石墨烯的制备与表征研究

合集下载

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征文献综述材料0802班李琳200822046氧化石墨烯的制备及表征李琳摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。

石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。

所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。

而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。

通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。

关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征Oxidation of graphite surfaces preparation and CharacterizationLI LinAbstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and thecompound, and prospects the graphite surfaces and the research prospect of composite materials.Key words:Oxidation graphite surfaces, graphite surfaces, oxidation graphite, preparation,characterization采用Hummers 方法[5]制备氧化石墨。

石墨烯复合材料的制备、表征及性能

石墨烯复合材料的制备、表征及性能

石墨烯复合材料的制备、表征及性能郝丽娜【摘要】石墨烯属于一种二维晶体结构,它是由碳原子紧密堆积而成,其中有富勤烯、石墨以及碳纳米管等基本单元,这些都是碳的同位异形体.石墨烯在力学领域、电学领域、热学领域以及光学领域等都发挥出其优越的性能,因此,这一复合材料在当今已经成为了科学领域和物理学领域之中研究的焦点.对石墨烯复合材料的制备、表征以及性能进行分析,希望可以对石墨烯的应用与研究起到一定的帮助.%Graphene belongs to a two-dimensional crystal structure,which is formed by the close packing of carbon atoms.There are basic units such as rich olefins,graphite and carbon nanotubes,which are allomorphs of carbon.Graphene has exerted its superior performance in various fields such as mechanics,electricity,heat,and optics.Therefore,this composite material has become the focus of research in the fields of science and physics.This paper is to analyze the preparation,characterization and performance of graphene composites,and hope to help the applicationand research of graphene.【期刊名称】《化工设计通讯》【年(卷),期】2019(045)009【总页数】2页(P128-129)【关键词】石墨烯复合材料;制备;表征;性能【作者】郝丽娜【作者单位】齐齐哈尔工程学院,黑龙江齐齐哈尔 161005【正文语种】中文【中图分类】TB332 ;TM53因为石墨烯所具有的二维晶体结构是比较特殊的,所以其纵横比很高、电子迁移率也很高,这就使得石墨烯在储能领域之中的应用前景十分广泛。

石墨烯的制备及表征

石墨烯的制备及表征

石墨烯的制备及表征李亮;胡军;班兴明;陈郁勃【摘要】为了得到高性能的石墨烯材料,采用水合肼、茶多酚与抗坏血酸3种不同的还原剂将氧化石墨烯还原制备得到石墨烯.通过红外光谱、X射线衍射、接触角对产物的结构进行表征,采用四探针法测试电导率,循环伏安法和计时电位法测试电化学性能.水合肼、茶多酚与抗坏血酸这3种还原剂都能有效地将氧化石墨烯结构中的亲水基团去除,得到疏水的石墨烯.通过比较3种还原剂制备的石墨烯的电化学性能,发现通过茶多酚还原得到的石墨烯的导电性能最好,当电流密度为3 A/g时,茶多酚还原得到的石墨烯电容性能达到609 F/g,保持率达到87.71%.这表明由茶多酚还原得到的石墨烯具有更为优良的电化学性能.【期刊名称】《武汉工程大学学报》【年(卷),期】2014(036)008【总页数】5页(P46-50)【关键词】石墨烯;茶多酚;电化学性能【作者】李亮;胡军;班兴明;陈郁勃【作者单位】武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学材料科学与工程学院,湖北武汉430074;武汉工程大学材料科学与工程学院,湖北武汉430074【正文语种】中文【中图分类】O633石墨烯因其优异的电学﹑光学和机械性能被科学界称作奇迹材料[1-2],吸引了众多科学家和大量科研资金的投入,石墨烯的发现更是获颁 2010年度诺贝尔物理学奖[3-5].石墨烯最常用的制备方法是氧化还原法,步骤是先将石墨氧化成氧化石墨,再将氧化石墨剥离成氧化石墨烯,最后将氧化石墨烯还原成石墨烯.过程中常用到的氧化剂为高锰酸钾,高氯酸等,常用的还原剂为水合肼,联氨等.本文分别采用传统的水合肼,茶多酚,抗坏血酸作为还原剂,将氧化石墨烯还原成石墨烯,并将不同还原剂还原得到的石墨烯产物的电化学性能进行对比研究.1 实验部分1.1 石墨烯的制备方法a.水合肼作为还原剂:取一定量氧化石墨烯放入30 mL蒸馏水中,超声分散30 min后加水稀释至100 mL.用25%的氨水调节pH=10.向氧化石墨烯悬浮液中加入2 mL水合肼,使其混合均匀.加热至90 ℃,搅拌5 h.将所得产物过滤,用蒸馏水洗涤,真空60 ℃干燥24 h.密封保存,备用.b.茶多酚作为还原剂:取2 g绿茶粉加入到100 mL蒸馏水中,煮沸.过滤掉剩余茶叶粉末,绿茶水备用.取一定量氧化石墨烯加入到上述绿茶水中,加热至90 ℃,搅拌10 h.将产物过滤,用蒸馏水洗涤,真空60 ℃干燥24 h.密封保存,备用.c.抗坏血酸作为还原剂:取一定量氧化石墨烯放入30 mL蒸馏水中,超声分散30 min后加水稀释至100 mL.取一定量维生素C片研磨成粉末,加入氧化石墨烯悬浮液中,搅拌使其混合均匀.加热至90 ℃,搅拌24 h.将所得产物过滤,用蒸馏水洗涤,真空60 ℃干燥24 h.密封保存,备用.1.2 石墨烯的表征红外光谱(FT-IR)测试采用TJ270红外光谱仪,X射线衍射(XRD)测试采用BrukerD8 X射线粉末衍射仪.电化学性能测试是以1 moL/L KCl溶液为电解液,将产物固定在铂盘电极上作为工作电极,铂丝为对电极,Ag/AgCl电极为参比电极的三电极体系中进行.2 结果讨论与分析2.1 红外光谱分析(FT-IR)图1为采用不同还原剂还原氧化石墨制备的石墨烯的红外光谱图.从图中可以看出不同还原剂制备的石墨烯光谱图均在3 450 cm-1和1 632 cm-1处出现吸收峰,这与石墨原料的红外光谱图基本一致[6],而未出现氧化石墨中一些极性基团的吸收峰,说明在还原剂的作用下,石墨烯中的含氧官能团大大减少,还原效果较好. 注:(a)水合肼,(b)茶多酚,(c)抗坏血酸图1 采用不同还原剂制备的石墨烯的红外光谱图 Fig.1 FTIR spectrum of graphene2.2 X-射线衍射分析(XRD)图2为产物的X射线衍射谱图,图中在2θ角为22.4°和7.2°出现了衍射峰,22.4°处的衍射峰对应石墨的(002)晶面,说明部分氧化石墨中的含氧官能团被除去了,同时说明石墨烯微晶排列较为无序或者存在较大的晶格缺陷,无法回到有序排列的状态.7.2°可能对应未氧化完全的氧化石墨(001)晶面的衍射峰.注:(a)水合肼,(b)茶多酚,(c)抗坏血酸图2 采用不同还原剂制备的石墨烯的XRD图 Fig.2 XRD patterns of graphene2.3 电导率表1为3种不同还原剂制备的石墨烯的电阻率和电导率数据.石墨在强氧化剂的作用下,其结构中的sp2结构和共轭π键被破坏,形成羟基,羧基及环氧基等极性官能团,形成sp3杂化的氧化石墨.结构层中的共轭π键被破坏,导致氧化石墨是绝缘体.氧化石墨经过还原剂还原后,其结构中的极性官能团被除去,恢复表面共轭结构,从而恢复期导电性.图中数据也说明了这一点,石墨烯(茶多酚)的电导率为2.604 S/cm,其导电性最好.表1 3种不同还原剂制备的石墨烯的电导率数据Tabel 1 Conductivities of graphene prepared by three different reducing agents样品电阻率/(Ω/cm)电导率/(S/cm)石墨烯(水合肼)0.5961.678石墨烯(茶多酚)0.3842.604石墨烯(抗坏血酸)0.472.1282.4 接触角从表2中可以看出,3种还原剂制备的石墨烯的接触角都大于90°,说明产物是完全疏水的,氧化石墨烯GO层状结构中含有大量的极性基团,例如羟基,羧基,羰基以及环氧基等,大大增强了GO的亲水性能,所以GO是完全溶于水的,可见还原过程GO结构中极性基团还原了,得到了疏水的层状石墨烯.表2 3种不同还原剂制备的石墨烯的接触角数据Tabel 2 Water contact angles of graphene prepared by three different reducing agents样品接触角/(°)石墨烯(水合肼)123.87石墨烯(茶多酚)92.62石墨烯(抗坏血酸)101.992.5 电化学性能测试石墨烯是由碳原子紧密堆积成的准二维层状结构物质,具有优异的电学性质,光学性质以及力学性质等.其结构中未成键的电子可以在晶格中自由移动,使其具有很好的导电性和电容性质,本文通过循环伏安法和恒电流充放电法对石墨烯的电容性质进行研究.图3为通过不同还原剂(分别为水合肼,茶多酚和抗坏血酸)还原氧化石墨制备石墨烯的循环伏安图,扫描速率分别为a:0.01 V/s,b:0.02 V/s,c:0.05 V/s,d:0.1 V/s.石墨烯(水合肼)的循环伏安曲线没有明显的氧化还原峰,并且曲线呈现近似的矩形形状,石墨烯(茶多酚)的循环伏安曲线有微弱的氧化还原峰,但是曲线整体也呈现矩形形状,对于石墨烯(抗坏血酸)曲线呈现规则的矩形,没有明显的氧化还原峰,说明3种还原剂制备的石墨烯材料都具有很好的电容性质.从图3(Ⅳ)中可以看出,石墨烯(水合肼)的循环伏安图面积最小,说明其电容最小,其次电容较小的是石墨烯(抗坏血酸),循环伏安面积最大的是石墨烯(茶多酚),说明其比电容最大,电化学性能最好.(Ⅰ)水合肼(Ⅱ)茶多酚(Ⅲ)抗坏血酸(Ⅳ)3种还原剂图3 不同还原剂合成石墨烯的循环伏安图Fig.3 Cyclic voltammograms of graphene reduced由图4(Ⅰ)、(Ⅱ)、(Ⅲ)中可以看出,3种石墨烯材料的充放电曲线呈现良好的线性关系,并且对称性良好,说明这3种石墨烯材料的充放电可逆性良好,具有良好的电容特性.当电流密度为3 A/g时,根据计算石墨烯(茶多酚)的电容性能最好,其比容量最大,值为609 F/g,石墨烯(抗坏血酸)最大比容量为237.15 F/g,石墨烯(水合肼)的最大比容量为82.5 F/g,这也与循环伏安图计算的结果相一致.说明石墨烯(茶多酚)最适合做超级电容器电极材料.(Ⅰ)水合肼(Ⅱ)茶多酚(Ⅲ)抗坏血酸图4 不同还原剂合成石墨烯的充放电图Fig.4 Constant current charge/discharge curves图5为根据充放电图计算的石墨烯比电容与电流密度关系图.从图5可以看出随着电流密度的增大,比容量值逐渐减小.主要是因为在电流较小的情况下,石墨烯内部较深的孔洞都能发挥双电层电容的性质,使整个电路中的阻抗较小;当电流升高时,由于受扩散控制,石墨烯内部较深的孔不能被完全利用,电路中的阻抗增加,导致比电容下降.图5 根据充放电图计算的石墨烯比电容Fig.5 Constant currentcharge/discharge curves of graphene图6为石墨烯(水合肼)(a)石墨烯(抗坏血酸)(b)和石墨烯(茶多酚)(c)的循环次数图,从图中可以看出3种还原剂制备的石墨烯材料的循环性能很好.石墨烯(茶多酚)的初次放电容量为480.25 F/g,前200圈的比容量有相对较大幅度的损耗,损耗率约为4.14%,循环1 000圈后的放电比容量为451.33 F/g,总容量损耗率为6.02%,说明制备的石墨烯(茶多酚)的稳定性很好,具有很好的循环性能.而石墨烯(抗坏血酸)的初次放电容量为130.7 F/g,循环1 000圈后,放电比容量为114.63 F/g,总容量损耗为12.29%,石墨烯(水合肼)的初次放电比容量为80.4 F/g,循环1 000圈后,放电比容量为70.125 F/g,总容量损耗为12.77%.说明制备的石墨烯材料的电化学性能很好,稳定性良好,具有较好的循环性能.注:(a)水合肼,(b)抗坏血酸,(c)茶多酚图6 还原的石墨烯的循环圈数-电容保持率曲线比较图Fig.6 Comparison of cycle number and retention rate of capacitance of graphene3 结语分别用水合肼,抗坏血酸和茶多酚还原得到石墨烯,并分别测试了它们的性能,茶多酚还原得到石墨烯的导电性能最好,电容性能也最好.石墨烯具有很好的导电性,化学稳定性及热力学稳定性,有望被用于电子器件构造.致谢此研究受到国家自然科学基金委员会资助和武汉工程大学资金资助,特表感谢!参考文献:[1] LI D,MULLERr M B,GILJE S.Processable aqueous dispersions of graphene nanosheets[J].Nat Nano,2008,3:101-105.[2] JUNG I,DIKIN D A,PINER R D.Tunable electrical conductivity ofindividual graphene oxide sheets reduced at low temperatures[J].Nano Lett,2008,8:4283-4287.[3] GUO S J,DONG S J,WANG E K.Polyaniline/Pt hybrid nanofibers:high-efficiency nanoelectrocatalysts for electrochemicaldevices[J].Small,2009,5:1869-1876.[4] WANG H L,ROBINSON J T,LI X L.Solvothermal reduction of chemically exfoliated graphene sheets[J].J Am Chem Soc,2009,131:9910.[5] CHEN G H,WENIG W G,WU D.PMMA/graphite nanosheets and its conducting properties[J].Eur Polym J,2003,39:2329-2335.[6] CHANDRA S,BAG S,BHAR R,et al.Sonochemical synthesis and application of rhodium-graphene nanocomposite[J].J Nanoparticle Res,2011,13,2769-2777.。

氧化石墨烯(GO)聚苯乙烯(PS)的制备与表征

氧化石墨烯(GO)聚苯乙烯(PS)的制备与表征

氧化石墨烯(GO)/聚苯乙烯(PS)的制备与表征2.1 引言氧化石墨是石墨经过深度氧化后得到的一种层间距远大于石墨的层状化合物。

氧化石墨具有典型的准二维的片层结构,其层间距为6-11A o之间,层面间含有羟基、羰基等,片层边缘处有羧基。

经过适当的超声波震荡处理极易在水溶液或者有机溶剂中发生剥离分散成均匀的单层氧化石墨烯溶液。

2.2实验操作2.2.1 所用试剂本实验所用到的主要试剂与药品均为分析纯。

水溶液均为去离子水。

测试所需仪器:X射线衍射仪(XRD, D/Max-2400X, Rigaku Co.,Japan, Cu K αradiation(λ=1.54056Å))、场发射扫描电子显微镜(FE-SEM, Hitachi S-4800)、透射电子显微镜(TEM, HitachiH-600)、Raman衍射仪(Horiba Jobin Yvon LABRAM-HR800型,λ=325nm)、电池测试系统(武汉蓝电的多通道电池测试系统、上海辰华CHI660E)2.2.2氧化石墨烯(GO)的制备与表征将0.75g石墨、90ml浓硫酸、10ml浓磷酸与4.5g高锰酸钾冷水浴搅拌混合,后在50°水浴中搅拌24h,冷却至室温,小心注入200ml冷水,再加入5ml 30%的过氧化氢,观察溶液由砖红色变为褐色,最终变成亮黄色。

我们所制得的GO溶液浓度为10mg/ml。

样品的相组成与相纯度由XRD进行了表征。

由图像(2.1)可以得出,GO的衍射峰位在2θ=11.565°。

根据布拉格公式2dsinθ=nλ可得氧化石墨烯片层间距为0.7646nm,相比于石墨片层间距(0.34nm)有增加,表明层间引入了基团。

图2.2为GO的Raman图像。

纯GO的Raman图谱,有两个特征峰,分别是位于1355cm-1的D峰和位于1606cm-1的G峰D峰对应于六方晶格里的缺陷和无序震动,是氧化石墨烯的缺陷无序的度量。

石墨烯HDPE改性材料制备与性能表征

石墨烯HDPE改性材料制备与性能表征

石墨烯/HDPE改性材料制备与性能表征作者:李茂东周健杨波刘姿彤黄国家来源:《江苏理工学院学报》2019年第06期摘; ; 要:采用石墨烯为改性剂、HDPE为基体材料,通过混合、挤出造粒制得石墨烯/HDPE改性材料。

研究石墨烯用量对HDPE结晶行为、流变行为、导热性能、力学性能、热变形温度的影响,同时采用扫描电镜分析了其微观结构。

结果表明:当石墨烯添加量为1.5份时,HDPE改性材料的结晶度提升至86.03%,拉伸强度、弯曲强度、热变形温度、导热系数显著提升,熔体流动速率和缺口抗冲击强度有所降低。

关键词:石墨烯;高密度聚乙烯;改性材料;流变行为;结晶行为中图分类号:TQ 327.5; ; ; ; ; ;文献标识码:A; ; ; ; ; ; ;文章编号:2095-7394(2019)06-0008-08石墨烯材料具有透光性好、导热系数高、电阻率低、电子迁移率高、机械强度高的特点,被称为21世纪新材料之王。

在《中国制造2025》《关键材料升级换代工程实施方案》等国家战略文件中,已将石墨烯及碳纳米材料纳入重要的前沿性新材料。

石墨烯是迄今为止人们发现的最薄的二维平面材料,仅有一个碳原子层厚度(约0.34 nm)。

石墨烯是以 sp2 杂化轨道方式形成六方晶格形式,以此排布成二维蜂窝形状的新型碳材料。

由于其獨特的分子结构,石墨烯具有极其优异的力学性能,其杨氏模量高达1 100 GPa、断裂强度高达125 GPa[1-3]。

石墨烯的填充可以使聚合物多功能化,不仅具有高强韧的力学性能以及优异的导电导热性能,而且可以优化聚合物的加工性能,拓展复合材料的应用领域[4-5]。

高密度聚乙烯(HDPE)由于具有良好的耐蚀性和安装方便等特点,目前广泛应用于城市中低压燃气、水的输送。

但因其强度偏低和易老化,只能用于埋地和低压情况,极大限制了其应用范围。

本研究采用石墨烯改性HDPE,研究石墨烯/HDPE改性材料的结晶行为、流变行为和力学性能,从而获得高性能化的HDPE,以扩大HDPE的应用领域,降低聚乙烯燃气管道的使用安全风险和减少事故隐患。

二硫化钼—石墨烯异质结的制备与研究

二硫化钼—石墨烯异质结的制备与研究

二硫化钼—石墨烯异质结的制备与研究一、本文概述本文主要关注二硫化钼—石墨烯异质结的制备与研究。

我们将详细介绍这种异质结的结构特性,制备方法,以及其在不同领域中的应用前景。

我们将首先概述二硫化钼和石墨烯的基本性质,包括它们的电子结构、物理和化学性质,以及它们在纳米材料和电子器件中的应用。

然后,我们将详细讨论如何将这两种材料结合形成异质结,并探索其独特的物理和化学性质。

我们还将探讨二硫化钼—石墨烯异质结在电子器件、能源转换和存储、传感器以及催化剂等领域中的潜在应用。

我们将总结目前的研究进展,并展望未来的研究方向。

通过本文的阐述,我们希望能够为二硫化钼—石墨烯异质结的研究和应用提供有益的参考和指导。

二、二硫化钼—石墨烯异质结的制备方法二硫化钼—石墨烯异质结的制备是材料科学领域的一个研究热点,其独特的结构和性质使得这种异质结在电子器件、能源存储和催化等领域具有广阔的应用前景。

本文介绍了几种常见的制备方法,包括化学气相沉积法、溶液法和物理气相沉积法等。

化学气相沉积法(CVD)是一种常用的制备二硫化钼—石墨烯异质结的方法。

该方法通过在高温条件下,利用气体中的前驱体分子在催化剂表面发生化学反应,从而生长出所需的异质结材料。

通过精确控制反应条件和催化剂的选择,可以实现大面积、高质量的二硫化钼—石墨烯异质结的制备。

溶液法是一种相对简单的制备异质结的方法,主要利用溶液中的前驱体分子通过化学反应或自组装过程生成异质结。

该方法可以在较低的温度下进行,且易于实现规模化生产。

然而,溶液法可能面临制备过程中杂质引入和结晶度控制等问题。

物理气相沉积法(PVD)则是一种通过物理过程如蒸发、溅射等将二硫化钼和石墨烯材料沉积到基底上制备异质结的方法。

这种方法可以精确控制材料的组成和结构,但设备成本较高,且制备过程相对复杂。

在制备二硫化钼—石墨烯异质结时,还需要考虑异质结界面工程的问题。

通过调控界面结构和性质,可以进一步优化异质结的性能。

石墨烯制方法Hummers法

石墨烯制方法Hummers法改进的Hummer法制备氧化石墨改进的Hummer法制备氧化石墨:在冰水浴中装配好500ml的反应瓶,将5g石墨粉和5g硝酸钠与200ml浓硫酸混合均匀,搅拌下加入25g高氯酸钾,均匀后,再分数次加入15g高锰酸钾,控制温度不超过20℃,搅拌一段时间后,撤去冰浴,将反应瓶转移至电磁搅拌器上,电磁搅拌持续24h。

之后,搅拌下缓慢加入200ml去离子水,温度升高到98℃左右,搅拌20min后,加入适量双氧水还原残留的氧化剂,使溶液变为亮黄色。

然后分次以10000rpm转速离心分离氧化石墨悬浮液,并先后用5%HCl溶液和去离子水洗涤直到分离液pH=7。

将得到的滤饼真空干燥即得氧化石墨。

氧化石墨的制备工艺流程如图3-1所示。

注:低温反应(<20℃)中,由于温度很低,硫酸的氧化性比较低,不足以提供插层反应的驱动力,所以,石墨烯原先没有被氧化。

当加入高锰酸钾后,溶液的氧化性增强,石墨烯的边缘首先被氧化。

随着氧化过程的进行和高锰酸钾加入量的增加,石墨里的碳原子平面结构逐渐变成带有正电荷的平面大分子,边缘部分因氧化而发生卷曲。

此时,硫酸氢根离子和硫酸分子逐渐进入石墨层间,形成硫酸-石墨层间化合物。

中温反应(<40℃)时,硫酸-石墨层间化合物被深度氧化,混合液呈现褐色。

高温反应(90℃-100℃)阶段,残余的浓硫酸与水作用放出大量的热,使混合液温度上升至98℃左右,硫酸-石墨层间化合物发生水解,大量的水进入硫酸-石墨层间化合物的层间,成为层间水并排挤出硫酸,而水中的OH-与硫酸氢根离子发生离子交换作用,置换出部分硫酸氢根离子并与石墨层面上的碳原子相结合,结果使石墨层间距变大,出现石墨烯体积膨胀现象,此时溶液呈亮黄色。

在水洗和干燥过程中,氧化石墨层间的OH-与H+结合以水分子形式脱去,因此产物由金黄色逐渐变成黑色。

石墨烯制备:图3-2为氧化石墨制备石墨烯的工艺流程图。

将氧化石墨研碎,称取300mg分散于60ml去离子水中,得到棕黄色的悬浮液,超声分散1h后得到稳定的胶状悬浮液。

石墨烯/ATO纳米复合材料的制备与表征


积、 高导 电率 , 而成为电化学储能材料 的理想碳
材料 。 然而, 实 际中石墨 烯很 容易 堆叠 成多层 ,
比表面积减小而使其物理化学性能大大降低 。近 年来 , 人们通过不 同的途径将金属纳米粒子( 如 P t , A u 等) [ 5 I 6 1 、 金属氧化物( T i O 2 , S n O 2 等) 负载 到石 墨烯 的表 面 以降低石 墨烯 片 的堆 叠 。将石 墨
述 悬 浮液 中 , 在 加入 一 定量 的 O . 5 mo l / L的 HC 1 溶 液 ( 抑 制水 解 ) ,再 加入 0 . 1 g十 二烷 基苯 磺 酸钠
景。 在制 备方法 上 , 常规 石墨 烯 / 纳 米复 合材料 都 是通 过 纳米粒 子 和石 墨烯 简单 的混 合得 到 的 , 限 制 了纳米 粒 子 的均 匀分 散 和 石 墨 烯 片 间 的 有 效 分离 。本 研究 采 用石 墨烯 表 面负 载 AT O 的方 法
限制 , 是一 种极具 发展 潜 力 的新 型多 功 能透 明导 电材 料 , 将其 与石 墨烯 的复合 具 有广 阔的研 究 前
的气体扩散 , 反应持续 9 6 h 。反应结束后 , 混合物 用 8 0 0 mL去 离 子水 洗 净抽 滤 、 分层 , 将 合 成 的氧 化 石 墨用 5 %HC l 溶 液 洗净 。用 去离 子水 将 氧化
关键 词 : 石墨烯 ; A T O; 纳米 ; 复合 材 料 中 图分 类 号 : 0 6 3 文 献标 识 码 : A 文章编号: 1 0 0 9 — 1 8 1 5 ( 2 0 1 3 ) 0 4 — 0 1 6 4 — 0 4
石 墨 烯 是 目前 世 界 上 被 认 为最 薄 同 时也 是 最坚硬 的二维材 料[ 1 ] 。理论 上 , 完 美 的石 墨烯 由六

石墨烯


石墨烯难以分散在溶剂中的,石墨烯具有极大的比表 面积,容易发生不可逆团聚,一旦团聚,石墨烯粉末也 很难分散于溶剂中。研究表明,石墨烯在环戊酮中分散 性最好,但可分散浓度也只有8.5μg/ml,要拓展石墨烯 在喷涂和液-液自组装等领域的应用,就需要制备稳定 的石墨烯悬浮液。科学家Li等通过用氨水调节溶液的pH 为10左右,控制石墨烯层间的静电作用,制备出了在水 中稳定分散的石墨烯悬浮液,而且用于相当高的电导率 (7200S/m)。
(2).氧化石墨还原法
氧化石墨还原法制备石墨烯是将石墨片分散在强氧化性混合酸中,例如浓硝酸 和浓硫酸,然后加入高锰酸钾或氯酸钾强等氧化剂氧化得到氧化石墨(GO)水溶胶, 再经过超声处理得到氧化石墨烯, 最后通过还原得到石墨烯。这是目前最常用的制 备石墨烯的方法。 石墨本身是一种憎水性的物质,然而氧化过程导致形成了大量的结构缺陷,这 些缺陷即使经1100 °C退火也不能完全消除,因此GO表面和边缘存在大量的羟基、 羧基、环氧等基团,是一种亲水性物质。由于这些官能团的存在,GO容易与其它 试剂发生反应,得到改性的氧化石墨烯。同时GO层间距(0.7~1.2nm)也较原始石墨 的层间距(0.335nm)大,有利于其它物质分子的插层。 特点:这种方法环保、高效,成本较低,并且能大规模工业化生产。其缺陷在 于强氧化剂会严重破坏石墨烯的电子结构以及晶体的完整性,影响电子性质,因 而在一定程度上限制了其在精密的微电子领域的应用。
制作方法
韩国三星公司和成均馆大学的研究人员利用化学气相沉积的方法获得 了对角长度30英寸的石墨烯,并将其转移到188微米厚的聚对苯二甲 酸乙二脂(polyethylene terephthalate,简称PET)薄膜上,进而制 造出以石墨烯为基础的触摸屏。如下图所示,生长在铜箔上的石墨烯 先和热剥离型胶带(蓝色透明部分)粘在一起,然后用化学的方法把 铜箔溶解掉,最后用加热的方法把石墨烯转移到PET薄膜上。

激光诱导石墨烯的制备、改性与应用

激光诱导石墨烯的制备、改性与应用目录一、激光诱导石墨烯的制备 (1)1.1 化学气相沉积法 (2)1.2 激光蒸发法 (3)1.3 光电化学法 (4)1.4 其他制备方法 (5)二、激光诱导石墨烯的改性 (6)2.1 表面官能团化修饰 (7)2.2 形状调控 (8)2.3 纳米结构调控 (9)2.4 功能化修饰 (10)三、激光诱导石墨烯的应用 (11)3.1 电子器件 (12)3.2 能源领域 (13)3.3 复合材料 (14)3.4 生物医学领域 (15)3.5 其他应用领域 (17)一、激光诱导石墨烯的制备随着科学技术的不断发展,石墨烯作为一种具有广泛应用前景的新型材料,受到了越来越多的关注。

激光诱导石墨烯(LaserInduced Graphene,简称LIG)是一种通过激光诱导自组装技术制备的石墨烯薄膜。

相较于传统的化学气相沉积法(CVD)和物理气相沉积法(PVD),激光诱导石墨烯具有更高的产率、更好的晶体质量以及更低的成本,因此在石墨烯研究领域具有重要的研究价值和应用前景。

石墨烯前驱体的选择:石墨烯前驱体是激光诱导石墨烯的关键组成部分,其性质直接影响到石墨烯的性能。

目前常用的石墨烯前驱体有碳纳米管(CNT)、过渡金属硫化物(TMS)等。

这些前驱体具有良好的导电性、导热性和机械强度,有利于石墨烯的形成。

溶液处理:将石墨烯前驱体溶解在适当的溶剂中,形成均匀的溶液。

溶液中的石墨烯前驱体可以通过吸附、沉淀等作用与溶剂分子结合,形成稳定的复合物。

激光诱导:将含有石墨烯前驱体的溶液置于激光器中,利用激光束对溶液进行照射。

激光束的能量会导致溶液中的石墨烯前驱体发生晶化反应,形成石墨烯薄膜。

通过调整激光功率、波长等参数,可以实现对石墨烯薄膜厚度、晶体结构等方面的精确控制。

剥离和后处理:将激光诱导形成的石墨烯薄膜从基底上剥离,并进行后续的纯化和功能化处理。

常见的后处理方法包括氧化、还原、硼化等,以提高石墨烯的稳定性和功能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档