新浙教版八年级上册第2章综合B卷

合集下载

第二单元综合测试卷浙教版八年级上册科学

第二单元综合测试卷浙教版八年级上册科学

第二单元综合测试卷一、选择题(本题共14个小题;每小题3分,共42分。

在每小题给出的四个选项中,只有一项是正确的)1.干湿球湿度计的湿球温度计与干球温度计的示数差距越大,表示()A.空气的绝对湿度越大B.空气的相对湿度越小C.空气中的水蒸气的实际压强离饱和程度越近D.空气中的水蒸气的绝对湿度离饱和程度越近2.在抗击新冠肺炎疫情的时期,“负压救护车”发挥了重要的作用,“负压救护车”是因为车内的气压低于车外气压而得名。

下列处于负压状态的是()A.吹足气的气球B.高空飞行中的飞机机舱C.吸饮料过程中的吸管D.漏气的足球3. “天宫二号”空间实验室于2016年9月15日成功发射。

空间实验室内适宜宇航员工作生活的气压约为( )A.100Pa B.1000Pa C.10000Pa D.100000Pa4.乒乓球前进过程中由于不同的旋转方向会沿不同的径迹运动。

运动员用三种不同的击球方法把乒乓球击出,请判断,图中1、2、3三条径迹分别表示上旋球(球沿逆时针方向旋转)、下旋球(球沿顺时针方向旋转)、不转球中的哪一种()A.上旋球、下旋球、不转球B.不转球、下旋球、上旋球C.上旋球、不转球、下旋球D.下旋球、不转球、上旋球5.如图是一艘水翼船,它的船身下方有两个水翼,使船在高速行驶时船身能离开水面,从而减小来自水的阻力,下面四幅图能正确表示水翼船行驶状态的是()A.B.C.D.6.小科用如图所示的装置探究气压与海拔的关系,小科将该装置从一楼拿到五楼,忽略温度的变化,玻璃管内液柱会()A.上升B.下降C.不变D.无法判断7.为改善地铁地下车站的通风状况,小应设计了抽气管道,利用地面横风实现自动抽气。

为提高抽气效果,管道上方迎而盖的形状应设计成下列图中的()A.B.C.D.8.如图所示的是“估测大气压的值"的实验,下列关于该实验的分析中错误的是()A.如果活塞与针简摩擦过大,会导致大气压的测量值偏小B.测量活塞受到的大气压力时,利用了二力平衡的知识C.测量注射器最大刻度对应的长度,是为了计算活塞的横截面积D.将活塞推至注射器筒的底端是为了排尽空气9.小温暑假乘飞机旅行。

浙教版八年级上科学第2章 天气与气候 单元测试卷(解析版)

浙教版八年级上科学第2章 天气与气候 单元测试卷(解析版)

浙教版八年级上科学第2章天气与气候单元测试卷(解析版)一一一一一(共15共共,共共3共,共45共)1.如图是学校气象站某天采集到的数据,其中观测“东南风”的工具是()A.B.C.D.【答案】B【解析】其中观测“东南风”的工具是测风向的风向标,故答案为:B。

2.下列几种大气运动形式中,气流运动方向表示正确的是()A.B.C.D.【答案】D【解析】A.在对流运动中,暖空气是上升的,冷空气是下沉的,A错误;B.风是由高压区吹向低压区的,B错误;C.市区的温度一般比郊区高,所以城市的空气向上流动,下面形成低压区,郊区的空气向下流动,形成高压区,近地面,风从郊区吹响城市,C错误;D.白天,由于沙子的比热容比水小,所以沙子的温度高,水的温度低,陆地的空气向上运动,近地面形成低压区,海洋的空气向下运动,形成高压区,所以从海洋吹向陆地,D正确;故答案为:D.3.2023年10月31日,神舟十六号载人飞船返回舱成功着陆。

返回舱在返回过程中最后穿过的地球大气层是()A.对流层B.平流层C.中间层D.暖层【答案】A【解析】地球大气层自地面到高空依次分布着对流层、平流层和高层大气,所以神舟十六号载人飞船返回舱在返回过程中依次穿过高层大气、平流层和对流层,即最后穿过的地球大气层是对流层,故A正确,BCD错误。

故答案为:A。

4.下列装置中,不是利用大气压工作的是()A.吸管吸饮料B.用注射器把药液注射进入体内C.吸盘挂钩D.吸尘器【答案】B【解析】A.用吸管吸饮料时,吸出吸管中的部分空气,使吸管内的气压减小,瓶中饮料在大气压的作用下,上升通过吸管进入口中,故A不符合题意;B.用注射器注射药液时,是在外力的作用下将药液注入的,与大气压无关,故B符合题意;C.首先用力将挂衣钩的吸盘紧压在墙壁上,将塑料吸盘中的空气排出,通过手的挤压排出了吸盘内的气体,使内部气压小于外界大气压,这样外界大气压将挂衣钩压在墙壁上,故C不符合题意;D.用吸尘器吸尘土时,吸出管中的部分空气,使吸管内的气压减小,尘土在大气压的作用下进入吸尘器中,利用了大气压,故D不符合题意。

浙教版八年级数学上册第2章 测试卷附答案

浙教版八年级数学上册第2章 测试卷附答案

浙教版八年级数学上册第2章测试卷一、选择题(每题3分,共30分)1.下列四个图案分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()2.如图,在△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°3.在直角三角形ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365 B.1225 C.94 D.3344.如图,已知∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC≌Rt△ABD,以下给出的条件合适的是()A.AC=AD B.BC=ADC.∠ABC=∠ABD D.∠BAC=∠BAD5.已知一个等腰三角形的两个内角度数之比为14,则这个等腰三角形顶角的度数为()A.20°B.120°C.20°或120°D.36°6.在△ABC中,AB2=(a+b)2,AC2=(a-b)2,BC2=4ab,且a>b>0,则下列结论中正确的是()A.∠A=90°B.∠B=90°C.∠C=90°D.△ABC不一定是直角三角形7.直角三角形两条直角边长分别是5和12,则第三条边上的中线长是() A.5 B.6 C.6.5 D.128.如图,在△ABC中,AD,CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°9.如图,在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积从左往右依次是S1,S2,S3,S4,则S1+S2+S3+S4等于()A.3 B.4 C.5 D.610.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:______________________.12.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13.已知实数x,y满足(x-4)2+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.14.已知a,b,c是△ABC的三边长,且满足关系式(c2-a2-b2)2+|a-b|=0,则△ABC的形状为____________.15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.16.如图,由四个边长为1的小正方形构成一个大正方形,连结小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.17.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内一个空白小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.18.如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,沿EF折叠后,点C与点O重合,则∠OEC的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知命题“等腰三角形两腰上的高相等”.(1)写出该命题的逆命题;(2)该逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”“求证”,再进行“证明”;如果是假命题,请举反例说明.20.如图,点E,F在△ABC的边BC上.若AE=AF,BE=CF,求证:AB=AC.21.如图,AB∥CD,EG,FG分别是∠BEF和∠DFE的平分线.求证:△EGF 是直角三角形.22.如图,∠ABC的平分线BF与△ABC中∠ACB的邻补角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪些三角形是等腰三角形?为什么?(2)BD,DE,CE之间存在着什么数量关系?并说明理由.23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.24.如图,等腰直角三角形DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,连结AC.(1)求证:△FBD≌△ACD;(2)如图,延长BF交AC于点E,且BE⊥AC,求证:CE=12BF;(3)在(2)的条件下,H是BC边的中点,连结DH,与BE相交于点G.试探索CE,GE,BG之间的数量关系,并证明你的结论.答案一、1.D 2.A3.A 【点拨】利用等积法解答.根据勾股定理求得AB =15,设点C 到AB 的距离是x ,可列方程12×9×12=12×15x ,解之即可. 4.A 5.C6.C 【点拨】由题意可得AB 2=AC 2+BC 2,所以△ABC 为直角三角形,AB 所对的角为直角,所以∠C =90°. 7.C8.B 【点拨】由题意知△ABC 是等腰三角形,因为AD 是其底边上的中线,所以AD 也是底边上的高线,所以∠ACB =90°-∠CAD =70°.又因为CE 是∠ACB 的平分线,所以∠ACE =12∠ACB =35°.9.B 【点拨】本题不能直接求出S 1,S 2,S 3,S 4,但我们可以利用三角形全等和勾股定理求出S 1+S 2+S 3+S 4.根据“AAS ”很容易证明△ABC ≌△CDE ,所以AB =CD .又因为CD 2+DE 2=CE 2,AB 2=S 3,CE 2=3,DE 2=S 4,所以S 3+S 4=3.同理可得S 1+S 2=1,所以S 1+S 2+S 3+S 4=1+3=4.10.D 【点拨】∵△ABD ,△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°. 在△ABE 和△DBC 中,⎩⎨⎧AB =DB ,∠ABE =∠DBC ,BE =BC ,∴△ABE ≌△DBC (SAS ). ∴①正确. ∵△ABE ≌△DBC , ∴∠BAE =∠BDC .∵∠BDC +∠BCD =∠ABD =60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°. ∴②正确.易证△ABP ≌△DBQ (ASA ), ∴BP =BQ .又∵∠PBQ =60°, ∴△BPQ 为等边三角形. ∴③正确.二、11.等边三角形的三个角都相等 12.75°或15° 13.20 14.等腰直角三角形15.3 【点拨】△OPE ≌△OPF ,△OP A ≌△OPB ,△AEP ≌△BFP ,所以共有3对全等三角形.16.3 22 【点拨】在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC 为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32.用勾股定理计算出BC 的长为2,因此BC 边上的高为322. 17.318.100° 【点拨】连结OB ,OC . 易得△AOB ≌△AOC (SAS ). ∴∠ACO =∠ABO .又∵OD 垂直平分AB ,∴OB =OA , ∴∠ABO =∠BAO =12∠BAC =25°. ∴∠ACO =25°.在△ABC 中,∵∠BAC =50°,AB =AC , ∴∠ACB =12×(180°-50°)=65°. ∴∠ECO =∠ACB -∠ACO =40°. 由折叠可知,OE =EC . ∴∠EOC =∠ECO =40°. ∴∠OEC =100°.三、19.解:(1)两边上的高相等的三角形是等腰三角形. (2)真命题.已知:如图,在△ABC 中,BE ⊥AC 于E , CD ⊥AB 于D ,且CD =BE . 求证:△ABC 是等腰三角形. 证明:∵BE ⊥AC ,CD ⊥AB , ∴∠BEA =∠CDA =90°. 又∵∠A =∠A ,BE =CD , ∴△ABE ≌△ACD ,∴AB =AC , 即△ABC 是等腰三角形.20.证明:∵AE =AF ,∴∠AEF =∠AFE .∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE .在△ACE 和△ABF 中,⎩⎨⎧AE =AF ,∠AEC =∠AFB ,CE =BF ,∴△ACE ≌△ABF (SAS ), ∴AB =AC .21.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°(两直线平行,同旁内角互补). ∵EG ,FG 分别是∠BEF 和∠DFE 的平分线, ∴∠GEF =12∠BEF ,∠GFE =12∠DFE ,∴∠GEF+∠GFE=12(∠BEF+∠DFE)=12×180°=90°,∴△EGF是直角三角形.22.解:(1)△BDF和△CEF是等腰三角形.∵BF平分∠ABC,∴∠ABF=∠FBC,∵DF∥BC,∴∠FBC=∠DFB,∴∠DFB=∠DBF,∴DB=DF,∴△BDF是等腰三角形.同理,△CEF也是等腰三角形.(2)BD=DE+CE.理由:由(1)知△CEF是等腰三角形,且EC=EF,∴BD=DF=DE+EF=DE+CE.【点拨】“平行线+角平分线”是等腰三角形中常见的基本图形之一,应注意在其他图形中的发掘与应用.23.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DC=DE.又∵DF=DB,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB.(2)由(1)可知DE=DC,又∵AD=AD,∴Rt△ADC≌Rt△ADE.∴AC=AE.∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.【点拨】(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离等于点D到AC的距离,即CD=DE,再根据Rt△CDF≌Rt△EDB,得CF=EB.(2)利用(1)中结论证明Rt△ADC≌Rt△ADE,∴AC=AE,再将线段AB进行转化.24.(1)证明:∵△BCD是等腰直角三角形,且∠BDC=90°,∴BD=CD,∠BDC=∠CDA=90°.在△FBD和△ACD中,⎩⎨⎧BD =CD ,∠BDF =∠CDA ,DF =DA ,∴△FBD ≌△ACD (SAS ).(2)证明:∵BE ⊥AC ,∴∠BEA =∠BEC =90°.∵BF 平分∠DBC ,∴∠ABE =∠CBE ,又∵BE =BE ,∴△ABE ≌△CBE (ASA ),∴AE =CE .∴CE =12AC .由(1)知△FBD ≌△ACD ,∴BF =AC ,∴CE =12BF .(3)解:BG 2=GE 2+CE 2.证明:连结CG ,∵H 是BC 边的中点,BD =CD ,∴DH 垂直平分BC ,∴BG =CG (线段垂直平分线上的点到这条线段两个端点的距离相等).∵BE ⊥AC ,∴CG 2=GE 2+CE 2,∴BG 2=GE 2+CE 2.【点拨】本题综合考查全等三角形的判定与性质,以及通过添加辅助线利用勾股定理解决问题.。

浙教版八年级上册数学第二章-测试卷及答案

浙教版八年级上册数学第二章-测试卷及答案

浙教版八年级上册数学第二章测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.如图,在△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( ) A .18°B .24°C .30°D .36°(第2题) (第4题) (第8题)3.在直角三角形ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( ) A.365B.1225C.94D.3344.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC ≌Rt △ABD ,以下给出的条件合适的是( ) A .AC =ADB .BC =ADC .∠ABC =∠ABD D .∠BAC =∠BAD5.已知一个等腰三角形的两个内角度数之比为1:4,则这个等腰三角形顶角的度数为( ) A .20°B .120°C .20°或120°D .36°6.在△ABC 中,AB 2=(a +b )2,AC 2=(a -b )2,BC 2=4ab ,且a >b >0,则下列结论中正确的是( ) A .∠A =90°B .∠B =90°C.∠C=90°D.△ABC不一定是直角三角形7.直角三角形两条直角边长分别是5和12,则第三条边上的中线长是() A.5 B.6 C.6.5 D.128.如图,在△ABC中,AD,CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°9.如图,在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积从左往右依次是S1,S2,S3,S4,则S1+S2+S3+S4等于()A.3 B.4 C.5 D.6(第9题)(第10题)10.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:______________________.12.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13.已知实数x,y满足(x-4)2+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.14.已知a,b,c是△ABC的三边长,且满足关系式(c2-a2-b2)2+|a-b|=0,则△ABC的形状为____________.15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.(第15题)(第16题)(第17题)(第18题)16.如图,由四个边长为1的小正方形构成一个大正方形,连结小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.17.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内一个空白小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.18.如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,沿EF折叠后,点C与点O重合,则∠OEC的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知命题“等腰三角形两腰上的高相等”.(1)写出该命题的逆命题.(2)该逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”“求证”,再进行“证明”;如果是假命题,请举反例说明.20.如图,点E,F在△ABC的边BC上.若AE=AF,BE=CF,则AB=AC,并说明理由.(第20题)21.如图,AB∥CD,EG,FG分别是∠BEF和∠DFE的平分线.求证:△EGF 是直角三角形.(第21题)22.如图,∠ABC的平分线BF与△ABC中∠ACB的邻补角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?为什么?(2)BD,DE,CE之间存在着什么数量关系?并说明理由.(第22题)23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第23题)24.如图,等腰直角三角形DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,连结AC.(1)求证:△FBD≌△ACD;(2)如图,延长BF交AC于点E,且BE⊥AC,求证:CE=12BF.(3)在(2)的条件下,H是BC边的中点,连结DH,与BE相交于点G.试探索CE,GE,BG之间的数量关系,并证明你的结论.(第24题)参考答案一、1.D 2.A 3.A 4.A 5.C 6.C 7.C 8.B 9.B 10.D 二、11.等边三角形的三个角都相等 12.75°或15° 13.20 14.等腰直角三角形 15.3 16.322 17.3 18.100° 三、19.解:(1)两边上的高相等的三角形是等腰三角形.(2)真命题.已知:如图,在△ABC 中,BE ⊥AC 于E , CD ⊥AB 于D ,且CD =BE . 求证:AB =AC .证明:∵BE ⊥AC ,CD ⊥AB , ∴∠BEA =∠CDA =90°, 又∵∠A =∠A ,BE =CD , ∴△ABE ≌△ACD ,∴AB =AC .(第19题)20.解:∵AE =AF ,∴∠AEF =∠AFE .∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE .在△ACE 和△ABF 中,⎩⎨⎧AE =AF ,∠AEC =∠AFB ,CE =BF ,∴△ACE ≌△ABF (SAS), ∴AB =AC .21.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°(两直线平行,同旁内角互补). ∵EG ,FG 分别是∠BEF 和∠DFE 的平分线, ∴∠GEF =12∠BEF ,∠GFE =12∠DFE ,∴∠GEF +∠GFE =12(∠BEF +∠DFE )=12×180°=90°, ∴△EGF 是直角三角形. 22.解:(1)△BDF 和△CEF .∵BF 平分∠ABC , ∴∠ABF =∠FBC ,∵DF ∥BC ,∴∠FBC =∠DFB , ∴∠DFB =∠DBF ,∴DB =DF , ∴△BDF 是等腰三角形. 同理,△CEF 也是等腰三角形.(2)BD =DE +CE .由(1)知△CEF 是等腰三角形,且EC =EF ,∵BD =DF =DE +EF ,∴BD =DE +CE .点拨:“平行线+角平分线”是等腰三角形中常见的基本图形之一,应注意在其他图形中的发掘与应用.23.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .又∵BD =DF ,∴Rt △CDF ≌Rt △EDB (HL). ∴CF =EB .(2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE .∴AC =AE .∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE ,再根据Rt △CDF ≌Rt △EDB ,得CF =EB .(2)利用(1)中结论证明Rt △ADC ≌R t △ADE ,∴AC =AE ,再将线段AB 进行转化.24.(1)证明:∵△BCD 是等腰直角三角形,且∠BDC =90°,∴BD =CD ,∠BDC =∠CDA =90°. 在△FBD 和△ACD 中,⎩⎨⎧BD =CD ,∠BDF =∠CDA ,DF =DA ,∴△FBD ≌△ACD (SAS). (2)证明:∵BE ⊥AC ,∴∠BEA=∠BEC=90°.∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE=BE,∴△ABE≌△CBE(ASA),∴AE=CE.∴CE=12AC.由(1)知△FBD≌△ACD,∴BF=AC,∴CE=12BF.(3)解:BG2=GE2+CE2.证明:连结CG,∵H是BC边的中点,BD=CD,∴DH垂直平分BC,∴BG=CG(线段垂直平分线上的点到这条线段两个端点的距离相等).∵BE⊥AC,∴CG2=GE2+CE2,∴BG2=GE2+CE2.点拨:本题综合考查全等三角形的判定与性质,以及通过添加辅助线利用勾股定理解决问题.。

浙教版八年级科学上册第二章测试题及答案

浙教版八年级科学上册第二章测试题及答案

浙教版八年级科学上册第二章测试题及答案第2章测试卷一、选择题(每题3分,共30分)1.地球是人类赖以生存的“家园”,大气层是这个“家园”的保护伞,没有了它,人类将无法生存。

请你设想一下,假如地球周围没有大气层,以下现象将不再发生的是() A.用天平称物体质量B.水往低处流C.将衣服上的灰尘拍下D.用吸管喝饮料2.随着台风“山竹”消散,浙西南地区高温再现。

9月19日,龙泉最高气温达到36.4 ℃。

“36.4 ℃”一般出现在这一天的()A.午后2时B.午后4时C.中午12时D.日出前后3.下列《科学》课本中的四个实验,用来说明大气压强存在的是()4.不管是冷锋还是暖锋发生时一般都会出现的天气现象是()A.降水B.降温C.升温D.干旱5.我国的海南岛气温高、长夏无冬,漠河夏季短、冬季寒冷。

造成两地气候明显差异的主要因素是()A.季风B.纬度位置C.海陆分布D.地形地貌6.小科为了探究空气的对流运动,往对流管内加满水并在B处加热,以下说法错误的是()A.该实验可证明空气对流B.该实验可类比空气的对流C.管内的水按逆时针流动D.若改在A处加热,管内的水按顺时针流动7.小科同学在学校创意实验设计中,展示了如图所示的实验,将一个普通的乒乓球轻轻放入漏斗中,用电吹风从管口向上吹,那么以下分析正确的是()A.球被向上吹起,因为其下方气体流速大,压强大B.球被向上吹起,因为其下方气体流速大,压强小C.球不会被向上吹起,因为其下方气体流速大,压强大D.球不会被向上吹起,因为其下方气体流速大,压强小8.2018年8月25日7时52分,我国在西昌卫星发射中心用长征三号乙运载火箭以“一箭双星”方式成功发射第三十五、三十六颗北斗导航卫星。

卫星从发射到进入预定轨道,依次经过的大气层是()A.外层→暖层→中间层→平流层→对流层B.外层→暖层→平流层→中间层→对流层C.平流层→中间层→暖层→外层→对流层D.对流层→平流层→中间层→暖层→外层9.在制药时,为从溶液中提取抗菌素,要用加热的方法使水沸腾而除去水分,但抗菌素不能超过80℃的温度下提取,应采用的办法是()A.增加气压,使水的沸点低于80 ℃B.降低气压,使水的沸点低于80 ℃C.缩短沸腾的时间D.用微火加热使其沸腾10.王林同学绘制了“中国主要气象灾害分布图”,图中甲、乙、丙、丁四图例代表的气象灾害,排列正确的一组是()A.寒潮、洪涝、干旱、台风B.台风、干旱、洪涝、寒潮C.寒潮、台风、洪涝、干旱D.干旱、寒潮、台风、洪涝二、填空题(11、14题每空1分;12、13题每空2分,共26分)11.下表所示的是某气象站在B地测得一天中以下几个时间段的气温,试回答下列问题。

浙教版数学(八上)单元测评AB卷 第2章 特殊三角形 B卷(含答案)

浙教版数学(八上)单元测评AB卷 第2章 特殊三角形 B卷(含答案)

第2章 特殊三角形 单元测试B 卷 (含答案)一、选择题(每小题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( )。

A.12B.7+7C.12或7+7D.以上都不对2.如图,已知三角形ABC ,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线,DE 交AB 于D ,连接CD ,CD=( )。

A.3 B.4 C.4.8 D.53.如图是屋架设计图的一部分,其中∠A=30°,点D 是斜梁AB 的中点,BC ,DE 垂直于横梁AC ,AB=16m ,则DE 的长为( )。

A. 8m B.4m C.2m D. 6m4.如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于 A.90° B.75° C.70° D.60°5.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将∠ABE 沿AE 折叠,使点B 落在矩形内点F 处连接CF ,则CF 的长为( )。

A.59B.512C.516D.518 6.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=( )。

A.86 B.64 C.54 D.487.如图,点P 为∠AOB 内一点,分别作出点P 关于OA ,OB 的对称点P 1,P 2,连结P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=6,则∠PMN 的周长为( )。

A.4 B.5 C.6 D.78.如图,∠BAC=110°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( )。

A.20° B.40° C.50° D.60° 9.如图,D 为∠ABC 内一点,CD 平分∠ACB ,BE∠CD ,垂足为D ,交AC 于点E ,∠A=∠ABE ,若AC=5,BC=3,则BD 的长为( )。

浙教版数学八年级上册第二章《特殊三角形》单元综合练习.doc

特殊三角形单元测试一、选择题(每题3分,共30分)1.等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°2.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或203.下列各组数中,能组成直角三角形三边的是()A.1,2,3 B.4,5,6 C.3,4,5 D.7,8,94.边长为2的等边三角形的高为()A.1 B.2 C.2 D 35.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点D,过点D作直线EF∥BC,交AB于E,交AC于F,图中等腰三角形的个数共有()A.3个B.4个C.5个D.6个7.如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AM=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个(第5题) (第6题) (第7题)8.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CD E的周长为()A.20 B.12 C.14 D.139.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m10.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A .1个B .2个C .3个D .4个(第8题) (第9题) (第10题)二、填空题(每题4分,共24分)11.等腰三角形的一个外角是100°,则它的底角是_______.12.等腰三角形有 条对称轴. 13.已知△ABC ,AB=2,BC=2,AC=22,则△ABC 是 三角形.14. 如图,在△ABC中,AB=AC ,∠A=40°,则△ABC的外角∠BCD= °15.长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE= .16. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 2的边长为6cm ,正方形B 的边长为5cm ,正方形C 的边长为5cm ,则正方形D 的面积是 cm 2.(第14题) (15 题)三、简答题(共46分)17. (6分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个边长都是无理数的直角三角形;在图2中画出一条长度等于(第16题)13的线段.18.(6分)如图所示,已知:Rt △ABC 中,∠C=90°,AC=BC ,AD 是∠A 的平分线. 求证:AC+CD=AB ..cB AD C 20.(8分)在一次数学课上,苏老师在黑板上画出图,如图,并写下了四个等式:①AB=DC ,②BE=CE ,③∠B=∠C ,④∠BAE=∠CDE .要求同学从这四个等式中选出两个作为条件,推出△AED 是等腰三角形.请你试着完成苏老师提出的要求,并说明理由.(写出一种即可)我选择:理由如下:21.(8分)已知BD ,CE 是△ABC 的两条高,M 、N 分别为BC 、DE 的中点(1)请写出线段EM 与DM 的大小关系,并说明理由。

浙教版2020八年级数学上册第二章特殊三角形单元综合能力测试题(附答案详解)

浙教版2020八年级数学上册第二章特殊三角形单元综合能力测试题(附答案详解)1.下列条件中,不能判断△ABC 为直角三角形的是( )A .1.5b=2, c=2.5a =,B .345a =:b :c ::C .∠A +∠B=∠CD .∠A :∠B :∠C=3:4:52.如图,在ABC 中,AD AC BD ==,25B ∠=︒,则DAC ∠的度数是( )A .50︒B .60︒C .80︒D .90︒3.ABC ∆的三边长分别为a ,b ,c .下列条件,其中不能判断ABC ∆是直角三角形的是( )A .::3:4:5ABC ∠∠∠=B .2()()a b c b c =+-C .A B C ∠=∠-∠D .::5:12:13a b c =4.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .(4+6π)cmB .5cmC .213cmD .7cm5.如图,在ABC 中,2B C ∠=∠,以点A 为圆心,AB 长为半径作弧,交BC 于点D ,交AC 于点G ; 再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线AE 交BC 于点F .若以点G 为圆心,GC 长为半径作两段弧,一段弧过点C ,而另一段弧恰好经过点D ,则此时FAC ∠的度数为( )6.以下列各组数据为边长作三角形,其中能组成直角三角形的是( )A .3,5,3B .6,8,10C .7,20,25D .6,12,137.用反证法证明“若a ⊥c ,b ⊥c ,则a ∥b”,第一步应假设( )A .a ∥bB .a 与b 垂直C .a 与b 不一定平行D .a 与b 相交8.点A(2,-5)关于x 轴对称的点的坐标是( )A .(-2,-5)B .(-2,5)C .(2,5)D .(-5,2)9.如图,△ABC 的周长为32,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =12,则PQ 的长为( )A .2B .3C .4D .510.下列说法中,正确说法的个数有 ( )①角是轴对称图形,对称轴是角的平分线; ②等腰三角形至少有1条对称轴,至多3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对应点的连线被对称轴垂直平分.A .1个B .2个C .3个D .4个11.已知点A 的坐标是()a b,a b +-,那么点A 关于x 轴对称的点的坐标为________,点A 关于y 轴对称的点的坐标为________,点A 关于原点对称的点为________.12.已知,如图,在△ABC 中,BE 平分∠ABC ,过点E 作DE ∥BC 交AB 于点D ,若AE =3cm ,△ADE 的周长为10cm ,则AB =______cm .13.如图所示,是一个外轮廓为长方形的机器零件平面示意图,根据图中标出的尺寸(单位:mm )则两圆孔中心A 和B 的距离是__________mm .14.等腰三角形的一个角是70°,则它的底角是_____.15.如图所示,在△ABC 中,AB =AC ,∠BAD =24o ,AD =AE ,则∠EDC =_____.16.在平面直角坐标系xOy 中,已知点(2,2)P ,点Q 在y 轴上,PQO 是等腰三角形,则满足条件的点Q 共有______个.17.已知等边三角形的高为23,则它的边长为__________________.18.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=a ,CE=b .则两条凳子的高度之和为___19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形a ,b ,c ,d ,e ,f 的面积和为32,则最大的正方形ABCD 的边长为 .20.已知,在Rt△ABC 中,∠C=90°,AB=5,BC=3,则cos A =______.21.已知:如图所示,在中,BA=BC,,AD是BC边上的高,E是AD上一点,ED=CD,连结EC.求证:EA=EC.22.如图,在等腰直角△ABC中,∠ACB=90 点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K 是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.23.如图1,D是等边△ABC外一点,且AD=AC,连接BD,∠CAD的角平分交BD 于E.(1)求证:∠ABD=∠D;(2)求∠AEB的度数;(3)△ABC 的中线AF交BD于G(如图2),若BG=DE,求AFDE的值.24.如图,在△ABC中,∠C=90°,D为BC上一点,且DE⊥AB于E,AC=AE.求证:AD平分∠BAC.25.按要求分别写出各对应点的坐标:26.如图,,,,求证:.27.如图,画∠AOB=90°,并画∠AOB的平分线OC.(1)将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠AOB 的两边分别垂直,垂足为E、F(如图1).则PE_____PF(填“>”、“<”、“=”)(2)把三角尺绕着点P旋转(如图2),PE与PF相等吗?试猜想PE、PF的大小关系,并说明理由.(3)在(2)的条件下,过点P作直线GH⊥OC,分别交OA、OB于点G、H,如图3 .①图中全等三角形有___________对(不添加辅助线)②猜想GE2、FH2、EF2之间的关系,并证明你的猜想.28.如图,、为相交成度角的两条公路,在上距点米有一所小学,拖拉机沿方向以每小时千米的速度行驶,在小学周围米范围内会受到拖拉机噪音的影响.试问小学是否会受到拖拉机噪音的影响?若受到影响,影响时间有多长?参考答案1.D【解析】试题分析:根据勾股定理的逆定理判定: 2221.52 2.5+=,符合勾股定理的逆定理,故是直角三角形;根据比值并结合勾股定理的逆定理,因为a :b :c=3:4:5,所以设a=3x ,b=4x ,c=5x ,则()()()222345x x x +=,故为直角三角形; 根据三角形的内角和为180°,因为∠A+∠B=∠C ,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;根据角的比值求出各角的度数,因为∠A :∠B :∠C=3:4:5,所以设∠A=3x ,则∠B=4x ,∠C=5x ,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.故选D .考点:1.勾股定理的逆定理,2.直角三角形2.C【解析】【分析】由在△ABC 中,AD=AC= BD ,∠B=25°,根据等腰三角形的性质,即可求得∠ADC 的度数,接着求得∠C 的度数,然后根据三角形内角和定理可得∠DAC 的度数.【详解】∵AD=BD ,∴∠BAD=∠B=25°,∴∠ADC=∠B+∠BAD=25°+25°=50°,∵AD=AC ,∴∠C=∠ADC=50°,∴∠DAC=180°-∠ADC -∠C=180°-50°-50°=80°,故选:C .【点睛】此题考查了等腰三角形的性质,三角形外角的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.3.A【解析】【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【详解】解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC 不是直角三角形;B、由条件可得到a2+c2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;C、由条件∠A-∠B=∠C,且∠A+∠B+∠C=180°,可求得∠A=90°,故△ABC是直角三角形;D、因为52+122=132符合勾股定理的逆定理,故△ABC是直角三角形;故选A.【点睛】本题考查勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.B【解析】【分析】首先画出圆柱的侧面展开图,根据高BC=6cm,PC=23BC,求出PC=23×6=4cm,在Rt△ACP中,根据勾股定理求出AP的长.【详解】侧面展开图如图所示,∵圆柱的底面周长为6cm,∴AC=3cm,∵PC=23BC ∴PC=23×6=4cm , 在Rt △ACP 中,AP 2=AC 2+CP 2,∴AP=2234+=5.故选:B .【点睛】此题主要考查了平面展开图,以及勾股定理的应用,做题的关键是画出圆柱的侧面展开图. 5.A【解析】【分析】连接AD ,由作图可知,AE 为BD 的垂直平分线,DG=CG ,AB=AD=AG ,设∠C=x ,进而得到22180ADB ADG CDG x x x ∠+∠+∠=++=︒,求出x 的值后再根据直角三角形的两锐角互余即可得解.【详解】解:如图,连接AD ,由作图可知,AE 为BD 的垂直平分线,DG=CG ,AB=AD=AG ,设∠C=x ,则∠CDG=x ,∠AGD=2x ,∴∠ADG=∠AGD=2x ,∵2B C ∠=∠,∴2B x ∠=,∴2ADB x ∠=,∴22180ADB ADG CDG x x x ∠+∠+∠=++=︒,∴36x =︒,∴903654FAC ∠=︒-︒=︒,故选A.【点睛】本题考查等腰三角形的性质,三角形外角的性质,基本作图等知识,准确识别图形是解题的关键.6.B【解析】【分析】根据三边长判断三角形是否为直角三角形,只需满足勾股定理逆定理222+=a b c 即可.【详解】A 、222335+≠,故A 选项错误;B 、22268=10+,故B 选项正确;C 、22272025+≠,故C 选项错误;D 、22261213+≠,故D 选项错误;故答案为:B.【点睛】本题考查勾股定理逆定理的应用.若三角形的三边a 、b 、c 满足222+=a b c ,则这个三角形为直角三角形.7.D【解析】试题分析:根据反证法的步骤,直接得出即可.解:∵用反证法证明“若a ⊥c ,b ⊥c ,则a ∥b”,∴第一步应假设:若a ⊥c ,b ⊥c ,则a 、b 相交.故选:D .点评:此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.8.C【解析】【分析】根据直角坐标系中点的对称原则,关于x轴对称,横坐标不变,纵坐标变为它的相反数. 【详解】根据题意点A关于x轴对称,则横坐标不变,纵坐标变为相反数.所以可得A点关于x轴对称的点的坐标是(2,5),故选C.【点睛】本题主要考查直角坐标系中点的对称问题,这是直角坐标中的重点知识,必须熟练掌握记忆. 9.C【解析】【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为32,及BC=12,可得DE=8,利用中位线定理可求出PQ.【详解】∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32−12=20,∴DE=BE+CD−BC=8,∴PQ=12DE=4.故选:C. 【点睛】本题考查等腰三角形的判定与性质和三角形中位线定理,解题的关键是熟练掌握等腰三角形的判定与性质和三角形中位线定理.10.C【解析】①角是轴对称图形,对称轴是角的平分线所在的直线,而非角平分线,①错误;②等腰三角形至少有1条对称轴,至多有3条对称轴,等边三角形有三条对称轴,②正确;③关于某直线对称的两个三角形一定可以完全重合,所以这两个三角形一定全等,③正确;④两图形关于某直线对称,对应点的连线被对称轴垂直平分,④正确;综上有②③④说法正确.故选C .11.()a b,b a +- ()a b,a b --- ()a b,b a ---【解析】【分析】分别利用关于x 轴,y 轴以及关于原点对称点的性质得出答案.【详解】∵点A 的坐标是(a+b ,a-b ),∴点A 关于x 轴对称的点的坐标为:(a+b ,b-a ),点A 关于y 轴对称的点的坐标为:(-a-b ,a-b ),点A 关于原点对称的点为:(-a-b ,b-a ).故答案为:(a+b ,b-a ),(-a-b ,a-b ),(-a-b ,b-a ).【点睛】此题主要考查了关于x 轴、y 轴以及关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.12.7【解析】∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∵DE ∥BC ,∴∠DEB=∠CBE ,∴∠ABE=∠DEB ,∴BD=DE ,∵△ADE 的周长为10cm ,AE=3cm ,∴AD+DE=AD+BD=AB=10-3=7cm ,故答案是:7.【点睛】运用了等腰三角形的判定与性质,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定和性质是解题的关键.13.100【解析】【分析】先根据图示得出AC 及BC 的长,再由勾股定理即可得出结论.【详解】∵由图可知,()1206060AC mm =-=,()1406080BC mm =-=,∴()100AB mm ===,∴两圆孔中心A 和B 的距离是100mm .故答案为:100.【点睛】本题考查了勾股定理的应用,熟记勾股定理是解答此题的关键.14.55°或70°.【解析】【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°; 若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°. 故答案为55°或70°. 【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.15.120【解析】分析:可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.解答:解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+24,解得x=12,所以∠EDC的度数是12°.故答案是:12°.点评:本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.16.4.【解析】【分析】根据题意,画出图形,由等腰三角形的判定找出满足条件的Q点即可.【详解】解:如上图:满足条件的点Q共有(0,2)(0,2)(0,2)(0,4)共4个符条件的点.故答案为4.【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决特殊的问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.17.4【解析】【分析】根据等边三角形的性质可得∠B =60°,∠BAD =30°,BD =x ,根据30°角所对直角边等于斜边的一半,得到AB =2x .在Rt △ABD 中,根据勾股定理即可求出x 的值,进而得出结论.【详解】如图,∵△ABC 是等边三角形,∴∠B =60°,AB =BC =AC .∵AD ⊥BC ,∴∠ADB =90°,∴∠BAD =30°.设BD =x ,则AB =2x ,∴AD =2222(2)323AB BD x x x -=-==,∴x =2,∴AB =2x =4.故答案为:4.【点睛】本题考查了等边三角形的性质,勾股定理、含30°角的直角三角形的性质.掌握含30°角的直角三角形的性质是解答本题的关键.18.a+b【解析】【分析】根据等腰三角形的性质结合全等三角形的判定方法得出即可.【详解】由题意可得:∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,则∠DAC=∠BCE ,在△ACD 和△CBE 中,CDA CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),故DC=BE=a ,AD=CE=b ,则两条凳子的高度之和为:a+b .故答案为a+b .【点睛】本题考查了全等三角形的判定与性质,得出△ACD ≌△CBE 是解题的关键.19.4.【解析】试题分析:∵所有的四边形都是正方形,所有的三角形都是直角三角形,∴a+b=c ,e+f=d ,c+d=S 正方形ABCD ,∵a+b+c+d+e+f=32,即2(c+d )=32,解得c+d=16,∴S 正方形ABCD =16,∴正方形ABCD 的边长为4.考点:勾股定理.20.45【解析】由勾股定理得2222534AC AB BC =-=- .4cos 5AC A AB == . 21.见解析.【解析】【分析】由条件可求得∠BAC =∠BCA =67.5°,且∠ECD =∠DEC =45°,求出∠AEC =135°,可得∠ACE =∠EAC =22.5°,可证得结论.【详解】证明:∵BA =BC ,∠ABC =45°,∴∠BCA =∠BAC =×135°=67.5°,又∵AD ⊥BC ,∴∠ADC =90°,∵ED =CD ,∴∠ECD =45°,∴∠ACE =67.5°−45°=22.5°,∵∠AEC =∠EDC +∠ECD =135°,∴∠EAC =180°−22.5°−135°=22.5°,∴∠ACE =∠EAC ,∴EA =EC .【点睛】本题主要考查等腰三角形的性质,由条件分别计算出∠ACE 和∠EAC 的度数是解题的关键. 22.(1)见解析;(2)见解析;(3)BN=AE+GN ,见解析.【解析】【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ ,求得∠APQ=∠Q ,求得∠MFN=∠Q ,同理,∠NMF=∠APQ ,等量代换得到∠MFN=∠FMN ,于是得到结论;(3)连接CE ,根据线段垂直平分线的性质得到AP=AQ ,求得∠PAC=∠QAC ,得到∠CAQ=∠QBD ,根据全等三角形的性质得到CP=CF ,求得AM=CF ,得到AE=BE ,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【详解】(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,∵∠MFN=∠BFC,∴∠MFN=∠Q,同理,∠NMF=∠APQ,∴∠MFN=∠FMN,∴NM=NF;(3)连接CE,∵AC⊥PQ,PC=CQ,∴AP=AQ,∴∠PAC=∠QAC,∵BD⊥AQ,∴∠DBQ+∠Q=90°,∵∠Q+∠CAQ=90°,∴∠CAQ=∠QBD,∴∠PAC=∠FBC,∵AC=BC,∠ACP=∠BCF,∴△APC≌△BFC(AAS),∴CP=CF,∵AM=CP,∴AM=CF,∵∠CAB=∠CBA=45°,∴∠EAB=∠EBA,∴AE=BE,∵AC=BC,∴直线CE垂直平分AB,∴∠ECB=∠ECA=45°,∴∠GAM=∠ECF=45°,∵∠AMG=∠CFE,∴△AGM≌△CEF(ASA),∴GM=EF,∵BN=BE+EF+FN=AE+GM+MN,∴BN=AE+GN.【点睛】本题考查了三角形的综合题,全等三角形的判定和性质,等腰直角三角形的性质,线段垂直平分线的判定和性质,正确的识别图形是解题的关键.23.(1)见解析;(2)60°;(3)3 2【解析】【分析】(1)利用等边三角形的性质可得AB=AC,又因为AD=AC已知,所以AB=AD,进而得到本题答案;(2) 设∠3=∠D=x°,∠1=∠2=y°,利用等边三角形的性质以及三角形内角和定理得出∠3+∠D+∠BAD=180°,进而得出答案;(3)首先得出△ABE ≌△ADG ,进而得出∠4=∠AEB=60°,进而求出DE=BG=2GF, AG= BG=2GF, AF=AG+GF=3FG ,即可得出答案.【详解】解:(1)∵AB=AC ,AD=AC ,∴AB=AD ,∴∠3=∠D (即∠ABD=∠D )(2)∵AE 平分∠CAD ,∴∠1=∠2,∵△ABC 是等边三角形,∴∠BAC=60°,设∠3=∠D=x°,∠1=∠2=y°,∵∠3+∠D+∠BAD=180°,∴x +x + 60° +2y =180°,∴x +y =60°,∴∠AEB=∠1+∠D = x +y = 60°;(3)∵BG=DE ,∴BE=DG ,在△ABE 和△ADG 中,3AB AD D BE DG =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG (SAS )∴∠4=∠AEB=60°∵△ABC 是等边三角形,F 是BC 中点,∴∠AFB=90°,∠7=30°,∵∠6=90°﹣∠5=30°,∴DE=BG=2GF ,∵∠3=60°﹣∠6=30°=∠7, ∴AG=BG=2GF ,∴AF=AG+GF=3FG ,∴AF 3GF 3==DE 2GF 2. 【点睛】此题主要考查了等边三角形的性质以及全等三角形的判定与性质,将AF ,DE 用FG 表示得出是解题关键.24.见解析【解析】试题分析:证明Rt △ACD ≌Rt △AED ,利用全等三角形的性质即可得.试题解析:∵DE ⊥AB ,∴∠AED=90°,在Rt △ACD 和Rt △AED 中,AD AD AC AE =⎧⎨=⎩, ∴Rt △ACD ≌Rt △AED (HL ),∴∠CAD=∠EAD ,即AD 平分∠BAC.25.表格见解析【解析】试题分析:两点关于x 轴对称:横坐标不变,纵坐标互为相反数;两点关于y 轴对称,横坐标互为相反数,纵坐标不变.试题解析: 已知点 A(2,4) B(-1,5) C(-3,-7) D(6,-8) E(9,0) F(0,-2)关于y轴的对称点(2,4)A'-()1,5B '(37)C'-,()6,8D'--()9,0E'-(02)F'-,关于x轴的对称点(2,4)A''-()1,5B''--(37)C-'',()6,8D()9,0E''(02)F'',点睛:两点关于x轴对称:横坐标不变,纵坐标互为相反数;两点关于y轴对称,横坐标互为相反数,纵坐标不变.26.见解析【解析】【分析】用,证明根据全等三角形的性质即可得到.【详解】证明:∵,,∴,在和中,,∴,∴.【点睛】考查全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键. 27.(1)=;(2)3;(3)GE2+FH2=EF2.【解析】【分析】(1)根据角平分线的性质定理证明;(2)证明△MPE≌△NPF,根据全等三角形的性质证明结论;(3)①根据等腰直角三角形的性质得到OP=PG=PH,证明△GPE≌△OPF(ASA),△EPO≌△FPH,△GPO≌△OPH,得到答案;②根据勾股定理,全等三角形的性质解答. 【详解】解:(1)∵OC平分∠AOB,PE⊥OA,PF⊥OB,∴PE=PF,故答案为:=;(2)PE=PF,理由如下:∵∠MPN=90°,∠EPF=90°,∴∠MPE=∠NPF,由(1)得,PM=PN,在△MPE和△NPF中,∠MPE=∠NPF, PM=PN, ∠PME=∠PNF ,∴△MPE≌△NPF(ASA),∴PE=PF;(3)①∵OC平分∠AOB,∴∠AOC=∠BOC=45°,∵GH⊥OC,∴∠OGH=∠OHG=45°,∴OP=PG=PH,∵∠GPO=90°,∠EPF=90°,∴∠GPE=∠OPF,在△GPE和△OPF中,∠PGE=∠POF, PG=PO, ∠GPE=∠OPF,∴△GPE≌△OPF(ASA),同理,△EPO≌△FPH,△GPO≌△OPH,故答案为:3;②GE2+FH2=EF2,理由如下:∵△GPE≌△OPF,∴GE=OF,∵△EPO≌△FPH,∴FH=OE,在Rt△EOF中,OF2+OE2=EF2,∴GE2+FH2=EF2.【点睛】本题主要考查的是角平分线的性质,勾股定理,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.28.受影响,受影响的时间为秒.【解析】【分析】要判断是否会受影响,只需求得点A到ON的最小距离AD,和100比较,即可判断;如果受影响,则在AD的两侧一定存在两点B,C,使AB=AC=100;根据勾股定理即可求得受影响的路程,进一步求得受影响的时间.【详解】解:作AD⊥ON于D.根据30°所对的直角边是斜边的一半,得AD=OA=80<100,所以受影响;设在点D的两侧各有一点B,C.且AB=AC=100,根据勾股定理得BD=CD=60,则BC=120.∵18千米/时=5米/秒,∴受影响的时间=120÷5=24(秒).【点睛】本题要根据点到直线的最短距离,进行分析判断是否受噪音的影响;根据勾股定理求得受噪音影响的路程,然后根据时间=路程÷速度进行计算.注意:18千米/时=5米/秒.。

第2章 特殊三角形 浙教版八年级上册数学测试卷(含答案)

浙教版八年级上册数学第二章特殊三角形一、选择题1.下列关于体育运动的图标是轴对称图形的为( )A.B.C.D.2.已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是( )A.∠A=∠C-∠B B.a2=b2-c2C.a:b:c=2:3:4D.a=34,b=54,c=13.等腰三角形的顶角是50°,则这个三角形的底角的大小是( )A.50°B.65°或50°C.65°D.80°4.在锐角△ABC中,AB=15,AC=13,高AD=12,则BC的长度为( )A.16B.15C.14D.135.下列命题的逆命题是真命题的是( )A.直角都相等B.全等三角形的对应角相等C.在Rt△ABC中,30°角所对的边是斜边的一半D.在△ABC中,a、b、c为三角形三边的长,若a2=(b+c)(b―c),则△ABC是直角三角形6.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于( )A.5B.4C.3D.27.如图,在△ABC中,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CD的长为( )A .1cmB .43cmC .53cmD .2cm8.《九章算术》中记录了这样一则“折竹抵地”问题:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)如果我们假设折断后的竹子高度为x 尺,根据题意,可列方程为( )A .x 2+42=102B .(10―x)2+42=102C .(10―x)2+42=x 2D .x 2+42=(10―x)29.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于 12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A .1B .2C .3D .410.如图,在△ABC 中,AB =2,∠B =60°,∠A =45°,点D 为BC 上一点,点P 、Q 分别是点D 关于AB 、AC 的对称点,则PQ 的最小值是( )A.6B.8C.4D.2二、填空题11.在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为 .12.命题“两直线平行,同位角相等.”的逆命题是 .13.小明同学将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件是 .14.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC= °.15.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M,P是直线MN上一动点,点H 为BC中点.若BC=5,△ABC的面积是30,则PB+PH的最小值为 .16.如图,等边△ABC中,BF是AC边上中线,点D为BF上一动点,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,则∠CFE的大小是 .三、解答题17.如图,AB⊥BC于点B,AD⊥DC于点D,BC=DC.求证:∠1=∠2.18.如图,在△ABC中,AD⊥BC于D,AC=5,BC=9,AD=4,求AB的长.19.如图,△ABC中,CA=CB,D是AB的中点,∠B=42°,求∠ACD的度数.20.如图所示,若MP和NQ 分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ 的度数.21.如图,在△ABC中,AB=AC=5,BC=6,点D在AC边上,BD=AB.(1)求△ABC的面积;(2)求AD的长.22.(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE (2)如图2,在(1)问的条件下,点H在BA的延长线上,连接CH交BD延长线于点F,.若BF=BC,求证:EH=EC.23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动,设点P的运动时间为t,连接AP.(1)当t=3秒时,求AP的长度;(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E,连接PD,在点P的运动过程中,当PD平分∠APC时,直接写出t的值.答案解析部分1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】C6.【答案】B7.【答案】B8.【答案】D9.【答案】D10.【答案】A11.【答案】2612.【答案】同位角相等,两直线平行13.【答案】∠A=60°(答案不唯一)14.【答案】3015.【答案】1216.【答案】90°17.【答案】证明:∵AB⊥BC,AD⊥DC∴∠B=∠D=90°又∵在Rt△ABC和Rt△ADC中AC=AC BC=DC,∴Rt△ABC≌Rt△ADC(HL).∴∠1=∠2.18.【答案】21319.【答案】48°20.【答案】(1)12;(2)30°.21.【答案】(1)解:过点A作AM⊥BC于点M,如图所示:∵AB =AC ,AM ⊥BC ,∴M 是BC 的中点,∵AB =5,BC =6,∴BM =CM =3,∴AM =AB 2―BM 2=52―32=4,∴△ABC 的面积=12BC•AM =12×6×4=12;(2)解:过点B 作BN ⊥AC 于点N ,如图所示:∵BD =AB ,∴AN =DN =12AD ,∵△ABC 的面积=12AC•BN =12×5•BN =12;∴BN =245,AN =AB 2―BN 2=75∴AD =2AN =145.22.【答案】(1)证明:∵△ABC 是等边三角形,∴AB=BC=AC ,∠A=∠ABC=∠BCA.∴在△AEC 和△CDB 中AE =CD ∠EAC =∠DCB AC =CB∴△AEC ≌△CDB (SAS )∴BD=CE.(2)证明:如图:由(1)△AEC≌△CDB,∴∠ACE=∠CBD.∴60°-∠ACE=60°-∠CBD,即∠ABD=∠ECB.∵BC=CF,∴∠BCF=∠BFC,又∵∠BCF=∠ECB+∠ECH,∠BFC=∠ABD+∠H,∴∠ECH=∠H,∴EH=EC.23.【答案】(1)241(2)当△ABP为等腰三角形时,t的值为45、16、5;(3)当t的值为5或11时,PD平分∠APC.。

初中科学浙教版八年级上册第二章(含答案)

初中科学浙教版八年级上册第二章(含答案)一、选择题1.下列词语中描述天气的是()A.和风细雨B.终年高温C.秋高气爽D.四季如春2.下列对白守词的解读不科学的是()A.早穿皮袄午穿纱,围着火炉吃西瓜-------西北气温年较差较大B.江南二月试罗衣,春尽燕山雪尚飞-------纬度位置对气候的影响C.月江南花满枝,他乡寒食远堪悲----------描述气候D.羌笛何须怨杨柳,春风不度玉门关-------夏季风无法到达边塞3.最近几年,大家热衷冬季去哈尔滨“雪乡”旅行。

某同学从海南出发,途经浙江、北京,到达哈尔滨,一路上他感到气温有很大的变化,产生这种区域差异的主要原因是()A.北方和南方生活习惯不同B.各地的海拔高度不同C.各地距离海洋的远近不同D.各地所处的纬度不同4.如图,甲装置可验证气体流速与压强的关系,其中两端开口的U形管中有适量的水,U形管的右端通过橡皮管与玻璃管侧壁管口相连通。

小文用电吹风低速挡向玻璃管中吹风时,U形管液面高度差如图乙所示,若改为高速挡,则U形管中的变化可能是()5.台风是一种灾害性天气,“娜基莉”“夏浪”双台风来袭前,我市非常重视防台工作,因为台风会带来()A.寒潮B.狂风暴雨C.地震D.沙尘暴6.成年人全身表面积大约为2米2,全身所受到的大气压力约为20万牛顿,则下列说法中正确的是()A.人已经被压习惯了,人结实所以不在乎B.计算错了,哪能有这么大,真的是这么大一定会把人压扁了C.因为上下、左右、前后压力对称,所以人受到的总压力为零,感觉不到D.因为人体内部也有气压,所以人体里外压强可以互相平衡7.利用托里拆利实验测量大气的压强时,能肯定管内确实漏进了空气的表象是()A.管内水银面的高度小于76cmB.使管倾斜时,管内水银柱的长度增加C.无论怎样使管倾斜,水银都不能充满全管D.将管从水银槽内轻轻上提,管内水银柱的高度不变8.用高压锅煮粥,熄火后用冷水将锅冷却,拿去限压阀后打开锅盖,可以看到锅内的粥仍在沸腾.普通铝锅却看不到这样的现象.对此,下列说法中正确的是()A.熄火后,锅内温度迅速降到100℃以下,但由于打开锅盖后气压降低,所以重新沸腾B.熄火时,锅内温度仍然高于100℃,即使不冷却、不拿去限压阀,粥也在沸腾C.熄火时,锅内温度仍然高于100℃,冷却后锅内气压比原来降低,所以重新沸腾D.粥的流动性差,不易降温.熄火后即使不浇冷水、不拿去限压阀,粥也要沸腾较长时间9. 5月8日9时l7分,年轻的藏族女火炬手次仁旺姆在地球之巅——珠穆朗玛峰顶将北京奥运会的“祥云”火炬高高举起。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档