密度为
上一页
E(X)=0×(1-p)+1×p=p.
下一页
返回
第二节
定义4. 2
方差
上一页
下一页
返回
上一页
下一页
返回
上一页
下一页
返回
2.方差的性质 设随机变量X与Y的方差存在,则
上一页
下一页
返回
3.常用分布的方差
X 0 1 P 1-p p
上一页
下一页
返回
(3) 泊松分布
上一页
下一页
返回
(4) 均匀分布
上一页
下一页
返回
3.数学期望的性质
定理4.2 设随机变量X,Y的数学期望E(X),E(Y)存在.
上一页
下一页
返回
例4.9 设一电路中电流I(安)与电阻R(欧)是两个 相互独立的随机变量,其概率密度分别为
试求电压V=IR的均值. 解
上一页
下一页
返回
4.常用分布的数学期望
(1) (0—1)分布 (2) 二项分布 (3) 泊松分布 (4) 均匀分布 (5) 指数分布 (6) 正态分布
上一页
下一页
返回
第三节 协方差与相关系数
上一页
下一页
返回
若(X,Y)为二维离散型随机变量,其联合分布律为 P{X=xi,Y=yj}=pij, i, j=1,2,…
若(X,Y)为二维连续型随机变量,其概率密度为f(x,y)
上一页
下一页
返回
协方差性质:
定理4. 3
上一页
下一页
返回
上一页
下一页
返回
第四章
随机变量的数字特征
数学期望 方差 协方差与相关系数 矩、协方差矩阵
第一节 第二节 第三节 第四节
第一节 数学期望
1.数学期望的定义
定义4.1
为随机变量X的数学期望,简称期望,记为E(X),即
上一页
下一页
返回
E(X)是一个实数,形式上是X的可能值的加权 平均数,实质上它体现了X取值的真正平均。又称 E(X)为X的平均值,简称均值。它完全由X的分布 所决定,又称为分布的均值.
解 每次摇奖摇出的奖金额X是一个随机变量,易知 它的分布律为
X pk 10000 0.0001 1000 0.0015 100 0.0134 10 0.1 1 0.885
上一页
下一页
返回
因此, E(X)=10000×0.0001+1000×0.0015+100×0.0134 +10×0.1+1×0.885 =5.725. 可见,平均起来每次摇奖的奖金额不足 6 元 . 这个值 对商店作计划预算时是很重要的.
上一页
下一页
返回
例4.1 某商店在年末大甩卖中进行有奖销售,摇奖时 从摇箱摇出的球的可能颜色为:红、黄、蓝、白、黑 五种,其对应的奖金额分别为:10000元、1000元、 100元、10元、1元.假定摇箱内装有很多球,其中红、 黄、蓝、白、黑的比例分别为: 0.01%,0.15%,1.34%,10%,88.5%,求每次摇奖摇出的 奖金额X的数学期望.
上一页
下一页
返回
推广: 设Z是随机向量(X,Y)的函数,即 Z=g(X,Y) (g(x,y)是连续函数)
上一页
下一页
返回
例4.6 对球的直径作近似测量,设其值均匀分布在区 间[a,b]内,求球体积的数学期望. 解 设随机变量X表示球的直径,Y表示球的体积,依 题意,X的概率密度为
球体积
,由(4.6)式得
下一页
返回
上一页
下一页
返回
上一页
下一页
返回
第四节 矩、协方差矩阵
上一页
下一页
返回
协方差Cov(X,Y)是X和Y的1+1阶混合中心矩 设n维随机变量(X1,X2,· · · Xn,则称矩阵
为n维随机变量(X1,X2,· · · Xn)的协方差矩阵。 协方差矩阵具有以下性质: (1)协方差矩阵为对称矩阵; 上一页 (2)协方差矩阵为非负定矩阵。
例4.18 设X服从[0,2π]上均匀分布,Y=cosX,Z=cos(X+a),这 里a是常数.求ρYZ.
上一页
下一页
返回
① 当a=0时,ρYZ=1,Y=Z,存在线性关系; ② 当a=π时,ρYZ=-1,Y=-Z,存在线性关系; ③当 时,ρYZ=0,这时Y与Z不相关,但这
时却有Y2+Z2=1,因此,Y与Z不独立.
相关文档
最新文档