大学物理C习题册

合集下载

大学物理习题册及解答_第二版_第四章_刚体的定轴转动

大学物理习题册及解答_第二版_第四章_刚体的定轴转动
桌面上有两个质量均为m的小球各自在垂直于杆的方向上正对着杆的一端以相同速率v相向运动当两小球同时与杆的两个端点发生完全非弹性碰撞后就与杆粘在一起转动则这一系统碰撞后的转动角速度应为12题俯视图质量为20kg边长为10m的均匀立方物体放在水平地面上
第四章 刚体定轴转动(一)
一.选择题
1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几 个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.
(1 )m m / 2 T mg m m m/2
k 1 k 2 2 1 2
4.质量为M,长为l的均匀细杆,可绕A端的水平轴自由转动,当 杆自由下垂时,有一质量为m的小球,在离杆下端的距离为a处垂 直击中细杆,并于碰撞后自由下落,而细杆在碰撞后的最大偏角 为,试求小球击中细杆前的速度。 解:球与杆碰撞瞬间,系统所受合外力矩为零,系 统碰撞前后角动量守恒
m (l a) J
1 J Ml 3
2
杆摆动过程机械能守恒
1 l J Mg (1 cos ) 2 2
2
解得小球碰前速率为
Ml 2 gl sin m(l a ) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少? 解:选人、滑轮、与重物为系统,系统所受对滑轮轴的 外力矩为 1
1 d 13 即 MgR ( MR MRu) 2 dt 8
该题也可在地面参考系中分别对人和物体利用牛顿第二定 律,对滑轮应用转动定律求解。
一选择题
第四章 刚体定轴转动(二)

大物习题册答案及详解(山东理工大学大二上学期2020版)

大物习题册答案及详解(山东理工大学大二上学期2020版)
考点:无限大均匀带电平面的电场强度公式:E=σ/ε0,电场强度等于两个带电平行电板所产生的电场强度的矢量 和。(课本120页 例6-7 推导公式)
4.如图所示,一点电荷q位于正立方体的A角上,则通过侧面abcd的电通量Φe=q/24ε0
考点: 高斯定理公式 (课本118页 6-18) 解法:1.建立一正方体高斯面(补7个如图正方体),使A点位于正中心
考点:电势是一个与引进电荷无关,完全由电场自身的性质和相对位置决定的物理量。电场中某点电势的大小与零 电势点的选取有关。
2.在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为
(B)
(A)Q/4πε0a
(B)Q/2πε0a
(C)Q/πε0a
(D)Q/2√2πε0a
q/(1/r-1/r0)/4πε0
考点:电势的计算
解法:U=∫
r0 r
E·dr
=∫
r0 qdr r 4πε0r
2
=q/(1/r-1/r0)/4πε0
(课本122页
6-29b)
பைடு நூலகம்
3.一质量为m、电量为q的小球,在电_场__力__作__用下,从电势为U的a点移动到电势为零的b点,若已知小球在b点的 速率为Vb,则小球在a点的速率Va=√Vb2-2qU/m
②均匀带电球面内的电势UP2=Q/4πε0R(课本123页例6-8结论得), ③UP=UP1+UP2.
6.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距 离分别为r1和r2,如图所示,则移动过程中电场力做的功为(C) (A)-Q(1/r1-1/r2)/4πε0 (B)qQ(1/r1-1/r2)/4πε0 (C)-qQ(1/r1-1/r2)/4πε0 (D)-qQ/4πε0(r2-r1) 考点:电场力的功 解法:Aeab=q(UA-UB)=q(-Q/4πε0r1— -Q/4πε0r2)=-qQ(1/r1-1/r2)/4πε0 (课本123页 6-31)

大学物理练习册习题及答案

大学物理练习册习题及答案

习题及参考答案第2章 质点动力学参考答案一 思考题2-1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g -(C )12122m m g m m ⎛⎫⎪+⎝⎭ (D )12124m m g m m ⎛⎫⎪+⎝⎭2-2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变 2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为μ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为μs ,滑动摩擦系数为μk ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mgμ≤ (B )(1)s F m M mgμ≤+(C )()s F m M mg μ≤+(D )s m MF mgM μ+≤AmBBm A 思考题2-1图思考题2-3图 思考题2-4图m(a )(b )Bm mm 21m 21思考题2-7图2-5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1> m 2。

设有一水平恒力F ,第一次作用在A 上如图(a )所示,第二次作用在B 上如图(b )所示,问在这两次作用中A 与B 之间的作用力哪次大?2-6 图(a )中小球用轻弹簧o 1A 与o 2A 轻绳系住,图(b )中小球用轻绳o'1B 与o'2B 系住,今剪断o 2A 绳和o'2B 绳;试求在刚剪断的瞬时,A 球与B 球的加速度量值和方向。

大学物理习题册及解答(第二版)第二章 质点的运动定律

大学物理习题册及解答(第二版)第二章 质点的运动定律

mg ≤ f 摩 = µN = µmRω 2
ω≥
g µR
3. 一单摆挂在木板的小钉上(摆球的质量<<木板的质量), 木板可沿两根竖直且无摩擦的轨道下滑,如图.开始时木板被 支撑物托住,且使单摆摆动.当摆球尚未摆到最高点时,移开 支撑物,木板自由下落,则在下落过程中,摆球相对于板 (A) 作匀速率圆周运动 (C) 仍作周期性摆动 (B) 静止 (D) 作上述情况之外的运动
4 质量为m的小球在水平面内作半径为R的匀速圆周运动,圆 周运动的角速度为 ω .试通过小球受到合外力的时间积分计算, 小球在经过(1) 1/4圆周,(2) 1/2圆周,(3) 3/4圆周,(4) 整个圆 周,几个的过程中向心力的冲量,以及由动量定理得出这几个 y 过程中的冲量. ωt O 解:方法1 小球所受合力作为它作圆周运动的向 R x 心力,合力的冲量表示为:
x
y
y
0
x
x
0
7.设作用在质量为1kg的物体上的力F=6t+3(SI). 如果物体在这一力的作用下,由静止开始沿直线运动,在 0到2.0 s的时间间隔内,这个力作用在物体上的冲量大小 18 N·s I=____________. 8.一人站在质量(连人带船)为m1=300 kg的静止的船 上,他用F=100 N的恒力拉一水平轻绳,绳的另一端系在 岸边的一棵树上,则船开始运动后第三秒末的速率为 1 m/s __________;在这段时间内拉力对船所做的功为 ____________.(水的阻力不计) 150 J 分析:利用动量定理和动能定理求解
三、计算及证明
1. 质量为m的木块放在质量为M倾角为θ的光滑斜劈上,斜劈与 地面的摩擦不计,若使m相对斜面静止,需在斜劈上施加多大的 N θ y 水平外力?木块对斜劈的压力为多少? 解:在 x方向和y方向分别应用牛顿第二定律

《大学物理C1(上、下)》练习册及答案

《大学物理C1(上、下)》练习册及答案

大学物理C(上、下)练习册✧质点动力学✧刚体定轴转动✧静电场电场强度✧电势静电场中的导体✧稳恒磁场✧电磁感应✧波动、振动✧光的干涉✧光的衍射注:本习题详细答案,结课后由老师发放一、质点动力学一、选择题1. 以下几种运动形式中,加速度a保持不变的运动是:(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动 。

[ ] 2. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2 R /T , 2 R/T . (B) 0 , 2 R /T(C) 0 , 0. (D) 2 R /T , 0. [ ]3. 质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中, (1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. [ ]4. 一运动质点在某瞬时位于矢径r的端点处,其速度大小的表达式为(A )t d dr ; (B )dt r d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛[ ] 5. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) t d d v . (B)2V R.(C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]6. 质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道运动.质点越过A角时,轨道作用于质点的冲量的大小为(A) mv. (B).(C) . (D) 2mv.[]7. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.[]8. 一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定.[]9. 如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F拉箱子,使它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固定.试以水平地面为参照系,判断下列结论中正确的是(A)在两种情况下,F做的功相等.(B)在两种情况下,摩擦力对箱子做的功相等.(C)在两种情况下,箱子获得的动能相等.(D)在两种情况下,由于摩擦而产生的热相等.[]10. 质量为m的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M,万有引力恒量为G,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm(B)22R GMm(C) 2121R R R R GMm - (D) 2121R R R GMm - (E) 222121R R R R GMm -[ ]二 填空11. 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = .12. 质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体B 的加速度B a=_______;物体A 的加速度A a=______.13. 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=__________________; (2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.三、计算题14. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2)第2秒末的瞬时速度;(3) 第2秒内的路程.15. 质量为m的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.16. 一人从10 m深的井中提水.起始时桶中装有10 kg的水,桶的质量为1 kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水.求水桶匀速地从井中提到井口,人所作的功.二、刚体定轴转动一、选择题1. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ] 2. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ] 3. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为 A 和 B ,不计滑轮轴的摩擦,则有(A) A = B . (B) A > B .(C) A < B . (D) 开始时 A = B ,以后 A < B .[ ] 4. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为 0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 310. (B) ()3/1 0.(C) 3 0. (D) 3 0. [ ] 6. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题7. 在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s 1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =____________,物体速 度的大小v =__________________.8. 如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.三、计算题9. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.10. 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.11. 如图所示,A和B两飞轮的轴杆在同一中心线kg·m2.开始时,A轮转速为600 rev/min,B轮静止.C为摩擦啮合器,其转动惯量可忽略不计.A、B分别与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速而A轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n;(2) 两轮各自所受的冲量矩.三、静电场 电场强度一、选择题1. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. []2.如图所示,一个电荷为q 的点电荷位于立方体的A角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq .(C) 024εq . (D) 048εq . [ ]3. 电荷面密度均为+ 的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]02εx4. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ] 5. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1和 2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. []6. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后:(A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]7. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.P+q 0(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ] 二、填空题7. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+ ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_________,E D =___________ (设方向向右为正).8. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.9. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=______________;若以 0r表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题10. 带电细线弯成半径为R 的半圆形,电荷线密度为 = 0sin ,式中 0为一常数, 为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.11.图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y+σ+σ+σABCD=0,E z=0.求立方体六个面的电场强度通量。

大学物理C练习题

大学物理C练习题

大学物理C练习题(.)————————————————————————————————作者: ————————————————————————————————日期:ﻩ大学物理C练习题电磁学——静电场部分一、基本内容:1. 静电场的概念;电场强度的定义,点电荷的场强公式及其叠加原理。

2. 静电场的高斯定理及环路定理的意义(分别表明静电场属于有源场和保守场)。

3. 应用高斯定理求场强分布。

(注意应用条件) 4. 电场线概念及其性质。

5. 静电势能的概念。

6. 电势的定义;点电荷的电势公式及其叠加原理。

7. 利用定义式求带电体的电势、电势差。

8. 等势面概念及其性质;场强与电势的关系。

二、练习题:1. 若静电场E 由电荷Q 所产生,试验电荷为0q 。

当用电场强度的定义式0q FE=确定E时,对电荷Q和0q 的要求是 ( C )A 、Q 和0q 都必须是点电荷;B 、Q为任意电荷,0q 必须是正点电荷;C 、Q 为任意电荷,0q 必须是点电荷;D 、Q 为任意电荷,0q 必须是单位正电荷。

2. 关于电场强度定义式0q F E=,下列说法中错误的是 ( D )A 、电场强度E的大小可由0q F确定;B 、电场中某一点试验电荷受到的电场力F与试验电荷量0q 的比值和0q 无关;C 、F是作用在0q 的电场力;D 、若电场中不存在试验电荷,则电场力0=F ,从而电场强度0=E。

3. 有一电荷面密度为σ的均匀带电球面,若面内电场强度处处为零,则球面上的某一带电量dS σ的面元在球面内产生的电场强度 ( B )A、处处为零; B、一定不为零; C 、不一定为零; D、是常数。

4. 关于静电场的高斯定理0ε∑⎰=⋅i Sq S d E,下列说法中哪个是正确的?( A )A 、积分式中的E是由高斯面内、外所有电荷共同激发的;B 、积分式中的E是由高斯面内电荷所激发的; C 、式中∑iq 是空间所有电荷的代数和;D 、该定理仅适用于具有对称性的某种静电场。

《大学物理》习题册题目及答案第16单元 机械波

第16单元 机械波(一)学号 姓名 专业、班级 课程班序号一 选择题[ C ]1.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后 (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前[ A ]2. 一横波沿绳子传播时的波动方程为)104cos(05.0t x y ππ-= (SI),则(A) 其波长为0.5 m (B) 波速为5 m ⋅s -1(C) 波速为25 m ⋅s -1 (D)频率为2 Hz[ C ]3. 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。

设t = T /4时刻的波形如图所示,则该波的表达式为: (A) )/(cos u x t A y -=ω (B) ]2/)/([cos πω+-=u x t A y (C) )/(cos u x t A y +=ω (D) ])/([cos πω++=u x t A y[ D ]4. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。

若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A) 0点的初位相为00=ϕ(B) 1点的初位相为 21πϕ-=(C) 2点的初位相为 πϕ=2(D) 3点的初位相为 23πϕ-=[ D ]5. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能。

(B) 它的势能转换成动能。

(C) 它从相邻的一段质元获得能量其能量逐渐增大。

(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。

二 填空题1.频率为100Hz 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的相位差为52π. 2. 一简谐波沿x 轴正向传播。

1x 和2x 两点处的振动曲线分别如图(a)和(b)所示。

大学物理c 复习题

大 学 物 理 C 复 习 题一、选择题:1、以下四种运动形式中,a 保持不变的运动为[ D ] (A) 单摆的运动 (B) 匀速圆周运动 (C) 变加直线运动 (D) 抛体运动2、在经典力学中,下列哪个说法是错误的[ D ](A) 质点的位置、速度、加速度都是矢量 (B) 刚体定轴转动的转动惯量是标量 (C) 质点运动的总机械能是标量 (D) 刚体转动的角速度是标量3、一均匀的细圆环质量为m ,半径为R ,对过环中心且与环面垂直的轴转动的惯量为[ A ] (A) 2/2mR (B) 4/2mR (C) 2mR (D) 必须用实验才能测定 4、当质点以频率ν,作简谐振动时,它的动能变化频率为 [ B ] (A) ν (B) 2ν (C) 4ν (D)ν215、如图一所示,一简谐振动曲线如图所示,则振动周期试[B ] (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s6、弹簧振子做简谐振动时如果振幅增为原来的两倍,而频率减少为原来的一半,他的总能量[ B ](A) 减少为原来的一半; (B) 不变;(C) 增为原来的两倍; (D) 增为原来的四倍; 7、根据电场强度的定义式 E =F /q 可知:[ C ] (A) E 正比于F ,反比于q 。

(B) 如果电场中某一点处没有试验电荷,则该点的电场强度就等于零。

(C) 和试验电荷的有无没有任何关系。

8、静电场的环路定理0=⋅⎰Ll d E 说明静电场的性质 [ B ](A) 电场线不是闭合曲线 (B) 电场力是保守力 (C) 静电场是有源场9、当机械振动在弹性介质中传播时,组成弹性介质的每一个质点:[ B ] (A) 和振动状态的传播一起流动。

(B) 只在各自的平衡位置附近作振动。

(C) 边流动边振动10、利用惠更斯原理可以确定: [ A ](A) 任意时刻波的传播方向。

(B) 沿任意方向传播的光的强度。

(C) 沿任意方向传播的光的能量。

大学大学物理习题册答案-第单元 热力学基础

20XX年复习资料大学复习资料专业:班级:科目老师:日期:第20XXXX 单元 热力学基础一、选择题【C 】1.如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程(A)是平衡过程,它能用p-V 图上的一条曲线表示(B)不是平衡过程,但它能用p-V 图上的一条曲线表示(C)不是平衡过程,它不能用p-V 图上的一条曲线表示(D)是平衡过程,但它不能用p-V 图上的一条曲线表示【B 】2.两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等。

现将6 J 热量传给氦气,使之升高到一定温度。

若使氢气也升高同样的温度,则应向氢气传递热量:(A) 6 J (B) 20XXXX J (C) 20XXXX (D) 5 J【C 】3. 设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取的热量的(A)n 倍 (B)n-1倍 (C)n 1倍 (D)n n 1+倍 【D 】4.如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为ab c da , 那么循环abcda 与ab c da 所作的功和热机效率的变化情况是: (A) 净功增大,效率提高 (B) 净功增大,效率降低(C) 净功和效率都不变 (D) 净功增大,效率不变【A 】5.如图所示,一定量理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A →B 等压过程;A →C 等温过程;A →D 绝热过程。

其中吸热最多的过程(A) 是A →B (B) 是A →C(C) 是A →D(D) 既是A →B ,也是A →C ,两过程吸热一样多【B 】6.一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分。

两边分别装入质量相等、温度相同的H 2和O 2。

开始时绝热板P 固定,然后释放之,板P 将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计)。

(完整版)《大学物理》习题册题目及答案第6单元 气体动理论

第6单元 气体动理论 序号 学号 姓名 专业、班级一 选择题[ C ]1.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为: (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10[ B ]2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为(A) pV/m (B) pV/(kT)(C) pV/(RT) (D) pV/(mT)[ D ]3.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则 )(21221v Nf mv v v ⎰ d v 的物理意义是 (A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差。

(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和。

(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能。

(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和。

[ D ]4.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为 1n ,它产生的压强为 1p ,B 种气体的分子数密度为 12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为(A)31p (B)41p(C)51p (D)61p二 填空题1.在定压下加热一定量的理想气体,若使其温度升高1K 时,它的体积增加了0.005倍,则气体原来的温度是_________200k__________。

2.用总分子数N 、气体分子速率v 和速率分布函数f(v),表示下列各量:(1)速率大于0v 的分子数= ⎰∞0)(v dv v Nf ;(2)速率大于0v 的那些分子的平均速率=⎰⎰∞∞00)()(v v dv v f dv v vf ;(3)多次观察某一分子的速率,发现其速率大于0v 的概率=⎰∞0)(v dv v f 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:一滴液滴重为
承担此液滴重量的表面张力的大小为:
1-18、在20平方公里的湖面上,下了一场50mm的大雨,雨滴半径r=1.0mm。设温度不变,求释放出来的能量。已知水的表面张力系数α=7.3×10-2N/m。
解:
1-19、图中表示土壤中的悬着水,其上、其下两液面都与大气接触。已知上、下液面的曲率半径分别为RA和RB(RB>RA),水的表面张力系数为α,密度为ρ。求悬着水的高度。
2-7、在一个有活塞的容器内贮有一定量的气体,如果压缩并对它加热,使其温度由27oC上升到1770C,体积减少一半,
求:(1)气体的压强变化多少?(2)气体的平均平动动能的变化多少?(3)分子的方均根速率变化多少?
解:
2-8、温度为300K时,1mol氧的平动动能和转动动能各是多少?
解:
解:(1)如图所示
解:如图所示
1-20、植物的根毛上有一层很薄的水膜套,根毛的尖端表面可视为半径为R1的半球形,而根毛的其它部分可视为半径为R2的圆柱形。求根毛尖端及其它部分的水膜所产生的附加压强。
已知R1=R2=5μm,土壤溶液的表面张力系数α=7.0×10-2N/m。
解:根毛尖端看作是球形,其表面的附加压强为
其它部分看作是圆柱形,其表面的附加压强为
解:正立时,设气柱压强为P1,气柱高度为h1=20.0cm
倒立时,设气柱压强为P2,气柱高度为h2
对气柱,有下式成立其中(设玻璃管的横截面积为s),
联立以上各式,得
若用厘米汞柱表示压强大小则得到
求解后,可得
将h2=141.5cm舍去,
2-3、质量M=1.1kg的实际CO2气体,在体积V=2.0×10-3m3,温度为13oC时的压强是多少?并将结果与同状态下的理想气体比较。这时CO2内压强是多大?已知CO2的范德瓦耳斯常数a=3.64×10-1Pa·[m3]2·mol-2,b=4.27×10-5m3·mol-1。
棒获得速度后向右摆动,设摆动的最大角度为θ,则重心升起的最大高度为
1-7、一根长为l=5m的钢杆,横截面积为b0=0.2m见方的正方形。今在杆的两端各加F=400N的拉力,求杆的应力、应变、总伸长量和横截面的相对改变量。已知钢杆的Y=2×1011N·m-2,泊松比μ=0.19。
解:
1-8、在半径为r的植物球形细胞内,溶液的静压强为P,细胞壁厚度为τ,求细胞壁上各处所受的应力。
(2)在水槽的其他深度处能否在弄开一孔,其射出的水流有相同的射程?
(3)小孔开在水面下的深度为多少时?射程最远?最远射程是多少?
解:(1)
(2)设在水面下y处再开一小孔,则有
(3)对射程函数求一阶导数等于零,从而得到y的最大值
1-13、将比多管装在飞机机翼上,以测定飞机相对于空气的速率。假定比多管中盛的是酒精,指示的液面的高度差h=26cm,空气的湿度是0摄氏度,求飞机相对于空气的速率。已知酒精的密度ρ1=0.81×103kg/m3,空气的密度ρ=1.30kg/m3。
解:(1)系统所受合外力矩为0,所以系统的角动量守恒,则
(2)拉回前,系统机械能为:
拉回后,系统机械能为:
可见系统的机械能不守恒。这是因为人在将哑铃拉回的过程中,把自身的化学能转化为对哑铃所作的功,并最终导致系统的机械能增加。
1-6、一长l=0.40m的均匀棒,质量m1=1.0kg,可绕光滑水平轴O在竖直的水平面
1-22、有一株高H=50m的树,木质部导管(树液传输管)视为均匀的圆管,其半径r=2.0×10-4mm。设树液的表面张力系数α=5.0×10-2N/m,接触角θ=45°问跟部的最小压强应为多少时,方能使树液升到树的顶端?树液的密度ρ=1.0×103kg/m3。
解:如图所示,树根部的压强PA为
第二章气体动理论
一、本章重难点
1、热学的两种研究方法,理想气体的状态方程,压强公式,能量公式
2、平衡态、自由度、分子的能量按自由度均分原则、理想气体的内能
3、理想气体的微观模型
4、理解速率分布律、速率分布函数、麦克斯韦速率分布律和分布函数的物理含义
理解气体的三种统计速率
二、课后习题解答
2-1、水银气压计中混入了一个空气泡,因此,它的读数比实际的气压小。当精确的气压计的读数为1.0239×105Pa,它的读数只有0.997×105Pa,此时管内水银面到管顶的距离为80mm。问当此气压计的读数为0.978×105Pa时,实际气压应是多少?设空气的温度保持不变。
解:对气泡而言,有下式成立,(设气压计管子的横截面积为s)
其中
因此
2-2、一端封闭的玻璃管长l=70.0cm,贮有空气,气柱上面有一段长为h=20.0cm的水银柱将气柱封住,水银面与管口对齐。今将玻璃管的开口用玻璃片盖住,轻轻倒转后,再除去玻璃片,因而使一部分水银倒出。当大气压Po=0.9999×105Pa时,留在管内的水银柱有多长?
(1) 系统所受的和力矩
(2)系统的转动惯量
(3)系统的角加速度
解:(1)设垂直纸面向里为z轴的正方向(即力矩的正方向),合力矩为两小球及杆的重力矩之和。
(3)由转动定理
1-3、有一质量为m1、m2(m1>m2)两物体分别悬挂在两个半径不同的组
合轮上,如图。求物体的加速度及绳的张力,大,小两轮间无相对运动,
2-10、某种气体分子在温度为T1时的方均根速率等于温度为T2的平均速率。求:T2、T1

2-11、求速率在vp与1.01vp之间的气体分子数占总分子数的百分比。
解:
2-12、求上升到什么高度,大气压强减少为地面大气压强的75%。设空气的温度00C,空气的摩尔质量为0.0289kg/mol。
解:
2-13、氮气分子的有效直径d=3.8×10-10m,求在标准状态下(1.01325×105Pa,00C)下的平均自由程和连续两次碰撞间的平均时间。
且半径分别为R、r,转动惯量分别为J1、J2,。轮和轴间无摩擦。
解:设垂直于纸面向里为力矩的正方向,又大小轮之间无相对运动,
则它们具有共同的角加速度β,由转动定理得:
对m1:
对m2:
又:
由以上5式得
1-4、一根质量为m1=0.03kg,长为l=0.2m、的均匀细棒,在一水平面内绕通过质心并与棒垂直的固定轴无摩擦的转动。棒上套有两个可沿棒划动的小物体,他们的质量均为m2=0.02kg开始时,两个小物体分别被家在棒心的两边,距离各为r1=0.05m,此系统以ω0=15rad/s的角速度转动。设系统在无其他的改变,仅将夹子松开,两物体就沿棒外划去,以至飞离棒端。求:
解:
1-9、在图1~22(教材第19页)所示的分支管中,以致三管的横截面积分别为S1=100cm2,S2=40cm2,S3=80cm2,在截面S1、S2两管中的流速分别为v1=40cm/s,和v2=30cm/s。求:
(1)在截面S3管中的流速;(2)在截面S2管中的体积流量。
解:
1-10、流体在半径为R的管内作定常流动,截面上的流速按v=v0(1-r/R)分布,r为截面上某点到轴线的距离。设R=5cm,v0=1.2m/s。求体积流量。
所以
1-21、在内直径d1=2.0×10-3m的玻璃管中,插入一直径d2=1.5×10-3m的玻璃棒,棒与管同轴。求水在管中上升的高度。已知水的密度ρ=1.0×103kg/m3,表面张力系数α=7.3×10-2N/m,与玻璃的接触角θ=0。
解:由分析可知玻璃管和玻璃棒之间的液面是环行凹液面,对于此液面,它的曲率半径为R1→∞,R2=(d1-d2)/4
圆管长l=2cm,半径r=5.64×10-2cm/s,求单位时间内通过单位面的水蒸气质量(即水汽通量)。已知在20℃时,空气密度ρ1=1.2×10-3g/cm3,细胞间隙内气体的黏滞系数η=1.81×10-5pa·s,饱和水蒸气的密度ρ2=2.30×10-5g/cm3。
解:
1-17、为了测定液体的表面张力系数,可称量自毛细血管脱离的液滴重量,并测量在脱离的瞬间液滴颈的直径d,如图。已测得318滴液重4.9×10-2N,d=0.7mm,求此液体的表面张力系数。
5、理解应力与应变的关系,弹性模量
6、流体、理想流体、流线和流管、定常流动
7、流体的连续性方程、伯努利方程
8、泊肃叶定律
9、层流、湍流、雷诺数
10、粘性流体的伯努利方程、斯托克斯定律
11、弯曲液面的附加压强(球形液面、柱形液面)
12、毛细现象、润湿和不润湿现象、气体栓塞
二、课后习题解答
1-1、一飞轮直径为0.2m,质量为5.00kg,t边缘饶一轻绳,现用恒力拉绳子的一端,使其有静止均匀地加速,经0.50s转速达10转/s。假定飞轮可看作实心圆柱体。求;
《大学物理C》课程
学习指导
石河子大学师范学院物理系普物教研室编
2008年3月
第一章连续体力学
一、本章重难点
1、刚体定轴转动的特点及描述刚体定轴转动的各个物理量。理解线量与角量的关系。
2、力矩、转动动能、转动惯量、刚体定轴转动定理。
3、角动量,刚体定轴转动的角动量定律、角动量守恒定律
4、应力、应变的概念,应变的几种形式
解:
2-4、设想每秒有1023个氧分子以500m/s的速度沿着与器壁法线成450角的方向撞在面积为
2.0×10-4m2的器壁上,求这群分子作用在器壁上的压强。
解:
2-5、一容器被中间的隔板分成相等的两半,一半装有氦气,温度为250K。另一半装有氧气,温度为310K。二者压强相等,求去掉隔板两种气体混合后的温度。
解:
1-11、在充满水的水管中的某一点水的流速为v1=2m/s,高出大气压的计示压强P1=P0+104(pa)沿水管到另一点的高度比第一点降低了h=1m,如果在第二点处水管的截面积是第一点处的1/2,求第二点处的计示压强。
解:
1-12、如图所示,一开口水槽中的水深为H在水下面h深处开有一小孔。问:
相关文档
最新文档