简单介绍流体的连续性方程
vof 连续方程

vof 连续方程
VOF(Volume of Fluid)方法是一种常用的流体模拟方法,用于模拟多相流体的运动和相界面的变化。
在VOF方法中,连续方程是其中一个关键的方程,用于描述流体的质量守恒。
连续方程是基于质量守恒原理,描述了流体在空间和时间上的连续性,即质量在流体中的守恒。
对于单相流体,连续方程可以表示为:
∂ρ/∂t + ∇·(ρu) = 0
其中,∂ρ/∂t 是流体密度ρ对时间的变化率,∇·表示散度算子,用于求取速度矢量u的散度,ρu 是流体密度ρ和速度矢量u的乘积。
对于多相流体中的VOF方法,连续方程的形式有所变化,用于描述流体的分区和界面的变化。
连续方程可以表示为:∂(φρ)/∂t + ∇·(φρu) = 0
其中,φ 是用于表示单元格中的流体体积分数的变量,用于区别不同的相(如空气和水),(φρ) 是流体体积分数φ和密度ρ的乘积。
连续方程的求解可以采用数值方法,如有限差分、有限元、体积法等。
在VOF方法中,连续方程通常与其他方程(如动量方程、相间力平衡方程等)一起求解,以模拟多相流体的运动和相界面的变化。
连续方程的求解将提供流体体积分数φ的分布,从而确定不同相的位置和界面的移动。
流体力学连续性方程和恒定总流动量方程

K1' 2'
dt时段动量变化
K K1'2' K12
恒定总流的动量方程
1' 1 2 2'
1' 1
2
2'
K 1'-2' K 2-2' K 1'-2
dt 时间内水流动量的变化
K 1-2 K 1-1' K 1'-2
dx dx , y , z , t u x x , y , z , t dydzdt 2 2
u dx dx ( x, y , z , t ) u x ( x, y, z , t ) x dydzdt x 2 x 2 u dx dx ux x dydzdt x 2 x 2
FRz arctg FRx
恒定总流的动量方程的应用
管轴水平放置 1 1
重力与水流方 向垂直,可忽 略。
V1 FP1=p1A1
FRy FR FRx V2
2
沿x方向列动量方程:
2
y
x
FP2=p2A· 2
沿y方向列动量方程为:
p1 A1 FRx qv (0 1V1 )
FRy p2 A2 qv ( 2V2 0) FRy p2 A2 2 qvV2
作用于控制体内流体上所有外力的矢量和。外力包
括:控制体上下游断面1、2上的流体总压力P1、P2、重力G 和总流边壁对控制体内流体的作用力R。其中只有重力为质 量力,其余均为表面力。即
F P1 P 2 G R
《化工原理》课件—01流体流动(连续性方程+能量衡算)

1 2
u12
p1
Ws
gz2
1 2
u22
p2
W f ,12
gz1
1 2
u12
p1
gz2
1 2
u22
p2
1、计算输送流体所需的功Ws或功率P; 2、计算流体流速、压强、所处位置高度; 3、分析机械能之间相互转化的规律等。
应用举例
1、确定输送设备的功率 P
用泵将碱液池的碱液输送至吸收塔顶,经喷 咀喷出,泵的进口管为108×4.5mm的钢管, 流速为1.5m/s, 出口管为76×2.5mm,储 液池碱液深度1.5m,池底至喷咀的垂直距 离20m,流动阻力损失30J/kg,喷咀处表压 0的.3效k率gf为/c6m52%,。碱液密度ρ=1100kg/m3,泵
p2v2
p2
p2
pdv d( pv) vdp ( pv) vdp
v1
p1v1
p1
p1
即:
Q
Ws
U
gZ
1 2
u2
( pv)
U Q W
p2
Q (( pv) vdp W f 12 )
p1
两式合并,有:
Q Ws Q (( pv)
p2
vdp
p1
W
f
12 )
gZ
1 2
u2
(
pv)
gz1
1 2
u12
p1
gz2
1 2
u22
p2
gz为单位质量流体所具有的位能; p/ρ为单位质量流体所具有的静压能;
u2/2为单位质量流体所具有的动能。
gz1
1 2
u12
p1
gz2
1 2
流体力学 质量守恒方程(连续性方程)

三、总流的连续性方程
恒定、均匀、不可压缩流体
方程的推导依据是: 质量守恒及恒定流的特性。
1、方程:
连续性方程 是不涉及任 何作用力的
方程。
取控制体,考虑到条件 1)在恒定流条件下,流管的形状与位置不随时间改变; 2)不可能有流体经流管侧面流进或流出; 3)流体是连续介质,元流内部不存在空隙; 4)忽略质量转换成能量的可能。 根据质量守恒原理
所涉及的两种概念: (1)系统;(2)控制体。
一、系统、控制体 1、系统 ——由确定的流体质点组成的流体团。
即一团确定的流体质点的集合。 系统边界
——把系统和外界分开的真实或假想的界面。
(1)系统边界的特点: 1> 系统的体积边界面形状、大小随时间改变; 2> 边界上受外力作用; 3> 在系统边界面上无质量交换; 4> 边界上可以有能量交换。
(1)有固定边界域的总流连续方程式
物理意义:流入控制体内的净质量流量与控制体内由于 密度变化在单位时间里所增加的质量相等。 适用范围:恒定流、非恒定流、可压缩、不可压缩流体、 理想流体、实际流体。
(2)恒定流的总流连续性方程
对于恒定流,有 ,则上式为 适用范围:固定边界内所有恒定流,包括可压缩或不可 压缩流体、理想流体、实际流体。
t x y z
(2)恒定不可压缩流体运动微分方程:
u x u y u z 0
x
y
z
2、简单分析:
M y
u y dxdzdt (u y
u y
y
dy)dxdzdt
u y
第3章流体力学连续性方程微分形式

X方向
( ux ) dxdydz x
同理可得:
在dt时间内因密度变化而减少的 质量为:
3
y方向:
z方向:
( u y ) y dxdydz ( u z ) dxdydz z
dxdydz ( ) dxdydz t t dxdydz
0 t
适用范围:理想、实际、可压缩、不可压缩的恒定流。
(2)不可压缩流体的连续性微分方程
当为不可压缩流时
u x u y u z 0 x y z
Const
物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量) , 与流出的流体体积(质量)之差等于零。 适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。
1
第三章 流体动力学基础
第三节 流体动力学基本方程式
一、连续性微分方程 二、理想流体运动微分方程
三、粘性流体的运动微分方程
第四节 欧拉运动微分方程的积分
一、在势流条件下的积分
二、沿流线的积分
第三节 流体动力学基本方程式
一、连续性微分方程
2
在流场内取一微元六面体(如图),边长为dx,dy,dz,中心点O流速为 ( ux,uy,uz ) D' z C' ux dx ux dx A' dz u B' u z u x x 2 x x 2 o’ M uy ux N 以x轴方向为例: C D ux dx 1 dx dy u u 左表面流速 M A x 2 x B o u x x 1 右表面流速 u N u x dx 2 x y ∴ 单位时间内x方向流出流进的质量流量差: ( u x ) ( u x ) 1 1 M M [ u x dx]dydz [ u x dx]dydz 右 左 2 x 2 x ( u x ) x dxdydz
流体力学3-3连续性方程

dxdydz
M x
同理可得:
( ux ) x ( u y ) y ( uz ) z
dxdydz dxdydz dxdydz
M y M z
质量守恒定律:单位时间内流出与流入六面体的流体质量差之总
和应 等于六面体内因密度变化而减少的质量
M x M y M z [
t
( ux ) x
( u y ) y
( uz ) z
]dxdydz dxdydz
t
流体的连续性微分方程的一般形式:
( u x ) x
( u y ) y
( u z ) z
0
物理意义:作为水力学三大方程之一,体现了运动与空 间的关系 适用范围:理想流体或实际流体;恒定流或非恒定流; 可压缩流体或不可压 缩流体。
第三节 连续性方程
一、连续性微分方程
在流场内取一微元六面体如图,边长为dx,dy,dz,中心点O’流速为 ( ux,uy,uz ) D' z C' 以x轴方向为例: 左表面流速 右表面流速
ux
1 u x 2 x
1 u x 2 x
u x dx x 2
A' M A o
dz o’ uy D dx
uz ux
B'
ux
N C
u x dx x 2
uM Байду номын сангаас x
dx
uN ux
dx
y
dy B
x
∴ 单位时间内x方向流出流进的质量流量差:
( ux ) x
( ux ) 1 ( ux ) M x M 右 M 左 [ u x 1 dx ] dydz [ u x 2 x 2 x dx]dydz
流体力学中的三大基本方程
dx
dt
p x
fx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
16
同理可得y,z方向上的:
dx
dt
x
t
x
x
x
y
x
y
z
x
z
1
p x
fx
dy
dt
y
t
x
y
x
y
y
y
z
y
z
1
p y
fy
dz
dt
z
t
x
z
x
y
z
y
z
z
z
1
p z
fz
17
向量形式:
dr
r f
1
gradp
dt
——理想流体欧拉运动微分方程
式中:
2x
z 2
)
y
t
x
y
x
y
y
y
z
y
z
fy
1
p y
( 2 y
x2
2 y
y 2
2 y )
z 2
19
z
t
x
z
x
y
z
y
z
z
z
fz
1
p z
( 2z
x 2
2z
y 2
2z )
z 2
1.
含有四个未知量(
,
x
y,完 z整, P的)方程组。
2. 描述了各种量间的依赖关系。
3. 通解、单值条件(几何条件、物理条件、边界条件、初始 条件)→特解。
流体力学中三大基本方程
( d t) d x d y d zd x d y d z d td x d y d z
t
t
单位时间内,微元体质量增量:
dtdxd/dyt dzdxdydz
t
t
(微团密度在单位时间内的变率及微团体积的乘积)
⑶根据连续性条件:
t x ( x ) y ( y) z ( z) 0
ax
dx
dt
x
t
x
x
x
y
x
y
z
x
z
ay
dy
dt
y
t
x
y
x
y
y
y
z
y
z
az
dz
dt
z
t
x
z
x
y
z
y
z
z
z
⑷代入牛顿第二定律求得运动方程:
得x方向上的运动微分方程:
d d txd x d y d z p xd x d y d z fx d x d y d z
单位体积流体的运动微分方程:
dx
dt
同理可得在单位时间内沿y,z方向流出 及 流入控制体的质
量差为
vy
d
x
d
yd和z
vz
dxdydz
y
z
故单位时间内流出及流入微元体流体质量总变化为:
x ( x) y ( y) z( z) dxdydz
⑵控制体内质量变化:
因控制体是固定的,质量变化是因密度变化引起的,dt时间内:
pxfx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
同理可得y,z方向上的:
流体力学三大方程公式及符号含义
流体力学是研究流体运动和力学的学科,涉及流体的运动规律、压力、密度等物理性质。
在流体力学的研究中,三大方程公式是非常重要的理论基础,它们分别是连续方程、动量方程和能量方程。
本文将对这三大方程公式及其符号含义进行详细介绍。
一、连续方程连续方程是描述流体连续性的重要方程,它表达了流体在运动过程中质点的连续性。
连续方程的数学表达式为:\[ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \]其中,符号和含义说明如下:1.1 ∂ρ/∂t:表示密度随时间的变化率,ρ为流体密度。
1.2 ∇·(ρv):表示流体质量流动率的散度,∇为Nabla算子,ρv为流体的质量流速矢量。
这一方程表明了在运动的流体中,质量是守恒的,即单位体积内的质量永远不会减少,这也是连续方程的基本原理。
二、动量方程动量方程描述了流体运动过程中动量的变化和传递,是流体力学中的核心方程之一。
其数学表达式为:\[ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \nabla \cdot \mathbf{\tau} + \mathbf{f} \]其中,符号和含义说明如下:2.1 ∂(ρv)/∂t:表示动量随时间的变化率。
2.2 ∇·(ρv⃗v):表示动量流动率的散度。
2.3 -∇p⃗:表示流体受到的压力梯度力。
2.4 ∇·τ⃗:表示应力张量的散度,τ为流体的粘性应力张量。
2.5 f⃗:表示单位体积内流体受到的外力。
动量方程描述了流体内部和外部力之间的平衡关系,它是研究流体运动规律和动力学行为的重要方程。
三、能量方程能量方程描述了流体在运动过程中的能量变化规律,包括内能、压力能和动能等能量形式。
流体流动03-(连续性方程能量衡算)精品PPT课件
中损失能量或损失压头的单位,选用相同基准的柏 努利方程。
例3 用泵将贮槽(通大气)中的稀碱液送到蒸发器中进 行浓缩,如附图 所示。泵的进口管为φ89×3.5mm的 钢管,碱液在进口管的流速为1.5m/s,泵的出口管为 φ76 × 2.5mm的钢管。贮槽中碱液的液面距蒸发器入 口处的垂直距离为7m,碱液经管路系统的能量损失 为40J/kg,蒸发器内碱液蒸发压力保持在 0.2kgf/cm2 (表压),碱液的密度为1100kg/m3。试计算所需的 外加能量。
ws
Vs
4
d2
u
11.55kg
/
s
Ne Wews 242.411.55 2799.72(J / s) 2.8kw
泵的功率为: N Ne 2.8 4.31kw
0.65
2、确定管内流体流量(或流速)
如图是生产中常见的利用设备位置的相对高差 (高位槽)来输送流体。若已知高差,可求得流 量或流速;反之,若要求达到某一流量或流速, 可求应有多少的高差。 例:已知 z1 -z2 =6.2m ∑hf1-2=58.8J/kg d为114×4mm 求:流量 ws (m3/h)
用柏努利方程式解题时的注意事项:
(4)压力 各物理量的单位应保持一致,柏努利方程式中的
压力p1与p2只能同时使用表压或绝对压力,不能混合 使用。
(5)流速 如果两个横截面积相差很大,则可取大截面处
的流速为零。
(6)外加能量
外加能量We在上游截面一侧,能量损失在下游截面 一侧。
外加能量We是对每kg流体而言的,若要计算的轴功 率,需将W乘以质量流量,再除以效率。
假设:管道两截面之间无流体漏损。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单介绍流体的连续性方程
流体的连续性方程是流体力学中的一种基本方程,也可称为流体
守恒方程,它可以用来描述流体运行时的总量不变。
这个方程是由著
名斯特古特定律推导出来,其本质是描述流体受速度、密度等性质变
化所受到的作用和守恒相关的质量,可以表示成称为流体的压力的
函数。
该方程式的积分可以用来确定流体的特殊性质,如流量、温度、密度等。
将连续性方程作为子方程与动量方程以及能量守恒方程配合,可以构成流体力学的完整的解析解。
流体的连续性方程的研究始于十九世纪,在当时是用来解释热液
体流动规律,主要是推出了牛顿流体力学。
牛顿流体力学发展成为具
有机构形式的流体力学学科,其子物理概念包括特殊状态、 sound speed 、 entropy 、 viscosity 、 thermal expansion 。
19世纪末,在维护物理准则范畴内,费米、洛伦兹等人提出了另一种基本概念,
即物质守恒定律,提出了流体的连续性方程来描述流体的守恒。
20世纪,斯托克的定律得到普遍的认可,这为研究流体的流动建立了
基本的模型,流体的连续性方程及其拓展就成为了流体力学的重要组
成部分。
在传热、流体的传质等工程实践中,这一守恒方程经常利用
积分性质求解流体的流动特性,其直接影响着数值模拟和计算机模拟
及工程设计。
总之,流体的连续性方程是流体力学守恒方程,用来描述流体质
量变化,它以斯特古特定律为基础,守恒关系的积分可以用来求解流
体的流动特性。
这是利用工程数学方法模拟流体运动的重要依据,也
是流体力学重要的技术要素。