2015-2016年河南省周口市扶沟县包屯高中高二上学期数学期中试卷及参考答案
高二上学期期中考试数学试卷含答案

高二级上学期期中考试题数学本试卷共8页,22小题,满分150分,考试时间120分钟。
第一部分选择题(共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( )A .0B .-1C .0或1D .0或-12.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )A.2π B .22π C .2πD .4π3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 5.下列命题中,正确的是( )A .任意三点确定一个平面B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( )A. 5 B .23 C . 22D .3 37.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上, 则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .D .⎡⎣二、多选题:本题共4小题,每小题5分,共20分.9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .410.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+=B .30x y +-=C .20x y -=D .10x y --=12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6第二部分非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.命题“20210x x x ∃<-->,”的否定是______________.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.15.若直线:l y kx =与曲线:1M y =+有两个不同交点,则k 的取值范围是________________.16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程.18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,P A ⊥平面ABCD ,P A =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值;(2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l 与圆C 相离,求a 的取值范围.20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.21. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.22. (本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点? 若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.高二级上学期期中考试题 数学答案及说明一、选择题:1.D ,2.A ,3.C ,4.B ,5.C ,6.B ,7.D ,8.A ,9.BCD ,10.ACD ,11.ABC ,12.BC.二、填空题:13.0x ∀<,2210x x --≤;14.y =-2x -2;15.13,24⎡⎫⎪⎢⎣⎭;16.36π.题目及详细解答过程:一、单选题(本题共8小题,每小题5分,共40分)1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( ) A .0 B .-1 C .0或1 D .0或-1 解析:因为l 1⊥l 2,所以2m 2+2m =0,解得m =0或m =-1. 答案:D2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( ) A.2π B .22π C .2π D .4π 解析:设底面圆的半径为r ,高为h ,母线长为l ,由题可知,r =h =22l ,则12(2r )2=1,r =1,l =2.所以圆锥的侧面积为πrl =2π. 答案:A3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°解析:当三棱锥D ABC 体积最大时,平面DAC ⊥平面ABC .取AC 的中点O ,则∠DBO 即为直线BD 和平面ABC 所成的角.易知△DOB 是等腰直角三角形,故∠DBO =45°.答案:C4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为22553255d ⨯--== 圆心到直线230x y --=的距离均为22555d -==; 所以,圆心到直线230x y --=25. 故选:B .5.下列命题中,正确的是( ) A .任意三点确定一个平面 B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行 解析:由线面垂直的性质,易知C 正确. 答案:C6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( ) A. 5 B .23 C . 22D .3 3解析:易知NF 的斜率k =-3,故NF 的方程为y =-3(x -1),即3x +y -3=0. 所以M 到NF 的距离为|33+23-3|(3)2+12=2 3. 答案:B7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π解析:由题意知正四棱柱的底面积为4,所以正四棱柱的底面边长为2,正四棱柱的底面对角线长为22,正四棱柱的对角线为2 6.而球的直径等于正四棱柱的对角线,即2R =2 6.所以R = 6.所以S 球=4πR 2=24π. 答案:D8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,【答案】A 【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则22AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1202222d ++==.故点P 到直线20x y ++=的距离2d 的范围为2,32⎡⎤⎣⎦,则[]22122,62ABP S AB d d ==∈△.故答案为A.二、多选题(每题5分,共20分)9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【答案】BCD【解析】:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-,)a ,则2a .∴实数a 的值可以是2,3,4.故选:BCD .10.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 【答案】ACD 【解析】若m α⊥,则,a b α∃⊂且a b P =使得m a ⊥,m b ⊥,又//m n ,则n a ⊥,n b ⊥,由线面垂直的判定定理得n α⊥,故A 对; 若//m α,n αβ=,如图,设m AB =,平面1111D C B A 为平面α,//m α,设平面11ADD A 为平面β,11A D n αβ⋂==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若,//m m n α⊥,则n α⊥,又n β⊥,则//αβ,故D 对; 故选:ACD .11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+= B .30x y +-= C .20x y -= D .10x y --=【答案】ABC【解析】:当直线经过原点时,斜率为20210k -==-,所求的直线方程为2y x =,即20x y -=; 当直线不过原点时,设所求的直线方程为x y k ±=,把点(1,2)A 代入可得12k -=,或12k +=,求得1k =-,或3k =,故所求的直线方程为10x y -+=,或30x y +-=; 综上知,所求的直线方程为20x y -=、10x y -+=,或30x y +-=. 故选:ABC .12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =,26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6 【答案】BC【解析】作图在四棱锥P ABCD -中:为矩形,由题:侧面PCD ⊥平面ABCD ,交线为CD ,底面ABCDBC CD ⊥,则BC ⊥平面PCD ,过点B 只能作一条直线与已知平面垂直,所以选项A错误;连接AC 交BD 于O ,连接MO ,PAC ∆中,OM ∥PA ,MO ⊆面MBD ,PA ⊄面MBD ,所以//PA 面MBD ,所以选项B 正确;四棱锥M ABCD -的体积是四棱锥P ABCD -的体积的一半,取CD 中点N ,连接PN ,PN CD ⊥,则PN平面ABCD ,32PN =,四棱锥M ABCD -的体积112326321223M ABCD V -=⨯⨯⨯⨯=所以选项D 错误.矩形ABCD 中,易得6,3,3AC OC ON ===,PCD 中求得:16,2NM PC ==在Rt MNO 中223MO ON MN =+=即: OM OA OB OC OD ====,所以O 为四棱锥M ABCD -外接球的球心,半径为3, 所以其体积为36π,所以选项C 正确, 故选:BC三、填空题(每题5分,共20分)13.命题“20210x x x ∃<-->,”的否定是______. 【答案】0x ∀<,2210x x --≤【解析】因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,, 则该命题的否定是:0x ∀<,2210x x --≤ 故答案为:0x ∀<,2210x x --≤.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.解析:由斜截式方程知直线l 1的斜率k 1=-2,又l ∥l 1,所以l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2.由斜截式方程可得直线l 的方程为y =-2x -2.答案:y =-2x -215.若直线:l y kx =与曲线()2:113M y x =+--有两个不同交点,则k 的取值范围是________________.解析:曲线M :y =1+1-(x -3)2是以(3,1)为圆心,1为半径的,且在直线y =1上方的半圆.要使直线l 与曲线M 有两个不同交点,则直线l 在如图所示的两条直线之间转动,即当直线l 与曲线M 相切时,k 取得最大值34;当直线l 过点(2,1)时,k 取最小值12.故k 的取值范围是13,24⎡⎫⎪⎢⎣⎭. 答案:13,24⎡⎫⎪⎢⎣⎭16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .又由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ABC 的体积为311323r V SC OB OA ⎛⎫=⨯⋅⋅= ⎪⎝⎭,即r 33=9.所以r =3.所以3344336.33=O V r πππ=⨯=球答案:36π四、解答题(每题5分,共70分)17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解:(1)设l 2的方程为2x -y +m =0,..........1分因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3,即l 2:2x -y -3=0.....3分联立⎩⎪⎨⎪⎧x +2y -4=0,2x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =1.所以直线l 1与l 2的交点坐标为(2,1)...........5分 (2)当l 3过原点时,l 3的方程为y =12x ..........6分当l 3不过原点时,设l 3的方程为12x y a a +=...........7分 又直线l 3经过l 1与l 2的交点,所以2112a a+=, 得52a =,l 3的方程为2x +y -5=0...........8分 综上,l 3的方程为y =12x 或2x +y -5=0...........10分18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,PA ⊥平面ABCD ,PA =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.18.解:(1)证明:因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,..........1分又因为AB ⊥AD ,AD ∩PA =A ,..........3分 所以AB ⊥平面PAD ,..........4分又PD ⊂平面PAD ,..........5分所以AB ⊥PD ...........6分 (2)解:S 梯形ABCD =12(AB +CD )·AD =332,.......8分又PA ⊥平面ABCD ,..........9分所以V 四棱锥P-ABCD =13×S 梯形ABCD ·PA =13×332×3=32...........12分19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值; (2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l与圆C 相离,求a 的取值范围.19.解:(1)由题意可知,圆C 的方程为(x -1)2+y 2=1...........2分又|MC |=(4-1)2+(4-0)2=5,..........4分 所以|MN |的最小值为5-1=4...........5分(2)因为直线l 的斜率为43,且与y 轴相交于点20,3⎛⎫- ⎪⎝⎭,所以直线l 的方程为y =43x -23.即4x -3y -2=0..........7分因为直线l 与圆C 相离,所以圆心C (a ,0)到直线l 的距离d >r . 则224243a a ->+.........9分又0a <,所以245a a ->-,解得2a >-..........11分 所以a 的取值范围是(-2,0)..........12分20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点. (1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.20.解:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接DE ,则点E 是BC 1的中点,又点D 是AB 的中点,由中位线定理得DE ∥AC 1,.........1分 因为DE ⊂平面B 1CD ,.........2分AC 1⊄平面B 1CD ,.........3分所以AC 1∥平面B 1CD ..........4分(2)解:当CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1........5分 证明:因为AA 1⊥平面ABC ,CD ⊂平面ABC , 所以AA 1⊥CD ..........6分又CD ⊥AB ,AA 1∩AB =A ,.........7分所以CD ⊥平面ABB 1A 1,因为CD ⊂平面CDB 1,.........8分 所以平面ABB 1A 1⊥平面CDB 1,.........9分故点D 满足CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1......10分 因为AB =5,AC =3,BC =4,所以AC 2+BC 2=AB 2, 故△ABC 是以角C 为直角的三角形, 又CD ⊥AB ,所以AD =95..........12分22. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.21.解: 作于点G ,连接FG , 四边形ABCD 是菱形,,,为等边三角形,,-----1分平面ABCD ,平面ABCD ,,又,,平面AFG ,BC FG ∴⊥-----2分 G∴为二面角的平面角,------3分----------------------------4分连接AE ,设点E 到平面AFC 的距离为h , 则, ----------------------5分即,也就是,--------------------6分解得:; ------------------------------------------------7分(3)作CH AB ⊥于点H ,连接FH ,ABC ∆为等边三角形,H ∴为AB 的中点,221,3,5,AH CH FH FA AH ===+= FA ⊥平面ABCD ,CH ⊂平面ABCD ,FA CH ∴⊥,----8分 又,CH AB AB AF A ⊥⋂=,CH ∴⊥平面ABF ,-----9分CFH ∴∠为直线FC 与平面ABF 所成的角,-------10分36sin 422CH CFH CF ∴∠===.-----------------12分 22.(本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点?若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.22.解:(1)当直线AB CD 、的斜率存在且不为0,设直线AB 的方程为:()()()112220,,,,y kx k A x y B x y =-≠------------1分由2229+=y kx x y =-⎧⎨⎩得:()221450k x kx +--=--------------------2分 点()0,2P -在圆内,故0∆>. 又 1212222422,21211M M Mx x k k x x x y kx k k k +∴+=∴===-=-+++ 即 2222,11kM k k ⎛⎫- ⎪++⎝⎭--------------------3分AB CD ⊥以1k -代换k 得22222,11k k N k k ⎛⎫-- ⎪++⎝⎭22222222111.22211MNk k k k k k k k k k -+-++∴==+++---------------4分∴直线MN 的方程为:222212121k k y x k k k -⎛⎫+=- ⎪++⎝⎭化简得2112k y x k-=-,故直线MN 恒过定点()01-,--------------------5分 当直线AB CD 、的斜率不存在或为0时,显然直线MN 恒过定点()01-, 综上,直线MN 恒过定点()01-,--------------------.6分 (2) 解法一:圆心O 到直线AB的距离1d =AB ==分 (或由第(1)问得:21AB x =-==以1k -代换k 得CD =)AB CD ⊥∴以1k -代换k 得:CD =分12ACBD S AB CD ∴=⋅==分14=≤= 当且仅当221,1k k k==±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=-----------12分 解法二:设圆心O 到直线AB 、CD 的距离分别为12,d d 、则22222211229,9AB r d d CD r d d =-=-=-=---------------------7分AB CD ⊥222124d d OP ∴+==--------------------8分()()()2222121221991821818414ACBD S AB CD d d d d OP ∴=⋅=≤-+-=-+=-=-=--------------------10分当且仅当12d d =,即1k =±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=---------12分。
河南省扶沟县包屯高级中学高三数学上学期第二次段考(

参考答案1.A2.D3.B4.D5.C6.D 7A 8.D 9A 10.A 11.D 12.D13.1 14. 24 15.错误!未找到引用源。
16.(1,2-∞-)17.(Ⅰ)错误!未找到引用源。
(3分)由题意知,错误!未找到引用源。
,错误!未找到引用源。
.(4分)由错误!未找到引用源。
,解得:错误!未找到引用源。
,错误!未找到引用源。
的单调增区间为错误!未找到引用源。
.(6分)(Ⅱ)由题意,若错误!未找到引用源。
的图像向左平移错误!未找到引用源。
个单位,得到错误!未找到引用源。
,再纵坐标不变,横坐标缩短为原来的错误!未找到引用源。
倍,得到错误!未找到引用源。
,(8分)错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
函数错误!未找到引用源。
的值域为错误!未找到引用源。
.(10分)18.解:(Ⅰ)由已知得2cos B=-错误!未找到引用源。
,(2分)由于△ABC为斜三角形,∴cos B≠0,∴sin2A=1.(4分)∵A∈(0,π),∴2A=错误!未找到引用源。
,∴A=错误!未找到引用源。
.(6分)(Ⅱ)∵A=错误!未找到引用源。
,由(1)知错误!未找到引用源。
,即错误!未找到引用源。
,(9分)∴tan C>1,∵0<C<错误!未找到引用源。
,∴错误!未找到引用源。
<C<错误!未找到引用源。
. (12分)19解:(Ⅰ)法一:设正项等差数列{}n a的首项为1a,公差为d,0na>,则2111124(2)772163a a d a da d⎧++=+⎪⎨⎪+=⎩………………2分得132a d =⎧⎨=⎩ ………………………4分3(1)221n a n n ∴=+-⨯=+. …………………6分法二:{}n a Q 是等差数列且215327a a a +=,233227a a ∴=, 又30,7.n a a >∴=Q …………………2分17747()7632a a S a +===Q ,49a ∴=, ………………3分 432d a a ∴=-=, …………………………4分3(3)21n a a n d n ∴=+-=+. ……………………6分(Ⅱ)11n n n b b a ++-=Q ,且21n a n =+,123n n b b n +∴-=+.当2n ≥时,112211()()()n n n n n b b b b b b b b ---=-+-++-+L(21)(21)53(2)n n n n =++-+++=+L ,………8分当1n =时,13b =满足上式,(2)n b n n =+. ……………9分11111()(2)22n b n n n n ∴==-++. …………………10分 1211111n n n T b b b b -∴=++++L 1111111111[(1)()()()()]232435112n n n n =-+-+-+-+--++L 11113111(1)()22124212n n n n =+--=-+++++.……………12分20..(1)当错误!未找到引用源。
2015-2016学年河南省周口市扶沟高中高三(上)开学数学试卷(理科)(解析版)

2015-2016学年河南省周口市扶沟高中高三(上)开学数学试卷(理科)一、选择题:(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)若集合A={x|x>3},集合,则A∩B=()A.∅B.(3,4)C.(﹣2,1)D.[4,+∞)2.(5分)若z(1+i)=i(其中i为虚数单位),则|z|等于()A.B.C.1D.3.(5分)若命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,<x,则下列说法正确的是()A.命题p∨q是假命题B.命题p∧(¬q)是真命题C.命题p∧q是真命题D.命题p∨(¬q)是假命题4.(5分)已知x、y取值如表:画散点图分析可知:y与x线性相关,且求得回归方程为=x+1,则m的值(精确到0.1)为()A.1.5B.1.6C.1.7D.1.85.(5分)设S n为等比数列{a n}的前n项和,已知3S3=a4﹣2,3S2=a3﹣2,则公比q=()A.3B.4C.5D.66.(5分)P是双曲线上一点,F1,F2分别是双曲线左右焦点,若|PF1|=9,则|PF2|=()A.1B.17C.1或17D.以上答案均不对7.(5分)某几何体的三视图如图所示,则此几何体的体积等于()A.30B.12C.24D.48.(5分)设函数y=x sin x+cos x的图象上的点(x,y)处的切线的斜率为k=g(x),则函数k=g(x)的图象大致为()A.B.C.D.9.(5分)执行如图所示的程序框图,则输出的结果是()A.14B.15C.16D.1710.(5分)△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则•的取值范围是()A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2] 11.(5分)如图过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()A.y2=x B.y2=9x C.y2=x D.y2=3x12.(5分)若直角坐标平面内A、B两点满足①点A、B都在函数f(x)的图象上;②点A、B关于原点对称,则点(A,B)是函数f(x)的一个“姊妹点对”.点对(A,B)与(B,A)可看作是同一个“姊妹点对”,已知函数f(x)=,则f(x)的“姊妹点对”有()A.0个B.1个C.2个D.3个二、填空题:(本大题共4小题,每小题5分,共20分.)13.(5分)设变量x,y满足约束条件,则z=3x+y的最大值为.14.(5分)在的展开式中的x3的系数为.15.(5分)已知a=(e x+2x)dx(e为自然对数的底数),函数f(x)=,则f(a)+f(log2)=.16.(5分)已知数列{a n}的前n项和S n=2a n﹣2n+1,若不等式2n2﹣n﹣3<(5﹣λ)a n对∀n∈N+恒成立,则整数λ的最大值为.三、解答题:(本大题共5小题,共计70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,a,b,c是其三个内角A,B,C的对边,且a≥b,sin2A+cos2A=2sin2B(Ⅰ)求角C的大小(Ⅱ)设c=,求△ABC的面积S的最大值.18.(12分)第117届中国进出口商品交易会(简称2015年春季交广会)将于2015年4月15日在广州市举行,为了搞好接待工作,组委会在广州某大学分别招募8名男志愿者和12名女志愿者,现将这20名志愿者的身高组成如下茎叶图(单位:m),若身高在175cm 以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.(1)计算男志愿者的平均身高和女志愿者身高的中位数(保留一位小数);(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中为女志愿者的人数,试写出ξ的分布列,并求ξ的数学期望.19.(12分)如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=CD=2,点M在线段EC上.(Ⅰ)当点M为EC中点时,求证:BM∥平面ADEF;(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.20.(12分)椭圆+=1(b>0)的焦点在x轴上,其右顶点(a,0)关于直线x﹣y+4=0的对称点在直线x=﹣上(c为半焦距长).(I)求椭圆的方程;(Ⅱ)过椭圆左焦点F的直线l交椭圆于A、B两点,交直线x=﹣于点C.设O为坐标原点,且+=2,求△OAB的面积.21.(12分)已知函数f(x)=x•lnx(e为无理数,e≈2.718)(1)求函数f(x)在点(e,f(e))处的切线方程;(2)设实数a>,求函数f(x)在[a,2a]上的最小值;(3)若k为正整数,且f(x)>(k﹣1)x﹣k对任意x>1恒成立,求k的最大值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写题号.【选修4-1:几何证明选讲】22.(10分)如图,在正△ABC中,点D,E分别在边AC,AB上,且AD=AC,AE=AB,BD,CE相交于点F.(Ⅰ)求证:A,E,F,D四点共圆;(Ⅱ)若正△ABC的边长为2,求,A,E,F,D所在圆的半径.【选修4-4:极坐标与参数方程】23.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立坐标系.已知曲线C:ρsin2θ=2a cosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C分别交于M、N两点.(1)写出曲线C和直线l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.【选修4-5:不等式选讲】24.已知a,b∈R,a+b=1,x1•x2∈R.(1)求++的最小值;(2)求证:(ax1+bx2)(ax2+bx1)>x1x2.2015-2016学年河南省周口市扶沟高中高三(上)开学数学试卷(理科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:由集合B中的不等式变形得:<0,即(x﹣1)(x﹣4)<0,解得:1<x<4,即B=(1,4),又A=(3,+∞),则A∩B=(3,4).故选:B.2.【解答】解:∵z(1+i)=i,∴z===﹣,∴|z|==,故选:A.3.【解答】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.4.【解答】解:将代入回归方程为可得,则4m=6.7,解得m=1.675,即精确到0.1后m的值为1.7.故选:C.5.【解答】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,两式相减得3a3=a4﹣a3,a4=4a3,∴公比q=4.故选:B.6.【解答】解:双曲线的a=4,b=2,c=6,由双曲线的定义可得||PF1|﹣|PF2||=2a=8,|PF1|=9,可得|PF2|=1或17,若|PF2|=1,则P在右支上,应有|PF2|≥c﹣a=2,不成立;若|PF2|=17,则P在左支上,应有|PF2|≥c+a=10,成立.故选:B.7.【解答】解:由三视图知,几何体是某三棱柱截去一个三棱锥后所剩几何体,几何体是底面为边长为3,4,5的三角形,高为6的三棱柱被平面截得的,如图所示,所以几何体的体积为:=30.故选:A.8.【解答】解:∵y=x sin x+cos x∴y′=(x sin x)′+(cos x)′=sin x+x cos x﹣sin x=x cos x∵g(x)为该函数在点P处切线的斜率∴g(x)=x cos x∵g(﹣x)=﹣x cos(﹣x)=﹣x cos x=﹣g(x)∴函数y=g(x)是奇函数,图象关于原点对称再根据当0<x<时,x与cos x均为正值可得:0<x<时,f(x)>0,因此符合题意的图象只有A故选:A.9.【解答】解:第一次循环:,n=2;第二次循环:,n=3;第三次循环:,n=4;…第n次循环:=,n=n+1令解得n>15∴输出的结果是n+1=16故选:C.10.【解答】解:∵D是边BC上的一点(包括端点),∴可设=+(0≤λ≤1).∵∠BAC=120°,AB=2,AC=1,∴=2×1×cos120°=﹣1.∴•=[+]•=﹣+=﹣(2λ﹣1)﹣4λ+1﹣λ=﹣7λ+2.∵0≤λ≤1,∴(﹣7λ+2)∈[﹣5,2].∴•的取值范围是[﹣5,2].故选:D.11.【解答】解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴=求得p=,因此抛物线方程为y2=3x.故选:D.12.【解答】解:根据题意可知,“友好点对”满足两点:都在函数图象上,且关于坐标原点对称.可作出函数y=x2+2x(x<0)的图象关于原点对称的图象,看它与函数y=(x≥0)交点个数即可.如图所示:当x=1时,0<<1观察图象可得:它们有2个交点.故选:C.二、填空题:(本大题共4小题,每小题5分,共20分.)13.【解答】由约束条件作出可行域如图,化z=3x+y为y=﹣3x+z,由图可知,当直线y=﹣3x+z过A(2,0)时,直线在y轴上的截距最大,z有最大值为3×2+0=6.故答案为:6.14.【解答】解:在的7个因式(1﹣x2+)的乘积,在这7个因式中,有2个取﹣x2,有一个取,其余的因式都取1,即可得到含x3的项;或者在这7个因式中,有3个取﹣x2,有3个取,剩余的一个因式取1,即可得到含x3的项;故含x3的项为••2•﹣••23=210﹣1120=﹣910,展开式中的x3的系数为﹣910.故答案为:910.15.【解答】解:∵(e x+x2)′=e x+2x,∴a=(e x+2x)dx=(e x+x2)=﹣e1+1﹣e0=e,又由函数f(x)=,则f(e)=lne=1,,故f(a)+f(log2)=7.故答案为:7.16.【解答】解:当n=1时,,得a1=4;当n≥2时,,两式相减得,得,∴.又,∴数列{}是以2为首项,1为公差的等差数列,,即.∵a n>0,∴不等式2n2﹣n﹣3<(5﹣λ)a n,等价于5﹣λ.记,n≥2时,.∴n≥3时,,.∴5﹣λ,即,∴整数λ的最大值为4.三、解答题:(本大题共5小题,共计70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(Ⅰ)∵sin2A+cos2A=2sin2B,∴2(sin2A+cos2A)=2sin2B,∴2sin(2A+)=2sin2B,∴sin(2A+)=sin2B,∴2A+=2B或2A+=π﹣2B,由a≥b,知A≥B,所以2A+=2B不可能成立,所以2A+=π﹣2B,即A+B=,所以C==…6分(Ⅱ)由(Ⅰ),C=,所以sin C=,S=,cos C=⇒﹣⇒﹣ab=a2+b2﹣3⇒3﹣ab=a2+b2≥2ab⇒ab≤1,即△ABC的面积S的最大值为…12分18.【解答】解:(1)根据茎叶图,得:男志愿者的平均身高为:≈176.1(cm),女志愿都身高的中位数为:=168.5(cm).(2)由茎叶图知“高个子”有8人,“非高个子”有12人,而男志愿者的“高个子”有5人,女志愿者的高个子有3人,∴ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:∴Eξ==.19.【解答】(I)证明:以直线DA、DC、DE分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),B(2,2,0)C(0,4,0),E(0,0,2),所以M(0,2,1).∴﹣﹣﹣﹣﹣﹣﹣﹣(2分)又是平面ADEF的一个法向量.∵,∴∴BM∥平面ADEF﹣﹣﹣﹣﹣﹣(4分)(II)解:设M(x,y,z),则,又,设,则x=0,y=4λ,z=2﹣2λ,即M(0,4λ,2﹣2λ).(6分)设是平面BDM的一个法向量,则取x1=1得即又由题设,是平面ABF的一个法向量,﹣﹣﹣﹣﹣﹣(8分)∴|cos<,|==,∴λ=﹣﹣(10分)即点M为EC中点,此时,S△DEM=2,AD为三棱锥B﹣DEM的高,∴V M﹣BDE=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)20.【解答】解:(1)椭圆的右顶点为(2,0),设(2,0)关于直线x﹣y+4=的对称点为(x0,y0),则…(4分)解得x0=﹣4,∴=,∴c=1,∴b==,∴所求椭圆方程为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)设A(x1,y1),B(x2,y2),C(﹣4,y3)椭圆的左焦点F的直线l的方程为y=k(x+1),代入椭圆方程得:(3+4k2)x2+8k2x+4k2﹣12=0∴x1+x2=﹣①,x1x2=②.∵+=2,∴(x1,y1)+(﹣4,y3)=2(x2,y2)∴2x2﹣x1=﹣4③.由①③得:x2=﹣,x1=,代入②整理得:4k4﹣k2﹣5=0.∴k2=,∴x2=﹣,x1=.由于对称性,只需求k=时,△OAB的面积,此时,y1=,y2=﹣,∴△OAB的面积为|OF||y1﹣y2|=…(12分)21.【解答】解:(1)∵f(x)=x•lnx,∴x>0,f′(x)=lnx+1,∵f(e)=e,f′(e)=2,∴y=f(x)在(e,f(e))处的切线方程为:y=2(x﹣e)+e,即y=2x﹣e.(2)∵f′(x)=lnx+1,令f′(x)=0,得x=,当x∈(0,)时,F′(x)<0,f(x)单调递减,当x∈()时,F′(x)>0,f(x)单调递增,当a≥时,f(x)在[a,2a]单调递增,[f(x)]min=f(a)=alna,当时,a<,[f(x)]min=f()=﹣.(3)记h(x)=f(x)﹣(k﹣1)x+k=xlnx﹣(k﹣1)x+k,x>1,则h′(x)=lnx+2﹣k,x>1,当k≤2且k∈Z时,h(x)在x∈(1,+∞)上为增函数,∴h(x)>h(1)=1>0,符合.当k=3时,由f(x)>(k﹣1)x﹣k,得x•lnx﹣2x+3>0对任意x>1恒成立,设F(x)=x•lnx﹣2x+3,则F′(x)=lnx﹣1,由F′(x)=0,得x=e,当x∈(0,e)时,F′(x)<0;当x∈(e,+∞)时,F′(x)>0,∴F(x)>F(e)>0,符合.当k≥4且k∈Z时,h(x)在x∈(1,e k﹣2)上为减函数,在x∈[e k﹣2,+∞)上为增函数,∵k≥4,∴k﹣2≥2,∴2∈(1,e k﹣2],∴h(2)=2ln2+2﹣k<2+2﹣k≤0,不符合.综上,k≤3且k∈Z,∴k的最大值是3.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写题号.【选修4-1:几何证明选讲】22.【解答】(Ⅰ)证明:∵AE=AB,∴BE=AB,∵在正△ABC中,AD=AC,∴AD=BE,又∵AB=BC,∠BAD=∠CBE,∴△BAD≌△CBE,∴∠ADB=∠BEC,即∠ADF+∠AEF=π,所以A,E,F,D四点共圆.…(5分)(Ⅱ)解:如图,取AE的中点G,连接GD,则AG=GE=AE,∵AE=AB,∴AG=GE=AB=,∵AD=AC=,∠DAE=60°,∴△AGD为正三角形,∴GD=AG=AD=,即GA=GE=GD=,所以点G是△AED外接圆的圆心,且圆G的半径为.由于A,E,F,D四点共圆,即A,E,F,D四点共圆G,其半径为.…(10分)【选修4-4:极坐标与参数方程】23.【解答】解:(1)曲线C:ρsin2θ=2a cosθ(a>0),转化成直角坐标方程为:y2=2ax线l的参数方程为(t为参数),转化成直角坐标方程为:x﹣y﹣2=0.(2)将直线的参数方程(t为参数),代入y2=2ax得到:,所以:,t 1t2=32+8a,①则:|PM|=t1,|PN|=t2,|MN|=|t1﹣t2||PM|,|MN|,|PN|成等比数列,所以:,②由①②得:a=1.【选修4-5:不等式选讲】24.【解答】(1)解:∵a,b∈R,a+b=1,x1,x2∈R,∴++≥3=3≥3=6,当且仅当a=b=0.5,x1=x2=1时,++的最小值为6;(2)证明:(ax1+bx2)(ax2+bx1)=(a2+b2)x1x2+ab(x12+x22)≥(a2+b2)x1x2+2abx1x2=(a+b)2x1x2≥x1x2.。
2015高二(上)期中数学试卷答案

中学部2015-2016学年第一学期高二年级期中测试数 学 学 科 试 题 参 考 答 案(第一部分 满分100分) 一、填空题 (本大题共8小题,每小题5分,共40分)1. 10x y --=2.2y x =3.28y x = 4.相离5.2e +6.47. 55(2,)(,3)228.{0}二、解答题 (本大题共4小题,共计60分) 9. (本小题满分14分)解(1)53BC k =-,BC 边所在直线在y 轴上的截距为2, BC 边所在直线方程为52,53603y x x y =-++-=(2)25AC k =,AC 边上的高的斜率为52k =-,AC 边上的高的直线的方程为53(3)2y x +=--,即5290x y +-=10. (本小题满分14分)解(1)右焦点2(3,0)F ,对应右准线253x =.右焦点到对应准线的距离为163. (2)椭圆的离心率为35e =,根据第二定义, 231616535PF ed ==⋅=, 根据第一定义12163421055PF a PF =-=-=,点P 到左焦点1F 的距离为345. 11. (本小题满分16分)解(1)17 (2)能切点坐标(2(2,)33k k k Z ππππ+-∈或 12. (本小题满分16分)解:(1)设圆C 方程为,022=++++F Ey Dx y x则0443206480F D E F D F ⎧=⎪+++=⎨⎪+++=⎩ 解得D= —8,E=F=0.所以圆C :2280.x y x +-= (2)圆C :22(4)16.x y -+=圆心C(4,0),半径4当斜率不存在时,:0l x =符合题意;当斜率存在时,设直线:0,l y kx kx y =+-+=即因为直线l 与圆C 相切,所以圆心到直线距离为4,4,k ==解得所以直线:120.l y x x =++-=即故所求直线0,120.l x x =-=为或(第二部分满分60分)三、填空题 (本大题共6小题,每小题5分,共30分)13.20x y -= 14. 22(1)(3)25x y -+-= 15.4259()122f x x x =-+ 16. 25/2. 17.011x -≤≤ 18..6 四、解答题 (本大题共2小题,共计30分) 19. (本题满分14分)解:(1)由抛物线2:C y x =得x y 2=',02|0x y x x ='∴= 切线l 的方程为)(2000x x x y y -=- 其中200x y = 令,0=x 得20x y -=;令,0=y 得20x x =;所以)0,2(0x A ,),0(20x B - 22400174x AB x =+=得到2004,2x x ==±,点P 的坐标为(2,4)±(2)设圆心E 的坐标为),0(b ,由题知1-=⋅l PE k k ,即12000-=⋅-x x by ,所以210-=-b y ;由||||PA PE =得20202020)2()(y x b y x +=-+整理得0134020=--y y解得10=y 或410-=y (舍去) 所以23=b ,圆E 的圆心E 的坐标为)23,0(,半径=r =||PE 25)(2020=-+b y x 圆E 的方程为45)23(22=-+y x20. (本题满分16分)解(1)①由已知得c a =,22411a b +=,222a b c =+,联立解得228,2a b ==. 椭圆M 的方程为22182x y +=. ②直线AB 的斜率为定值12由已知直线1:1(2)PA y k x -=-代入椭圆M 的方程消去y 并整理得22111(2)[(14)(288)]0x k x k k -+++-=所以2112188214A k k x k --=+,从而2112144114A k k y k --+=+同理2222288214B k k x k --=+,2222244114B k k y k --+=+因为120k k +=所以121222124()(41)(14)(14)A B k k k k y y k k ---==++121222128()(41)(14)(14)A B k k k k x x k k ---=++12A B ABA B y y k x x -==-为定值 (2) 解法一:12TBC S BC t =⋅=△直线TB 方程为:11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x 22284,44t t E t t ⎛⎫-- ⎪++⎝⎭到:TC 30x ty t --=的距离d ==直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得22436F t x t =+,所以=所以S 所以k 令21212t m +=>,则2213k m m m ==+-≤,当且仅当24m =,即t =±=”, 所以k 的最大值为43.解法二:直线TB 方程为11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得F x =1sin 21sin 2TBC TEFTB TC BTCS TB TC k S TE TF TE TF ETF ⋅⋅∠⋅===⋅⋅⋅∠△△T CT B T E T F x x x x TB TC TE TF x x x x --=⋅=⋅-- 22824436t tt t t t t t =⋅=+-++令21212t m +=>,则22192413k m m ==+-≤,当且仅当24m =,即t =±=”,所以k 的最大值为43.18解。
河南省周口市扶沟高中2015_2016学年高二数学上学期开学试题含解析

2015-2016学年河南省周口市扶沟高中高二(上)开学数学试卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.354.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•周口期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.20.(12分)(2015秋•周口月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.21.(12分)(2013•长春一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值范围.22.(12分)(2015春•文昌校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值范围.2015-2016学年河南省周口市扶沟高中高二(上)开学数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}考点:交集及其运算.专题:集合.分析:直接利用交集运算求得答案.解答:解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.点评:本题考查交集及其运算,是基础的计算题.2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.35考点:分层抽样方法.专题:概率与统计.分析:利用分层抽样知识求解.解答:解:设样本容量为n,由题意知:,解得n=15.故选:B.点评:本题考查样本容量的求法,是基础题,解题时要注意分层抽样知识的合理运用.4.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数解析式判断各自函数的单调区间,即可判断答案.解答:解:①y=﹣|x﹣1|=∴(0,+∞)不是减函数,故A不正确.②y=e x,在(﹣∞,+∞)上为增函数,故B不正确.③y=ln(x+1)在(﹣1,+∞)上为增函数,故C不正确.④y=﹣x(x+2)在(﹣1,+∞)上为减函数,所以在(0,+∞)上为减函数故D正确.故选:D.点评:本题考查了简单函数的单调性,单调区间的求解,掌握好常见函数的解析式即可,属于容易题.5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据已知中定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),先求出f(x)>0的解集,进而求出f(x﹣2)>0的解集.解答:解:∵f(x)=x2﹣4(x>0),∴当x>0时,若f(x)>0,则x>2,又由函数f(x)是定义在R上的奇函数,当x<0时,﹣x>0,若f(x)>0,则f(﹣x)<0,则0<﹣x<2,即﹣2<x<0,故f(x)>0的解集为(﹣2,0)∪(2,+∞),故f(x﹣2)>0时,x﹣2∈(﹣2,0)∪(2,+∞),x∈(0,2)∪(4,+∞),即f(x﹣2)>0的解集为(0,2)∪(4,+∞).故选:B.点评:本题主要考查不等式的解法,利用函数的奇偶性求出当x<0时,f(x)>0的解集,是解决本题的关键.7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ的一个可能取值.解答:解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.点评:本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③考点:命题的真假判断与应用.专题:空间位置关系与距离;简易逻辑.分析:①利用异面直线的定义即可判断出正误;②利用线面垂直的判定定理即可判断出正误;③由已知可得l与m不一定平行,即可判断出正误;④利用面面平行的判定定理可得:α∥β,即可判断出正误.解答:解:①若m⊂α,l∩α=A,点A∉m,则l与m不共面,正确;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,利用线面垂直的判定定理即可判断出:n⊥α正确;③若l∥α,α∥β,α∥β,则l与m不一定平行,不正确;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,利用面面平行的判定定理可得:α∥β,正确.其中为真命题的是①②④.故选:C.点评:本题考查了线面平行与垂直的判定定理、异面直线的定义,考查了推理能力,属于中档题.9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:求出所有的基本事件构成的区间长度;通过解三角不等式求出事件“cos x的值介于0到”构成的区间长度,利用几何概型概率公式求出事件的概率.解答:解:所有的基本事件构成的区间长度为∵解得或∴“cos x的值介于0到”包含的基本事件构成的区间长度为由几何概型概率公式得cos x的值介于0到之间的概率为P=故选A.点评:本题考查结合三角函数的图象解三角不等式、考查几何概型的概率公式.易错题.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.考点:平面向量的坐标运算.专题:计算题.分析:根据向量平行垂直的坐标公式X1Y2﹣X2Y1=0和X1X2+Y1Y2=0运算即可.解答:解:设C(x,y),∵,,联立解得.故选D.点评:本题考查两个向量的位置关系①平行②垂直,此种题型是高考考查的方向.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.考点:古典概型及其概率计算公式.专题:计算题.分析:根据已知中五件正品,一件次品,我们易得共有6件产品,由此我们先计算出从中任取出两件产品的事件个数,及满足条件“恰好是一件正品,一件次品”的基本事件个数,然后代入古典概型概率公式,可求出答案.解答:解:由于产品中共有5件正品,一件次品,故共有6件产品从中取出两件产品共有:C62==15种其中恰好是一件正品,一件次品的情况共有:C51=5种故出的两件产品中恰好是一件正品,一件次品的概率P==故选C点评:本题考查的知识点是古典概型及其概率计算公式,计算出满足条件的基本事件总数及其满足条件的基本事件个数是解答此类题型的关键.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}考点:函数奇偶性的性质.专题:函数的性质及应用.分析:首先根据f(x)是定义在R上的奇函数,求出函数在R上的解析式,再求出g(x)的解析式,根据函数零点就是方程的解,问题得以解决.解答:解:∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,令x<0,则﹣x>0,∴f(﹣x)=x2+3x=﹣f(x)∴f(x)=﹣x2﹣3x,∴∵g(x)=f(x)﹣x+3∴g(x)=令g(x)=0,当x≥0时,x2﹣4x+3=0,解得x=1,或x=3,当x<0时,﹣x2﹣4x+3=0,解得x=﹣2﹣,∴函数g(x)=f(x)﹣x+3的零点的集合为{﹣2﹣,1,3}故选:D.点评:本题考查函数的奇偶性及其应用,考查函数的零点,函数方程思想.二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=﹣.考点:诱导公式的作用.专题:计算题.分析:由诱导公式知cos600°=cos240°,进一步简化为﹣cos60°,由此能求出结果.解答:解:cos600°=cos240°=﹣cos60°=﹣.故答案为:﹣.点评:本题考查诱导公式的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于﹣3 .考点:循环结构.专题:计算题.分析:直接利用循环框图,计算循环的结果,当k=4时,退出循环,输出结果.解答:解:由题意可知第1次判断后,s=1,k=2,第2次判断循环,s=0,k=3,第3次判断循环,s=﹣3,k=4,不满足判断框的条件,退出循环,输出S.故答案为:﹣3.点评:本题考查循环结构的作用,注意判断框的条件以及循环后的结果,考查计算能力.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为 6 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:作出边AB,AC的垂线,利用向量的运算将用和表示,利用向量的数量积的几何意义将向量的数量积表示成一个向量与另个向量的投影的乘积,即可求得的值.解答:解:若P为△ABC的外心,过P作PS⊥AB,PT⊥AC垂足分别为S,T,则S,T分别是AB,AC的中点,AS=1,AT=2.∴=•(﹣)=﹣=AT•AC﹣AS•AB=2×4﹣1×2=6,故答案为:6.点评:本题考查两个向量的运算法则及其几何意义、两个向量数量积的几何意义,属于中档题.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:转化向量为平面直角坐标系中的向量,通过向量的数量积求出所求向量的夹角.解答:解:单位向量与的夹角为α,且cosα=,不妨=(1,0),=,=3﹣2=(),=3﹣=(),∴cosβ===.故答案为:.点评:本题考查向量的数量积,两个向量的夹角的求法,考查计算能力.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•周口期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.考点:同角三角函数基本关系的运用;两角和与差的正切函数.专题:计算题.分析:(1)利用两角和的正切公式,求出tanα的值.(2)利用二倍角公式展开,利用tanα求出cosα即可得到结果.解答:解:(1)由tan(α+)=﹣,得,解之得tanα=﹣3(5分)(2)==2cosα(9分)因为<α<π且tanα=﹣3,所以cosα=﹣(11分)∴原式=﹣(12分).点评:本题是基础题,考查两角和的正切函数公式的应用,同角三角函数的基本关系的应用,考查计算能力.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.考点:频率分布直方图;古典概型及其概率计算公式.专题:计算题;概率与统计.分析:(1)求出频率,用频率估计概率;(2)列出所有的基本事件,求概率.解答:解:(1)由图知,60及以上的分数所在的第三、四、五、六组的频率和为(0.02+0.03+0.025+0.005)×10=0.80,所以,估计这次考试的及格率为80%;=45×0.05+55×0.15+65×0.2+75×0.3+8×0.25+95×0.05=72,则估计这次考试的平均分是72分.(2)从95,96,97,98,99,100这6个数中任取2个数共有=15个基本事件,而[90,100]的人数有3人,则共有基本事件C=3.则这2个数恰好是两个学生的成绩的概率P==.点评:本题考查了学生在频率分布直方图中读取数据的能力,同时考查了古典概型的概率求法,属于基础题.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),分别代入直线l1 和l2的方程,求出m=﹣1,n=2,用两点式求直线的方程.(2)先求出圆心(0,0)到直线l的距离d,设圆的半径为R,则由,求得R的值,即可求出圆的方程.解答:解:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),则,即,解得m=﹣1,n=2.即A(﹣1,2),又l过点P(1,1),用两点式求得AB方程为=,即:x+2y﹣3=0.(2)圆心(0,0)到直线l的距离d==,设圆的半径为R,则由,求得R2=5,故所求圆的方程为x2+y2=5.点评:本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,用两点式求直线的方程,属于中档题.20.(12分)(2015秋•周口月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.考点:空间中直线与直线之间的位置关系;棱柱、棱锥、棱台的体积;直线与平面垂直的性质.专题:计算题.分析:(Ⅰ)由题意证明BC⊥平面ABE,得AE⊥BC,再结合条件证明AE⊥平面BCE,再证出AE⊥BE;(Ⅱ)利用题意得到平面ACD⊥平面ABE,作出交线的垂线,利用换低求三棱锥体积.解答:(Ⅰ)证明:由题意知,AD⊥平面ABE,且AD∥BC∴BC⊥平面ABE,∵AE⊂平面ABE∴AE⊥BC,∵BF⊥平面ACE,且AE⊂平面ABE∴BF⊥AE,又BC∩BF=B,∴AE⊥平面BCE,又∵BE⊂平面BCE,∴AE⊥BE.(Ⅱ)在△ABE中,过点E作EH⊥AB于点H,∵AD⊥平面ABE,且AD⊂平面ACD,∴平面ACD⊥平面ABE,∴EH⊥平面ACD.由已知及(Ⅰ)得EH=AB=,S△ADC=2.故V D﹣ABC=V E﹣ADC=×2×=.点评:本题主要考查垂直关系,利用线面垂直的定义和判定定理,进行线线垂直与线面垂直的转化;求三棱锥体积常用的方法:换底法.21.(12分)(2013•长春一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值范围.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:(1)由图象可求得A=1,由=可求得ω,f(x)过(,1)点可求得φ,从而可求得函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,可求得x+的范围,利用正弦函数的单调性即可求得f(x)的取值范围.解答:解:(1)由图象得A=1,=﹣=,∴T=2π,则ω=1;将(,1)代入得1=sin(+φ),而﹣<φ<,所以φ=,因此函数f(x)=sin(x+);(6分)(2)由于x∈[﹣π,﹣],﹣≤x+≤,所以﹣1≤sin(x+)≤,所以f(x)的取值范围是[﹣1,].( 12分)点评:本小题主要考查三角函数解析式的求法与三角函数图象与性质的运用,以及三角函数的值域的有关知识,属于中档题.22.(12分)(2015春•文昌校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值范围.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=cos(2x+)+2,由2kπ﹣π≤2x+≤2kπ,k∈Z,即可解得f(x)的单调递增区间.(Ⅱ)由,可得,解得1≤cos(2x+)+2,求得f(x),f(x)min=1,由题意log2t≤1,从而解得t的取值范围.解答:解:(Ⅰ)∵f(x)=cos(2x﹣)﹣sin2x+2=cos2x﹣sin2x+2=cos(2x+)+2,…(3分)由2kπ﹣π≤2x+≤2kπ,k∈Z,得k≤x≤k,k∈Z,…(5分)∴f(x)的单调递增区间为[k,k],k∈Z,.…(6分)(或者:f(x)=﹣+2=cos2x﹣+2=﹣+2,…(3分)令+2kπ≤≤+2kπ,k∈Z.则+kπ≤x≤+kπ,k∈Z.…(5分)∴f(x)的单调递增区间为:[+kπ,+kπ],k∈Z.…6分)(Ⅱ)∵,∴,…(7分)∴﹣1≤cos()≤﹣,1≤cos(2x+)+2,…(8分)(或者:∵,∴…(7分)∴≤≤1∴1≤﹣+2≤…8分)∴f(x),f(x)min=1.…(9分)若f(x)≥log2t恒成立,∴则log2t≤1,∴0<t≤2,…(11分)即t的取值范围为(0,2].…(12分)点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.。
河南省扶沟县包屯高中2015-2016学年高二上学期第二次段考(期中)数学试卷

包屯高中2015-2016学年度上期高二期中数学试卷一、选择题(每小题5分共60分)1.在等差数列{a n }中,若,23=a ,85=a ,则9a 等于 ( ) A .16 B .18 C .20 D .22 2.不等式13x<等价于A .103x <<B .103x x ><或C .13x > D .0x <3.已知点),(y x P 在直线12=+y x 上运动,则yx42+的最小值是A .2B .2C .22D .424.与曲线2212449x y +=共焦点,而与曲线2213664x y -=共渐近线的双曲线方程为A .191622=-y xB .191622=-x yC .116922=-x yD .116922=-y x5.已知命题p x R x p ⌝>+∈∀则,012,:2是 ( )A .012,2≤+∈∀x R x B .012,2>+∈∃x R xC .012,2<+∈∃x R xD. 012,2≤+∈∃x R x6. 若互不相等的实数a 、b 、c 成等差数列, c 、a 、b 成等比数列,且a +3b +c =10, 则a 等于A .4B .2C .-2D .-47.若110,a b <<,则下列不等式(1)a b ab +<,(2)a b >,(3)a b <,(4)2b a a b+>中,正确的有( )A .1个B .2个C .3个D .4个8、在ABC ∆中,60,2,A AB =︒=且ABC S ∆=,则BC=( )A B .3 C D .79、设:11p x x <->或; :21q x x <->或,则p q ⌝⌝是的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既充分也不必要条件10.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)11.若方程2210ax x ++=至少有一个负的实根,则a 的取值范围是( )A .1≤aB .1a <C .01≤a <D .01≤a < 或0a <12.已知F 1、F 2的椭圆)0(12222>>=+b a by a x 的焦点,M 为椭圆上一点,MF 1垂直于x 轴,且,6021︒=∠MF F 则椭圆的离心率为( )A .33B .23 C .21 D .22 二.填空题,20分13. 双曲线16422=-y x 的焦点坐标是_________________.14. 设等差数列{}n a 的公差d ≠0,又139,,a a a 成等比数列,则1392410a a a a a a ++=++15. .在ABC ∆中,若()C a A c b cos cos 3=-,则=A cos .16.有下列命题:①双曲线192522=-y x 与椭圆13522=+y x 有相同的焦点;②“-21<x <0”是“2x 2-5x -3<0”必要不充分条件;③若a 、b 共线,则a 、b所在的直线平行;④等轴双曲线的离心率是错误!未找到引用源。
2 数学-2015-2016学年高二上学期期中考试数学试题
2015-2016学年第一学期期中考试高二数学2015.11注意事项:1.本试卷分填空题和解答题两部分,共160分,考试用时120分钟.2.答题前,考生务必将自己的班级、姓名、学号写在答题纸的密封线内.答题时,填空题和解答题的答案写在答题纸对应的位置上,答案写在试卷上无效.........,本卷考试结束后,上交答题纸. 一、填空题(本大题共14小题,每小题5分,共70分) 1. 点(1,1)P -到直线10x y -+=的距离是 ▲ .2. 若三个球的半径之比是1:2:3,则它们的体积之比是 ▲ .3. 过点(1,3)P -且垂直于直线230x y -+=的直线方程为 ▲ .4. 若三条直线两两互相垂直,则下列结论正确的是 ▲ . ①这三条直线共点;②其中必有两条直线是异面直线; ③三条直线不可能在同一平面内;④其中必有两条在同一平面内.5. 方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 ▲ .6. 已知m n 、是不重合的直线,αβ、是不重合的平面,则下列命题中正确的序号为 ▲ . (1)若,//n m n αβ= ,则//,//m m αβ; (2)若,m m αβ⊥⊥,则//αβ; (3)若//,m m n α⊥,则n α⊥;(4)若,m n αα⊥⊂,则.m n ⊥.7. 已知正三棱锥P —ABC 中,侧棱0,30PA a APB =∠=,D 、E 分别是侧棱PB 、PC 上的点,则ADE ∆的周长的最小值是 ▲ .8. 直线l 经过点(2,3),且在两坐标轴上的截距相等,则直线l 的方程是 ▲ . 9. 若,62ππα⎡⎫∈⎪⎢⎣⎭,则直线2x cos α+3y +1=0的倾斜角的取值范围 ▲ .10. 点A ,B 到平面α的距离分别为4cm 和6cm ,则线段AB 的中点M 到α平面的距离为 ▲ .11. 已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC O 的体积等于 ▲ .12. 已知(2,0)A ,(1,2)B --,P 是直线y x =上的动点,则PA PB +的最小值为 ▲ .13. 若圆2221:240C x y mx m +-+-=与圆2222:24480C x y x my m ++-+-=相交,则m 的取值范围是 ▲ .14. 若直线y =x +b 与曲线x b 的取值范围是 ▲ .二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(本题14分)如图,在平行四边形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD垂直,点H是BE 的中点,点G是AE、DF的交点.(1)求证:GH∥平面CDE;(2)求证:BD⊥平面CDE.16.(本题满分14分)已知直线1:23160l x y+-=,2:3220l x y-+=.(1)求两直线的交点P;(2)求经过点P且平行于直线230x y+-=的直线方程;(3)求以点P为圆心,且与直线230x y+-=相切的圆的标准方程.17.(本题满分14分)如图,在四棱锥P ABCD-中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,60BAD∠= ,N是PB中点,截面DAN交PC于M,E是AD中点,求证:(1)//AD MN;(2)AD⊥平面PBE;(3)PB⊥平面ADMN.18..(本题满分16分)如图,在四棱锥P ABCD-中,平面PAD⊥平面A B C D,AB DC∥,PAD△是等边三角形,已知4AD=,BD=,28AB CD==.(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;(2)当M点位于线段PC什么位置时,PA∥平面MBD?(3)求四棱锥P ABCD-的体积.19.(本题满分16分)已知圆C:22(1)(3)9x y-+-=,直线:(23)(4)220l m x m y m++++-=.(1)无论m取任何实数,直线l必经过一个定点P,求出定点P的坐标;(2)过点P作圆C的切线,求切线方程;(3)以CP为直径的圆与圆C交于A、B两点,求线段AB的长.20.(本题满分16分)方程2()20f x x ax b=++=的一个根在(0,1)内,另一个根在(1,2)内,求:(1)21ba--的值域;(2)22(1)(2)a b-+-的值域;(3)3a b+-的值域.ACBDMNPECMDCBDHFGEAPA2015-2016学年第一学期期中考试高二数学2015.11一、填空题:本大题共14小题.每小题5分,共70分.1.________________________;2.________________________;3.________________________;4.________________________;5.________________________;6.________________________;7.________________________;8.________________________;9.________________________;10._______________________;11._______________________;12._______________________;13._______________________;14._______________________.二、解答题15.(本题14分)CBDHF G EA16.(本题14分) 17.(本题14分)ACBDMNPE18.(本题16分)19.(本题16分)CMDPA B20.(本题16分)2015-2016学年第一学期期中考试高二数学 (参考答案)2015.11一、填空题(本大题共14小题,每小题5分,共70分)1; 2.1:8:27; 3.210x y +-=; 4.③;5.223a -<<; 6.(2)(4); 7;8.3502x y y x +-==或;9.5,6ππ⎡⎫⎪⎢⎣⎭;10.1cm 或5cm ; 11.92π; 1213.122(,)(0,2)55-- ; 14.(1,1]{-⋃.二、解答题15.(本题满分14分)证明 (1)因为G 是AE 与DF 的交点,所以G 是AE 的中点.…………2分 又H 是BE 的中点,所以在△EAB 中,GH ∥AB . …………4分 因为AB ∥CD ,所以GH ∥CD . …………5分 又CD ⊂平面CDE ,GH ⊄平面CDE , 所以GH ∥平面CDE . …………7分 (2)平面ADEF ⊥平面ABCD ,交线为AD ,因为ED ⊥AD ,ED ⊂平面ADEF , 所以ED ⊥平面ABCD . …………10分 所以ED ⊥BD . …………11分 又BD ⊥CD ,CD ∩ED =D ,所以BD ⊥平面CDE . …………14分16.(本题满分14分)解:(1)由231603220x y x y +-=⎧⎨-+=⎩,得24x y =⎧⎨=⎩,所以()2,4P …………4分 (2)设20x y c ++=,…………5分则8c =-…………6分280x y +-=为所求…………8分(3)d ==10分因为相切,所以半径r 12分 所以圆方程为()()22245x y -+-=…………14分17.(本题满分14分)证明:(1)∵//AD BC ,BC ⊂平面PBC ,∴//AD 平面PBC ,…………2分 ∵AD ⊂平面ADMN ,平面ADMN 平面PBC MN =, ∴//AD MN .…………4分(2)连结BD∵PAD ∆和BAD ∆都是正三角形,∴AD PE ⊥,AD BE ⊥,又PE AE E = ,…………6分 ∴AD ⊥平面PBE ,…………7分(3)又PB ⊂平面PBE ,…………9分∴PB AD ⊥,…………10分 ∵AP AD AB ==,N 是PB 中点, ∴PB AN ⊥,…………12分 又AD AN A = ,∴PB ⊥平面ADMN .…………14分 18.(本题满分16分) 证明:(1)在ABD △中,∵4AD =,BD =,8AB =,∴222AD BD AB +=. ∴AD BD ⊥.…………2分 又 ∵平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BD ⊂平面ABCD , ∴BD ⊥平面PAD . 又BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .…………4分(2)当M 点位于线段PC 靠近C 点的三等分点处时,PA ∥平面MBD .……5分 证明如下:连接AC ,交BD 于点N ,连接MN .AC BMPD∵AB DC ∥,所以四边形ABCD 是梯形. ∵2AB CD =,∴:1:2CN NA =. 又 ∵:1:2CM MP =,∴:CN NA =:CM MP ,∴PA ∥MN .…………7分 ∵MN ⊂平面MBD ,∴PA ∥平面MBD .…………9分 (3)过P 作PO AD ⊥交AD 于O , ∵平面PAD ⊥平面ABCD , ∴PO ⊥平面ABCD .即PO 为四棱锥P ABCD -的高.…………11分又 ∵PAD △是边长为4的等边三角形,∴4PO ==12分在Rt ADB △中,斜边AB =,此即为梯形ABCD 的高.∴梯形ABCD 的面积482ABCD S +=⨯14分故1243P ABCD V -=⨯=.…………16分19.(本题满分16分)解:(1) 直线: :(23)(4)220l m x m y m ++++-=可变形(22)(342)0m x y x y ++++-=…………2分220,23420,2x y x x y y ++==-⎧⎧⎨⎨+-==⎩⎩由解得。
河南省扶沟县包屯高级中学2016届高三上学期第二次段考(期中)数学(理)试题扫描版含答案
参考答案1.A2.D3.B4.D5.C6.D 7A 8.D 9A 10.A 11.D 12.D13.1 14. 24 15.16.(1,2 -∞-)17.(Ⅰ)(3分)由题意知,,.(4分)由,解得:, 的单调增区间为.(6分)(Ⅱ)由题意,若的图像向左平移个单位,得到,再纵坐标不变,横坐标缩短为原来的倍,得到,(8分),,函数的值域为.(10分)18.解:(Ⅰ)由已知得2cos B=-,(2分)由于△ABC为斜三角形,∴cos B≠0,∴sin2A=1.(4分)∵A∈(0,π),∴2A=,∴A=.(6分)(Ⅱ)∵A=,由(1)知,即,(9分)∴tan C>1,∵0<C<,∴<C<. (12分)19解:(Ⅰ)法一:设正项等差数列{}n a的首项为1a,公差为d,0na>,则2111124(2)772163a a d a d a d ⎧++=+⎪⎨⎪+=⎩………………2分 得132a d =⎧⎨=⎩………………………4分 3(1)221n a n n ∴=+-⨯=+. …………………6分法二:{}n a Q 是等差数列且215327a a a +=,233227a a ∴=,又30,7.n a a >∴=Q …………………2分17747()7632a a S a +===Q ,49a ∴=, ………………3分 432d a a ∴=-=, …………………………4分 3(3)21n a a n d n ∴=+-=+. ……………………6分(Ⅱ)11n n n b b a ++-=Q ,且21n a n =+,123n n b b n +∴-=+.当2n ≥时,112211()()()n n n n n b b b b b b b b ---=-+-++-+L(21)(21)53(2)n n n n =++-+++=+L ,………8分当1n =时,13b =满足上式,(2)n b n n =+. ……………9分11111()(2)22n b n n n n ∴==-++. …………………10分 1211111n n nT b b b b -∴=++++L 1111111111[(1)()()()()]232435112n n n n =-+-+-+-+--++L 11113111(1)()22124212n n n n =+--=-+++++.……………12分 20..(1)当时,.即(2分)∴=又∵0∴∴数列为等差数列(5分) (2)由(1)可求得. (7分)进而求得 (9分)再裂项求和得(12分)21.(1)ax ax ax x f cos sin cos 3)(2-==)32sin(23π--ax ………………3分 由题意,函数)(x f 的周期为π,且最大(或最小)值为m ,而0>m ,0123<- 所以,,1=a 123+=m ………… ……………………6分 (2)∵()232,A 是函数)(x f 图象的一个对称中心 ∴0)3sin(=-πA 又因为A 为⊿ABC 的内角,所以3π=A ………… ……………………9分⊿ABC 中, 则由正弦定理得:3383sin4sin sin sin ====πAc c B b a, []4)6sin(84)3sin(sin 3384sin sin 3384++=+⎥⎦⎤⎢⎣⎡++=++=++=++∴ππB B B C B c b a c b320π<<B ∴b+c+a ]12,8(∈ ………… ……………………12分22.解:(1),,切线过点,(2分)(3分)① 当时,单调递增,单调递减;② 当时,单调递减,单调递增.(5分)(2)等价方程在只有一个根,即在只有一个根,(6分)令,等价于在与轴只有唯一的交点,;(7分)①当时,在递减,递增,当时,,要函数在与轴只有唯一的交点,或,或;(9分)②当时,在递增,递减,递增,当时,,,在与轴只有唯一的交点;(11分)③当,在递增, ,,在与轴只有唯一的交点.故的取值范围是或或.(12分)。
河南省周口市扶沟县包屯高中2016届高三数学上学期期中试卷理含解析
2015-2016学年河南省周口市扶沟县包屯高中高三(上)期中数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则A∩B=( )A.{x|0<x<1} B.{x|<x≤1}C.{x|x<1} D.∅2.如果点P在平面区域上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为( )A.﹣1 B.﹣1 C.2﹣1 D.﹣13.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则( )A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>04.直线x=,x=2,y=0,及曲线y=所围图形的面积为( )A.B.C.D.2ln25.已知函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则( )A.f(2a)<f(3)<f(log2a)B.f(3)<f(log2a)<f(2a)C.f(log2a)<f(3)<f(2a)D.f(log2a)<f(2a)<f(3)6.在锐角三角形ABC中,BC=1,B=2A,则的值等于( )A.3 B.2 C.﹣2 D.07.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值( )A.恒为正数 B.恒为负数 C.恒为0 D.可正可负8.若函数f(x)=2sin()(﹣2<x<10)的图象与x轴交于点A,过点A的直线l 与函数的图象交于B、C两点,则(+)•=( )A.﹣32 B.﹣16 C.16 D.329.已知O是△ABC所在平面上一点,满足||2+||2=||2+||2,则点O( )A.在与边AB垂直的直线上B.在∠A的平分线所在直线上C.在边AB的中线所在直线上D.以上都不对10.以下判断正确的是( )A.命题“在锐角△ABC中,有sinA>cosB”为真命题B.命题“存在x∈R,x2+x﹣1<0”的否定是“任意x∈R,x2+x﹣1>0”C.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件D.“b=0”是“f(x)=ax2+bx+c是偶函数”的充分不必要条件11.已知等比数列{a n}的公比q>0且q≠1,又a6<0,则( )A.a5+a7>a4+a8B.a5+a7<a4+a8C.a5+a7=a4+a8D.|a5+a7|>|a4+a8|12.已知函数f(x)=e x﹣1,g(x)=﹣x2+4x﹣3,若存在f(a)=g(b),则实数b的取值范围为( )A.[1,3] B.(1,3)C.D.二、填空题(共4小题,每小题5分,满分20分)13.若函数f(x)=xln(x+)为偶函数,则a=__________.14.已知点P是边长为4的正三角形ABC的边BC上的中点,则•(+)=__________.15.已知方程sinx+cosx=m+1在x∈[0,π]上有两个不相等的实数解,则实数m的取值范围是__________.16.定义在R上的函数f(x)=ax3+bx2+cx(a≠0)的单调增区间为(﹣1,1),若方程3a(f (x))2+2bf(x)+c=0恰有6个不同的实根,则实数a的取值范围是__________.三、解答题(共6小题,满分70分)17.已知向量(ω>0),函数f(x)=,若函数f(x)的图象的两个相邻对称中心的距离为.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数g(x)的图象,当时,求函数g(x)的值域.18.在斜三角形ABC中,角A、B、C所对的边分别是a、b,c,且=﹣.(Ⅰ)求角A的大小;(Ⅱ)若,求角C的取值范围.19.已知正项等差数列{a n}的前n项和为S n且满足a1+a5==63.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)若数列{b n}满足b1=a1且b n+1﹣b n=a n+1,求数列的前n项和T n.20.已知正项数列{a n}的首项a1=1,前n项的和为S n,且满足:当n≥2时,a n=+.(1)证明:数列{}为等差数列.(2)若数列{}前n项的和为T n,求T n的表达式.21.若f(x)=cos2ax﹣sinaxcosax(a>0)的图象与直线y=m(m>0)相切,并且切点横坐标依次成公差为π的等差数列.(1)求a和m的值;(2)△ABC中a、b、c分别是∠A、∠B、∠C的对边.若(,)是函数f(x)图象的一个对称中心,且a=4,求△ABC周长的取值范围.22.已知函数f(x)=(其中a≤2且a≠0),函数f(x)在点(1,f(1))处的切线过点(3,0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)与函数g(x)=a+2﹣x﹣的图象在(0,2]有且只有一个交点,求实数a 的取值范围.2015-2016学年河南省周口市扶沟县包屯高中高三(上)期中数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则A∩B=( )A.{x|0<x<1} B.{x|<x≤1}C.{x|x<1} D.∅【考点】交集及其运算.【专题】计算题;函数思想;数学模型法;集合.【分析】求解函数的值域化简A,求解对数不等式化简B,然后取交集得答案.【解答】解:∵A={y|y=2x+1}=R,B={x|lnx<0}=(0,1),∴A∩B=(0,1).故选:A.【点评】本题考查交集及其运算,考查了函数值域的求法,训练了对数不等式的解法,是基础题.2.如果点P在平面区域上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为( )A.﹣1 B.﹣1 C.2﹣1 D.﹣1【考点】简单线性规划的应用.【专题】计算题;数形结合.【分析】先画出满足的平面区域,再把|PQ|的最小值转化为点P到(0,﹣2)的最小值减去圆的半径1即可.【解答】解:由题可知不等式组确定的区域为阴影部分包括边界,点P到Q的距离最小为到(0,﹣2)的最小值减去圆的半径1,点(0,﹣2)到直线x﹣2y+1=0的距离为=;由图可知:|PQ|min=﹣1,故选A.【点评】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与(0,﹣2)之间的距离问题3.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则( )A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】因为x0是函数f(x)=2x+的一个零点可得到f(x0)=0,再由函数f(x)的单调性可得到答案.【解答】解:∵x0是函数f(x)=2x+的一个零点∴f(x0)=0∵f(x)=2x+是单调递增函数,且x1∈(1,x0),x2∈(x0,+∞),∴f(x1)<f(x0)=0<f(x2)故选B.【点评】本题考查了函数零点的概念和函数单调性的问题,属中档题.4.直线x=,x=2,y=0,及曲线y=所围图形的面积为( )A.B.C.D.2ln2【考点】定积分在求面积中的应用.【专题】计算题;导数的综合应用.【分析】用定积分表示出图形的面积,求出原函数,即可求得结论.【解答】解:由题意,直线x=,x=2,y=0,及曲线y=所围图形的面积为=lnx=ln2﹣ln=2ln2故选:D.【点评】本题考查定积分知识的运用,考查导数知识,考查学生的计算能力,属于基础题.5.已知函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4则( )A.f(2a)<f(3)<f(log2a)B.f(3)<f(log2a)<f(2a)C.f(log2a)<f(3)<f(2a)D.f(log2a)<f(2a)<f(3)【考点】抽象函数及其应用;导数的运算.【专题】计算题;函数的性质及应用.【分析】由f(x)=f(4﹣x),可知函数f(x)关于直线x=2对称,由xf′(x)>2f′(x),可知f(x)在(﹣∞,2)与(2,+∞)上的单调性,从而可得答案.【解答】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4﹣x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)>2f′(x)⇔f′(x)(x﹣2)>0,∴当x>2时,f′(x)>0,f(x)在(2,+∞)上的单调递增;同理可得,当x<2时,f(x)在(﹣∞,2)单调递减;∵2<a<4,∴1<log2a<2,∴2<4﹣log2a<3,又4<2a<16,f(log2a)=f(4﹣log2a),f(x)在(2,+∞)上的单调递增;∴f(log2a)<f(3)<f(2a).故选C.【点评】本题考查抽象函数及其应用,考查导数的性质,判断f(x)在(﹣∞,2)与(2,+∞)上的单调性是关键,属于中档题.6.在锐角三角形ABC中,BC=1,B=2A,则的值等于( )A.3 B.2 C.﹣2 D.0【考点】正弦定理.【专题】计算题.【分析】利用正弦定理表示出=,把BC的长及B=2A代入,其中的sin2A利用二倍角的正弦函数公式化简后,变形可得所求式子的值.【解答】解:由BC=1,B=2A根据正弦定理得=,即==,则=2.故选B【点评】此题考查了正弦定理,二倍角的正弦函数公式,熟练掌握定理及公式是解本题的关键.7.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值( )A.恒为正数 B.恒为负数 C.恒为0 D.可正可负【考点】等差数列的性质;函数单调性的性质;函数奇偶性的性质.【专题】计算题.【分析】由函数f(x)是R上的奇函数且是增函数数列,知取任何x2>x1,总有f(x2)>f (x1),由函数f(x)是R上的奇函数,知f(0)=0,所以当x>0,f(0)>0,当x<0,f (0)<0.由数列{a n}是等差数列,a1+a5=2a3,a3>0,知a1+a5>0,所以f(a1)+f(a5)>0,f(a3)>0,由此知f(a1)+f(a3)+f(a5)恒为正数.【解答】解:∵函数f(x)是R上的奇函数且是增函数数列,∴取任何x2>x1,总有f(x2)>f(x1),∵函数f(x)是R上的奇函数,∴f(0)=0,∵函数f(x)是R上的奇函数且是增函数,∴当x>0,f(0)>0,当x<0,f(0)<0.∵数列{a n}是等差数列,a1+a5=2a3,a3>0,∴a1+a5>0,则f(a1)+f(a5)>0,∵f(a3)>0,∴f(a1)+f(a3)+f(a5)恒为正数.【点评】本题考查等差数列的性质和应用,是中档题.解题时要认真审题,仔细解答,注意合理地运用函数的性质进行解题.8.若函数f(x)=2sin()(﹣2<x<10)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则(+)•=( )A.﹣32 B.﹣16 C.16 D.32【考点】平面向量数量积的运算;正弦函数的图象.【专题】计算题;三角函数的图像与性质;平面向量及应用.【分析】由f(x)=2sin()=0,结合已知x的范围可求A,设B(x1,y1),C(x2,y2),由正弦函数的对称性可知B,C 两点关于A对称即x1+x2=8,y1+y2=0,代入向量的数量积的坐标表示即可求解【解答】解:由f(x)=2sin()=0可得∴x=6k﹣2,k∈Z∵﹣2<x<10∴x=4即A(4,0)设B(x1,y1),C(x2,y2)∵过点A的直线l与函数的图象交于B、C两点∴B,C 两点关于A对称即x1+x2=8,y1+y2=0则(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故选D【点评】本题主要考查了向量的数量积的坐标表示,解题的关键正弦函数对称性质的应用.9.已知O是△ABC所在平面上一点,满足||2+||2=||2+||2,则点O( )A.在与边AB垂直的直线上B.在∠A的平分线所在直线上C.在边AB的中线所在直线上D.以上都不对【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】根据向量的减法分别设=,=,=,表示,利用数量积运算和题意代入式子进行化简,证出OC⊥AB.【解答】解:设=,=,=,则=,.由||2+||2=||2+||2,∴||2+||2=||2+||2,化简可得,即())•=0,∴∴AB⊥OC.故选A.【点评】本题考查了向量在几何中应用,主要利用向量的线性运算以及数量积进行化简证明,证明垂直主要根据题意构造向量利用数量积为零进行证明.10.以下判断正确的是( )A.命题“在锐角△ABC中,有sinA>cosB”为真命题B.命题“存在x∈R,x2+x﹣1<0”的否定是“任意x∈R,x2+x﹣1>0”C.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件D.“b=0”是“f(x)=ax2+bx+c是偶函数”的充分不必要条件【考点】命题的真假判断与应用.【专题】转化思想;数学模型法;简易逻辑.【分析】A.在锐角△ABC中,有>0,可得sinA>=cosB,即可判断出正误;B.利用命题的否定定义即可判断出正误;C.f′(x0)=0是x0为函数f(x)极值点的必要不充分条件,例如函数f(x)=x3,f′(0)=3x2|x=0=0,而函数f(x)在x=0处无极值,即可判断出正误;D.“b=0”⇔“f(x)=ax2+bx+c是偶函数”,即可判断出正误.【解答】解:A.在锐角△ABC中,有,∴>0,∴sinA>=cosB,因此为真命题;B.“存在x∈R,x2+x﹣1<0”的否定是“任意x∈R,x2+x﹣1≥0”,因此不正确;C.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的必要不充分条件,例如函数f(x)=x3,f′(0)=3x2|x=0=0,而函数f(x)在x=0处无极值,因此不正确;D.“b=0”⇔“f(x)=ax2+bx+c是偶函数”,因此不正确.故选:A.【点评】本题查克拉简易逻辑的判定方法、函数的奇偶性、三角函数单调性、利用导数研究函数的极值,考查了推理能力与计算能力,属于中档题.11.已知等比数列{a n}的公比q>0且q≠1,又a6<0,则( )A.a5+a7>a4+a8B.a5+a7<a4+a8C.a5+a7=a4+a8D.|a5+a7|>|a4+a8|【考点】等比数列的性质.【专题】计算题.【分析】等比数列{a n}的公比q>0且q≠1,又a6<0,知此等比数列是一个负项数列,各项皆为负,观察四个选项,比较的是a5+a7,a4+a8两组和的大小,可用作差法进行探究,比较大小【解答】解:∵a6<0,q>0∴a5,a7,a8,a4都是负数∴a5+a7﹣a4﹣a8=a4(q﹣1)+a7(1﹣q)=(q﹣1)(a4﹣a7)若0<q<1,则q﹣1<0,a4﹣a7<0,则有a5+a7﹣a4﹣a8>0若q>1,则q﹣1>0,a4﹣a7>0,则有a5+a7﹣a4﹣a8>0∴a5+a7>a4+a8故选A【点评】本题主要考查了等比数列的性质.属基础题.12.已知函数f(x)=e x﹣1,g(x)=﹣x2+4x﹣3,若存在f(a)=g(b),则实数b的取值范围为( )A.[1,3] B.(1,3)C.D.【考点】函数的零点与方程根的关系.【专题】综合题.【分析】确定两个函数的值域,根据f(a)=g(b),可得g(b)∈(﹣1,1],即可求得实数b的取值范围.【解答】解:由题可知f(x)=e x﹣1>﹣1,g(x)=﹣x2+4x﹣3=﹣(x﹣2)2+1≤1,若有f(a)=g(b),则g(b)∈(﹣1,1],即﹣b2+4b﹣3>﹣1,即 b2﹣4b+2<0,解得.所以实数b的取值范围为故选D.【点评】本题考查函数的值域,考查解不等式,同时考查学生分析解决问题的能力.二、填空题(共4小题,每小题5分,满分20分)13.若函数f(x)=xln(x+)为偶函数,则a=1.【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解.【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴ln(+x)(﹣x)=0,∴lna=0,∴a=1.故答案为:1.【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.已知点P是边长为4的正三角形ABC的边BC上的中点,则•(+)=24.【考点】平面向量数量积的运算.【专题】整体思想;向量法;平面向量及应用.【分析】由中点的向量表示形式可得=(+),再由向量数量积的定义和性质,化简整理即可得到所求值.【解答】解:由P为边长为4的正三角形ABC的边BC上的中点,可得=(+),•=||•||•cosA=4×4×=8,则•(+)=(+)2=(2+2+2•)=×(16+16+16)=24.故答案为:24.【点评】本题考查向量的数量积的定义和性质,考查向量的中点的表示形式,以及运算能力,属于基础题.15.已知方程sinx+cosx=m+1在x∈[0,π]上有两个不相等的实数解,则实数m的取值范围是.【考点】函数恒成立问题;三角函数的最值.【专题】函数的性质及应用;三角函数的求值;三角函数的图像与性质.【分析】通过两角和与差的三角函数化简左侧表达式,通过三角函数的最值,得到表达式,然后求解m的范围.【解答】解:m+1=sinx+cosx=2sin(x+),x∈[0,π],x+[],如图:方程sinx+cosx=m+1在x∈[0,π]上有两个不相等的实数解,2sin(x+)∈.∴m+1∈,可得m∈.故答案为:.【点评】他考查函数的恒成立,三角函数的最值函数的图象的应用,考查分析问题解决问题的能力.16.定义在R上的函数f(x)=ax3+bx2+cx(a≠0)的单调增区间为(﹣1,1),若方程3a(f (x))2+2bf(x)+c=0恰有6个不同的实根,则实数a的取值范围是a<﹣.【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【专题】导数的综合应用.【分析】根据函数的单调区间求出a,b,c的关系,然后利用导数研究三次函数的极值,利用数形结合即可得到a的结论.【解答】解:∵函数f(x)=ax3+bx2+cx(a≠0)的单调增区间为(﹣1,1),∴f'(x)>0的解集为(﹣1,1),即f'(x)=3ax2+2bx+c>0的解集为(﹣1,1),∴a<0,且x=﹣1和x=1是方程f'(x)=3ax2+2bx+c=0的两个根,即﹣1+1=,,解得b=0,c=﹣3a.∴f(x)=ax3+bx2+cx=ax3﹣3ax=ax(x2﹣3),则方程3a(f(x))2+2bf(x)+c=0等价为3a(f(x))2﹣3a=0,即(f(x))2=1,即f(x)=±1.要使方程3a(f(x))2+2bf(x)+c=0恰有6个不同的实根,即f(x)=±1.各有3个不同的根,∵f(x)=ax3+bx2+cx=ax3﹣3ax=ax(x2﹣3),∴f'(x)=3ax2﹣3a=3a(x2﹣1),∵a<0,∴当f'(x)>0得﹣1<x<1,此时函数单调递增,当f'(x)<0得x<﹣1或x>1,此时函数单调递减,∴当x=1时,函数取得极大值f(1)=﹣2a,当x=﹣1时,函数取得极小值f(﹣1)=2a,∴要使使方程3a(f(x))2+2bf(x)+c=0恰有6个不同的实根,即f(x)=±1各有3个不同的根,此时满足f极小(﹣1)<1<f极大(1),f极小(﹣1)<﹣1<f极大(1),即2a<1<﹣2a,且2a<﹣1<﹣2a,即,且,解得即a且a,故答案为:a.【点评】本题主要考查方程根的个数的应用,利用方程和函数之间的关系,作出函数的图象,利用数形结合是解决本题的关键.利用导数研究函数的极值是解决本题的突破点.三、解答题(共6小题,满分70分)17.已知向量(ω>0),函数f(x)=,若函数f(x)的图象的两个相邻对称中心的距离为.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数g(x)的图象,当时,求函数g(x)的值域.【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】(Ⅰ)由条件利用两个向量的数量积公式,三角恒等变换求得f(x)的解析式,再利用正弦函数的单调性求得f(x)的单调增区间.(Ⅱ)由题意根据y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用定义域和值域,求得函数g(x)的值域.【解答】解:(Ⅰ)由题意可得sin2ωx﹣2cos2ωx+1=sin2ωx﹣cos2ωx=sin(2ωx﹣),由题意知,,∴ω=1,∴.由,解得:,∴f(x)的单调增区间为.(Ⅱ)由题意,把f(x)的图象向左平移个单位,得到,再纵坐标不变,横坐标缩短为原来的倍,得到,∵,∴,∴,函数g(x)的值域为.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性、定义域和值域,属于基础题.18.在斜三角形ABC中,角A、B、C所对的边分别是a、b,c,且=﹣.(Ⅰ)求角A的大小;(Ⅱ)若,求角C的取值范围.【考点】正弦定理;余弦定理.【专题】解三角形.【分析】(I)由已知可得2cosB=,求得sin2A=1,可得A的值.(II)由B+C=,且==+tanC>,求得tanC>1,从而得到C的范围.【解答】解:(I)由已知=﹣,可得2cosB=.而△ABC为斜三角形,∴cosB≠0,∴sin2A=1.∵A∈(0,π),∴2A=,A=.(II)∵B+C=,且===+tanC >,即tanC>1,∴<C<.【点评】本题主要考查正弦定理和余弦定理的应用,两角和差的正弦公式、诱导公式,属于基础题.19.已知正项等差数列{a n}的前n项和为S n且满足a1+a5==63.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)若数列{b n}满足b1=a1且b n+1﹣b n=a n+1,求数列的前n项和T n.【考点】数列的求和;等差数列的性质.【专题】等差数列与等比数列.【分析】(Ⅰ)根据已知条件建立方程组,通过解方程求出首项和公差,进一步求出数列的通项公式.(Ⅱ)首先利用叠加法求出数列的通项公式,进一步利用裂项相消法求数列的和.【解答】解:(Ⅰ)法一:设正项等差数列{a n}的首项为a1,公差为d,a n>0则,得∴a n=2n+1法二:∵{a n}是等差数列且,∴,又∵a n>0∴a3=7.…∵,∴d=a4﹣a3=2,∴a n=a3+(n﹣3)d=2n+1.(Ⅱ)∵b n+1﹣b n=a n+1且a n=2n+1,∴b n+1﹣b n=2n+3当n≥2时,b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+…+(b2﹣b1)+b1=(2n+1)+(2n﹣1)+…+5+3=n(n+2),当n=1时,b1=3满足上式,b n=n(n+2)∴=.【点评】本题考查的知识要点:数列的通项公式的求法,利用裂项相消法求数列的和,属于基础题型.20.已知正项数列{a n}的首项a1=1,前n项的和为S n,且满足:当n≥2时,a n=+.(1)证明:数列{}为等差数列.(2)若数列{}前n项的和为T n,求T n的表达式.【考点】数列的求和;等差关系的确定.【专题】综合题;转化思想;综合法;等差数列与等比数列.【分析】(1)当n≥2时,a n=+,可得S n﹣S n﹣1=+.又数列{a n}的各项为正数,可得=1,即可证明.(2)由(1)可得:可得S n.可得a n.再利用“裂项求和”即可得出.【解答】(1)证明:∵当n≥2时,a n=+,∴S n﹣S n﹣1=+.又数列{a n}的各项为正数,∴+>0.∴=1,∴数列{}为等差数列,首项为1,公差为1.(2)解:由(1)可得:=1+(n﹣1)=n,可得S n=n2.∴当n≥2时,a n==2n﹣1,当n=1时也成立,∴a n=2n﹣1.∴==.数列{}前n项的和T n=+…+==.【点评】本题考查了等差数列的通项公式、“裂项求和”、递推关系的应用,考查了推理能力与计算能力,属于中档题.21.若f(x)=cos2ax﹣sinaxcosax(a>0)的图象与直线y=m(m>0)相切,并且切点横坐标依次成公差为π的等差数列.(1)求a和m的值;(2)△ABC中a、b、c分别是∠A、∠B、∠C的对边.若(,)是函数f(x)图象的一个对称中心,且a=4,求△ABC周长的取值范围.【考点】正弦定理;两角和与差的正弦函数;二倍角的正弦;y=Asin(ωx+φ)中参数的物理意义.【专题】综合题;解三角形.【分析】(1)由题意,函数f(x)的周期为π,且最大(或最小)值为m,利用三角恒等变换可化简f(x),从而可求结果;(2)由(,)是函数f(x)图象的一个对称中心可求A,利用正弦定理可把周长化为三角函数,进而可求答案;【解答】解:(1)=,由题意,函数f(x)的周期为π,且最大(或最小)值为m,而m>0,,∴a=1,;(2)∵(是函数f(x)图象的一个对称中心,∴,又∵A为△ABC的内角,∴,△ABC中,则由正弦定理得:,∴,∵,∴b+c+a∈(8,12].【点评】该题考查正弦定理、两角和与差的正弦函数、倍角公式等知识,考查学生综合运用知识解决问题的能力.22.已知函数f(x)=(其中a≤2且a≠0),函数f(x)在点(1,f(1))处的切线过点(3,0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)与函数g(x)=a+2﹣x﹣的图象在(0,2]有且只有一个交点,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】(1)利用导数的几何意义可得切线方程,对a分类讨论、利用导数研究函数的单调性即可;(2)等价方程在(0,2]只有一个根,即x2﹣(a+2)x+alnx+2a+2=0在(0,2]只有一个根,令h(x)=x2﹣(a+2)x+alnx+2a+2,等价函数h(x)在(0,2]与x轴只有唯一的交点.由,对a分类讨论、结合图象即可得出.【解答】解:(1),∴f(1)=b,=a﹣b,∴y﹣b=(a﹣b)(x﹣1),∵切线过点(3,0),∴b=2a,∴,①当a∈(0,2]时,单调递增,单调递减,②当a∈(﹣∞,0)时,单调递减,单调递增.(2)等价方程在(0,2]只有一个根,即x2﹣(a+2)x+alnx+2a+2=0在(0,2]只有一个根,令h(x)=x2﹣(a+2)x+alnx+2a+2,等价函数h(x)在(0,2]与x轴只有唯一的交点,∴①当a<0时,h(x)在x∈(0,1)递减,x∈(1,2]的递增,当x→0时,h(x)→+∞,要函数h(x)在(0,2]与x轴只有唯一的交点,∴h(1)=0或h(2)<0,∴a=﹣1或.②当a∈(0,2)时,h(x)在递增,的递减,x∈(1,2]递增,∵,当x→0时,h(x)→﹣∞,∵h(e﹣4)=e﹣8﹣e﹣4﹣2<0,∴h(x)在与x轴只有唯一的交点,③当a=2,h(x)在x∈(0,2]的递增,∵h(e﹣4)=e﹣8﹣e﹣4﹣2<0,或f(2)=2+ln2>0,∴h(x)在x∈(0,2]与x轴只有唯一的交点,故a的取值范围是a=﹣1或或0<a≤2.【点评】本题考查了利用导数研究函数的单调性极值与最值、导数的几何意义,考查了恒成立问题的等价转化方法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.。
河南省周口市高二上学期期中数学试卷(理科)
河南省周口市高二上学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设i是虚数单位,复数(a∈R)在平面内对应的点在直线方程x﹣y+1=0上,则a=()A . -1B . 0C . 1D . 22. (2分)(2017·济南模拟) 命题p:将函数y=cosx•sinx的图象向右平移个单位可得到y= cos2x 的图象;命题q:对∀m>0,双曲线2x2﹣y2=m2的离心率为,则下列结论正确的是()A . p是假命题B . ¬p是真命题C . p∨q是真命题D . p∧q是假命题3. (2分)一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()A .B .C .D .4. (2分)(2018·全国Ⅱ卷文) 为计算 ,设计了右侧的程序框图,则在空白框中应填入()A .B .C .D .5. (2分)命题甲:双曲线C的方程为(其中;命题乙:双曲线C的渐近线方程为y=±x;那么甲是乙的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件6. (2分) (2017高二上·佳木斯期末) 已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的的比值().A . 1B . 3C .D .7. (2分)是的()A . 必要而不充分条件B . 充分而不必要条件C . 充要条件D . 既不充分也不必要条件8. (2分) (2016高二下·三门峡期中) 设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi , yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 =0.85x﹣85.71,则下列结论中不正确的是()A . y与x具有正的线性相关关系B . 回归直线过样本点的中心(,)C . 若该大学某女生身高增加1cm,则其体重约增加0.85kgD . 若该大学某女生身高为170cm,则可断定其体重必为58.79kg9. (2分)三棱柱ABC-A1B1C1中,AA1与AC、AB所成角均为60,,且AB=AC=AA1=1,则A1B与AC1所成角的余弦值为()A . 1B . -1C .D . -10. (2分) (2016高二下·九江期末) 如图,用A,B,C,D四类不同的元件连接成系统(A,B,C,D是否正常工作是相互独立的),当元件A,B至少有一个正常工作,且C,D至少有一个正常的工作时,系统正常工作.已知元件A,B,C,D正常工作的概率依次为0.80,0.90,0.90,0.70,则系统正常工作的概率为()A . 0.9994B . 0.9506C . 0.4536D . 0.546411. (2分)在三棱柱中,各侧面均为正方形,侧面的对角线相交于点,则与平面所成角的大小是()A . 30°B . 45°C . 60°D . 9012. (2分)(2017·大庆模拟) 已知点F2 , P分别为双曲线的右焦点与右支上的一点,O为坐标原点,若2 |,且,则该双曲线的离心率为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2015高二下·定兴期中) 复数z= (其中i为虚数单位)的虚部为________.14. (1分) (2017高一下·濮阳期末) 已知事件在矩ABCD的边CD上随意取一点P,使得△APB的最大边是AB发生的概率为,则 =________.15. (1分) (2018高二下·湛江期中) 已知双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与椭圆的离心率的乘积等于,则双曲线的方程是________16. (1分) (2016高二上·诸暨期中) 如果二面角α﹣L﹣β的大小是60°,线段AB在α内,AB与L所成的角为60°,则AB与平面β所成角的正切值是________.三、简答题 (共6题;共55分)17. (5分)已知复数z=(1)m取什么值时,z是实数?(2)m 取什么值时,z是纯虚数?18. (5分)为了完成销售任务,甲、乙两家服装店在本月最后一天举行大型优惠促销活动,现将两家服装店该日8个时段的成交量(单位:件)统计如表所示:甲6791222201514乙89112122191516(Ⅰ)根据以上数据,绘制甲、乙两家服装店该日8个时段成交量的茎叶图;(Ⅱ)现从乙店的成交量小于16的数据中随机抽取两个,求至少有一个数据小于10的概率.19. (10分) (2017高二上·南通期中) 在平面直角坐标系xOy中,已知椭圆 + =1(a>b>0)与双曲线﹣y2=1有相同的焦点F1 , F2 ,抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若|MF1|+|MF2|=2 .(1)求椭圆的方程;(2)若|MF|= ,求抛物线的方程.20. (15分) (2015高二下·盐城期中) 在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为A1B1 , CD 的中点.(1)求| |(2)求直线EC与AF所成角的余弦值;(3)求二面角E﹣AF﹣B的余弦值.22. (10分) (2017高三下·岳阳开学考) 已知椭圆C1: + =1(a>b>0)的离心率为,P(﹣2,1)是C1上一点.(1)求椭圆C1的方程;(2)设A,B,Q是P分别关于两坐标轴及坐标原点的对称点,平行于AB的直线l交C1于异于P、Q的两点C,D,点C关于原点的对称点为E.证明:直线PD、PE与y轴围成的三角形是等腰三角形.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、简答题 (共6题;共55分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、22-1、22-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年河南省周口市扶沟县包屯高中高二(上)期中数学试卷一、选择题(每小题5分共60分)1.(5分)在等差数列{a n}中,若a3=2,a5=8,则a9等于()A.16 B.18 C.20 D.222.(5分)不等式等价于()A.B.C.D.x<03.(5分)已知点P(x,y)在直线x+2y=1上运动,则2x+4y的最小值是()A.B.2 C.2 D.44.(5分)与曲线=1共焦点,而与曲线=1共渐近线的双曲线方程为()A.=1 B.=1 C.=1 D.=15.(5分)若命题p:∀x∈R,2x2+1>0,则¬p是()A.∀x∈R,2x2+1≤0 B.∃x∈R,2x2+1>0 C.∃x∈R,2x2+1<0 D.∃x ∈R,2x2+1≤06.(5分)若互不相等的实数a,b,c成等差数列,c,a,b成等比数列,且a+3b+c=10,则a=()A.4 B.2 C.﹣2 D.﹣47.(5分)若<<0,则下列不等式①a+b<ab;②|a|>|b|;③a<b;④+>2中,正确的不等式有()A.0个 B.1个 C.2个 D.3个8.(5分)在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=,则边BC的长为()A.B.3 C.D.79.(5分)设p:x<﹣1或x>1;q:x<﹣2或x>1,则¬p是¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既充分也不必要条件10.(5分)已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.(1,2]B.(1,2) C.[2,+∞)D.(2,+∞)11.(5分)若方程ax2+2x+1=0至少有一个负的实根,则a的取值范围是()A.a≤1 B.a<1 C.0<a≤1 D.0<a≤1或a<012.(5分)已知F1、F2为椭圆(a>b>0)的焦点;M为椭圆上一点,MF1垂直于x轴,且∠F1MF2=60°,则椭圆的离心率为()A.B.C.D.二.填空题,20分13.(5分)双曲线4x2﹣y2=16的焦点坐标是.14.(5分)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.15.(5分)在△ABC中,,则cosA=.16.(5分)有下列命题:①双曲线与椭圆有相同的焦点;②“﹣<x<0”是“2x2﹣5x﹣3<0”必要不充分条件;③若、共线,则、所在的直线平行;④等轴双曲线的离心率是;⑤∀x∈R,x2﹣3x+3≠0.其中是真命题的有:.三、解答题(共70分)17.(10分)在△ABC中,已知,b=1,B=30°,(1)求出角C和A;(2)求△ABC的面积S.18.(12分)已知f(x)=﹣3x2+m(6﹣m)x+6(Ⅰ)若关于x的不等式f(x)>n的解集为(﹣1,3),求实数m,n的值;(Ⅱ)解关于m的不等式f(1)<0.19.(12分)某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少,能使利润总额最大?20.(12分)已知命题p:c2<c,和命题q:∀x∈R,x2+4cx+1>0且p∨q为真,p∧q为假,求实数c的取值范围.21.(12分)已知数列{a n}的前n项的和为S n,且有a1=2,3S n=5a n﹣a n﹣1+3S n﹣1(n≥2,n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(2n﹣1)a n,求数列{b n}的前n项的和T n.22.(12分)已知椭圆的两焦点为F1(﹣,0),F2(,0),离心率e=.(Ⅰ)求此椭圆的方程.(Ⅱ)设直线y=与椭圆交于P,Q两点,且|PQ|的长等于椭圆的短轴长,求m的值.(Ⅲ)若直线y=与此椭圆交于M,N两点,求线段MN的中点P的轨迹方程.2015-2016学年河南省周口市扶沟县包屯高中高二(上)期中数学试卷参考答案与试题解析一、选择题(每小题5分共60分)1.(5分)在等差数列{a n}中,若a3=2,a5=8,则a9等于()A.16 B.18 C.20 D.22【解答】解:设等差数列{a n}的公差为d,∵a3=2,a5=8,∴,解得.则a9=a1+8d=﹣4+8×3=20.故选:C.2.(5分)不等式等价于()A.B.C.D.x<0【解答】解:由,移项得:﹣3<0,即,即>0,解得:x>或x<0.故选:B.3.(5分)已知点P(x,y)在直线x+2y=1上运动,则2x+4y的最小值是()A.B.2 C.2 D.4【解答】解:因为x+2y=1,所以2x+4y=2x+22y≥,当且仅当2x=22y即x=2y=时取等号,故选:C.4.(5分)与曲线=1共焦点,而与曲线=1共渐近线的双曲线方程为()A.=1 B.=1 C.=1 D.=1【解答】解:由题意得,曲线=1是焦点在y轴上的椭圆,且c===5,所以双曲线焦点的坐标是(0、5)、(0,﹣5),因为双曲线与曲线=1共渐近线,所以设双曲线方程为,即,则﹣64λ﹣36λ=25,解得λ=,所以双曲线方程为,故选:A.5.(5分)若命题p:∀x∈R,2x2+1>0,则¬p是()A.∀x∈R,2x2+1≤0 B.∃x∈R,2x2+1>0 C.∃x∈R,2x2+1<0 D.∃x ∈R,2x2+1≤0【解答】解:由题意∀x∈R,2x2+1>0,的否定是∃x∈R,2x2+1≤0故选:D.6.(5分)若互不相等的实数a,b,c成等差数列,c,a,b成等比数列,且a+3b+c=10,则a=()A.4 B.2 C.﹣2 D.﹣4【解答】解:由互不相等的实数a,b,c成等差数列,可设a=b﹣d,c=b+d,由题设得,,解方程组得,或,∵d≠0,∴b=2,d=6,∴a=b﹣d=﹣4,故选:D.7.(5分)若<<0,则下列不等式①a+b<ab;②|a|>|b|;③a<b;④+>2中,正确的不等式有()A.0个 B.1个 C.2个 D.3个【解答】解:∵<<0,∴b<a<0,∴a+b<0<ab,故①正确.∴﹣b>﹣a>0,则|b|>|a|,故②错误.③显然错误.由于,,∴+>2=2,故④正确.综上,①④正确,②③错误,故选:C.8.(5分)在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=,则边BC的长为()A.B.3 C.D.7【解答】解:∵=sin60°=,∴AC=1,△ABC中,由余弦定理可得BC==,故选:A.9.(5分)设p:x<﹣1或x>1;q:x<﹣2或x>1,则¬p是¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既充分也不必要条件【解答】解:∵p:x<﹣1或x>1;q:x<﹣2或x>1,∴¬p:﹣1≤x≤1,¬q:﹣2≤x≤1,根据充分必要条件的定义可判断:¬p是¬q的充分不必要条件,故选:A.10.(5分)已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.(1,2]B.(1,2) C.[2,+∞)D.(2,+∞)【解答】解:已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴≥,离心率e2=,∴e≥2,故选C11.(5分)若方程ax2+2x+1=0至少有一个负的实根,则a的取值范围是()A.a≤1 B.a<1 C.0<a≤1 D.0<a≤1或a<0【解答】解:当a=0时,方程可化为2x+1=0此时方程有一个根,满足条件,当a≠0时,方程ax2+2x+1=0时为二次方程,若方程有根则△=4﹣4a≥0,解得a≤1,a≠0若方程无负根,由韦达定理得,不存在满足条件的a值,即当a≤1,a≠0时,方程至少有一个负根综上所述满足条件的a的取值范围是a≤1故选:A.12.(5分)已知F1、F2为椭圆(a>b>0)的焦点;M为椭圆上一点,MF1垂直于x轴,且∠F1MF2=60°,则椭圆的离心率为()A.B.C.D.【解答】解:MF1的长度为,直角三角形F1MF2中,tan∠F1MF2=tan60°====,∴=或=﹣(舍去),故选:C.二.填空题,20分13.(5分)双曲线4x2﹣y2=16的焦点坐标是(±2,0).【解答】解:双曲线的标准方程为:;∴c2=4+16=20;∴;∴该双曲线的焦点坐标为.故答案为:.14.(5分)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.【解答】解:∵a1,a3,a9成等比数列,∴(a1+2d)2=a1•(a1+8d),∴a1=d,∴=,故答案是:.15.(5分)在△ABC中,,则cosA=.【解答】解:由题意,∵∴∴∴cosA=1∴cosA=故答案为:16.(5分)有下列命题:①双曲线与椭圆有相同的焦点;②“﹣<x<0”是“2x2﹣5x﹣3<0”必要不充分条件;③若、共线,则、所在的直线平行;④等轴双曲线的离心率是;⑤∀x∈R,x2﹣3x+3≠0.其中是真命题的有:①④⑤.【解答】解:①双曲线中a2=25,b2=9,则c2=25+9=34,则c=,对应的焦点坐标为(,0),(﹣,0),椭圆中a2=35,b2=1,则c2=35﹣1=34则c=,对应的焦点坐标为(,0),(﹣,0),双曲线和椭圆的焦点相同;故①正确,②由2x2﹣5x﹣3<0得﹣<x<3,则“﹣<x<0”是“2x2﹣5x﹣3<0”充分不必要条件;故②错误,③若、共线,则、所在的直线平行或重合,故③错误;④等轴双曲线的离心率是正确,故④正确;⑤∵判别式△=9﹣4×3=9﹣12=﹣3<0,∴∀x∈R,x2﹣3x+3≠0成立,故⑤正确,故正确的命题是①④⑤,故答案为:①④⑤三、解答题(共70分)17.(10分)在△ABC中,已知,b=1,B=30°,(1)求出角C和A;(2)求△ABC的面积S.【解答】解:(1)由正弦定理可得,∵,b=1,B=30°,∴sinC=∵c>b,C>B,∴C=60°,此时A=90°,或者C=120°,此时A=30°;(2)∵S=bcsinA∴A=90°,S=bcsinA=;A=30°,S=bcsinA=.18.(12分)已知f(x)=﹣3x2+m(6﹣m)x+6(Ⅰ)若关于x的不等式f(x)>n的解集为(﹣1,3),求实数m,n的值;(Ⅱ)解关于m的不等式f(1)<0.【解答】解:(Ⅰ)∵f(x)>n,∴3x2﹣m(6﹣m)x+n﹣6<0,∴﹣1,3是方程3x2﹣m(6﹣m)x+n﹣6=0的两根,,∴;(Ⅱ)由已知f(1)=﹣m2+6m+3,∴﹣m2+6m+3<0,∴m2﹣6m﹣3>0,∴,∴不等式f(1)<0的解集为:.19.(12分)某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少,能使利润总额最大?【解答】解:设生产甲、乙两种棉纱分别为x吨、y吨,利润总额为z元,则目标函数为z=600x+900y.作出以上不等式组所表示的平面区域(如图),即可行域.作直线l:600x+900y=0,即直线l:2x+3y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,且与原点距离最大,此时z=600x+900y取最大值.解方程组,解得M的坐标为()因此,当x=,y=时,z取得最大值.此时zmax=600×+900×=130000.答:应生产甲种棉纱吨,乙种棉纱吨,能使利润总额达到最大,最大利润总额为13万元.20.(12分)已知命题p:c2<c,和命题q:∀x∈R,x2+4cx+1>0且p∨q为真,p∧q为假,求实数c的取值范围.【解答】解:由命题p为真命题,可得c2<c,解得0<c<1.由命题q为真命题,可得△=16c2﹣4<0,解得﹣<c<.∵pⅤq为真,p∧q为假,故p和q一个为真命题,另一个为假命题.若p是真命题,且q是假命题,可得≤c<1.若p是假命题,且q是真命题,可得﹣<c≤0.综上可得,所求的实数c的取值范围为[,1)∪(﹣,0].21.(12分)已知数列{a n}的前n项的和为S n,且有a1=2,3S n=5a n﹣a n﹣1+3S n﹣1(n≥2,n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(2n﹣1)a n,求数列{b n}的前n项的和T n.【解答】解:(Ⅰ)由3S n=5a n﹣a n﹣1+3S n﹣1∴3a n=5a n﹣a n﹣1(n≥2,n∈N*)∴,(n≥2,n∈N*),所以数列{a n}是以2为首项,为公比的等比数列,∴a n=22﹣n(Ⅱ)b n=(2n﹣1)•22﹣n∴T n=1×2+3×20+5×2﹣1++(2n﹣1)•22﹣n同乘公比得∴=∴T n=12﹣(2n+3)•22﹣n.22.(12分)已知椭圆的两焦点为F 1(﹣,0),F2(,0),离心率e=.(Ⅰ)求此椭圆的方程.(Ⅱ)设直线y=与椭圆交于P,Q两点,且|PQ|的长等于椭圆的短轴长,求m的值.(Ⅲ)若直线y=与此椭圆交于M,N两点,求线段MN的中点P的轨迹方程.【解答】解:(I)设椭圆方程为(a>b>0),则c=,=,(4分)∴a=2,b=1,所求椭圆方程.(5分)(II)由,消去y,得x2+2mx+2(m2﹣1)=0,…(6分)则△=4m2﹣8(m2﹣1)>0得m2<2(*)设P(x1,y1),Q(x2,y2),则x1+x2=﹣2m,x1x2=2m2﹣2,y1﹣y2=(x1﹣x2)…(7分)|PQ|====•=2…(9分)解得,m=,满足(*)∴m=.…(10分)(III)设M(x1,y1),N(x2,y2),MN的中点为P(x,y),则x+4y=4,x+4y=4,又x1+x2=2x,y1+y2=2y,,∴x+2y=0,因P在椭圆的内部,可求得﹣<x<,∴线段MN的中点P的轨迹方程为x+2y=0,(﹣<x<).。