运用圆锥曲线的定义法求轨迹方程教案
高二数学选修1-1 圆锥曲线及轨迹-苏教版 教案

高二数学选修1-1 圆锥曲线及轨迹-苏教版一、复习的目标、重点1、通过用平面截圆锥面,经历从具体情境中抽象出圆锥曲线的过程,掌握它的定义。
2、通过用平面截圆锥面,感受、了解双曲线、抛物线的定义。
3、理解圆锥曲线的统一定义4、理解曲线与方程的关系,掌握求轨迹方程的一般方法和步骤。
二、知识结构1、圆锥曲线的定义,并利用定义解决有关问题。
2、求轨迹方程并判断是什么曲线 三、基础训练1、设定点F 1(0,-3),F 2(0,3),动点P(x ,y )满足条件|PF 1|+|PF 2|=a (a >0),则动点P 的轨迹是 椭圆或线段或不存在2、已知A 、B 两地相距800m ,在A 地听到炮弹爆炸声比在B 地晚2s ,且声速为340m /s ,则炮弹爆炸点的所在曲线为 双曲线的一支3、如果M(x ,y )在运动过程中,总满足关系式10)3()3(2222=-++++y x y x ,则M 的轨迹是 椭圆4、若动圆与定圆(x -2)2+y 2=1外切,又与直线x +1=0相切,则动圆圆心的轨迹是 抛物线5、“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程y =x 2-”的 必要不充分 条件6、若P(2,-3)在曲线x 2-ay 2=1上,则a 的值为31四、典例选讲例1、若一个动点P(x ,y )到两个定点F 1(-1,0)、F 2(1,0)的距离之差的绝对值为定值a (0≤a ≤2),试探求点P 的轨迹。
解:当a =0时,|PF 1-PF 2|=0,从而PF 1=PF 2,所以点P 的轨迹为直线:x =0 当a =2时,|PF 1-PF 2|=2=F 1F 2,点P 的轨迹为两条射线:y =0(|x |≥1)当0<a <2时,|PF 1-PF 2|=a <F 1F 2,点P 的轨迹是以F 1、F 2为焦点,a 为实轴长的双曲线。
例2、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹。
新课标人教B版高中数学选修2-1第二章圆锥曲线与方程教案

第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程 2.1.2求曲线的轨迹方程一、教学目标(一)知识教学点使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.(二)能力训练点通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.(三)学科渗透点通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.二、教材分析1.重点:求动点的轨迹方程的常用技巧与方法.(解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)2.难点:作相关点法求动点的轨迹方法.(解决办法:先使学生了解相关点法的思路,再用例题进行讲解.)教具准备:与教材内容相关的资料。
教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.三、教学过程学生探究过程:(一)复习引入大家知道,平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R 或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,。
圆锥曲线与方程课件教案

第八章圆锥曲线的方程脑图一、第一定义【利用第一定义求轨迹】例1.(Ⅰ)若ABC∆的两个顶点坐标为()4,0A-,()4,0B,ABC∆的周长为18,则顶点C的轨迹方程为.(Ⅱ)设点Q是圆C:25)1(22=++yx上一动点,点()1,0A是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程.(Ⅲ)动圆M过定点(4,0)P-,且与圆C:22(4)16x y-+=相切,求动圆圆心M的轨迹方程.(Ⅳ)已知1F、2F分别为双曲线22221x ya b-=的左、右焦点,点P为右支上一点,过1F作12F PF∠的角平分线的垂线,垂足为M,求点M的轨迹.(Ⅴ)——见《直线和圆的方程脑图》例8(Ⅲ)(Ⅳ).【焦点三角形问题】例2.(Ⅰ)已知P是椭圆2214xy+=上一点,12F F、分别是椭圆的左、右焦点,且1260F PF∠=︒,则12F PF∆的面积是.(Ⅱ)双曲线221916x y-=的左、右焦点分别是12F F、,点P在双曲线上,且直线1PF、2PF倾斜角之差为3π,则12F PF∆的面积为.(Ⅲ)在椭圆2214520x y+=上求一点P,使它与两焦点12F F、的连线互相垂直.(Ⅳ)12F F、是椭圆22194x y+=的两个焦点,点P为其上一动点,当12F PF∠为钝角时,点P的横坐标的取值范围是.(Ⅴ)设12F F、是双曲线2214xy-=的两个焦点,点P在双曲线上,当12F PF∆的面积为1时,12PF PF⋅的值是.【利用第一定义求最值】例3.(Ⅰ)已知F是椭圆22195x y+=的左焦点,P是椭圆上一动点,(1,1)A为一定点,求PA PF+的最值.(Ⅱ)若P为双曲线2213xy-=的右支上一动点,F为双曲线右焦点,已知()3,1A,求P A P F+的最小值.二、第二定义【利用第二定义求轨迹】例4.(Ⅰ)已知动点(),M x y 满足|43|)2()1(22y x y x +=-+-,则点M 的轨迹是A .椭圆B .双曲线C .抛物线D .两条相交直线(Ⅱ)已知圆A :()2221x y ++=与定直线l :1x =,动圆M 和圆A 外切且与直线l 相切,求动圆的圆心M 的轨迹方程.(Ⅲ)已知圆的方程为224x y +=,动抛物线过点(1,0)A -、(1,0)B ,且以圆的切线为准线,求抛物线焦点的轨迹方程.(Ⅳ)——见《直线和圆的方程脑图》例8(Ⅱ)、例9(Ⅱ)(Ⅸ).【利用第二定义求最值】例5.(Ⅰ)已知F 是椭圆22195x y +=的左焦点,P 是椭圆上一动点,(1,1)A 为一定点,求32PA PF +的最小值.(Ⅱ)若P 为双曲线2213x y -=的右支上一动点,F 为双曲线右焦点,已知()3,1A ,求(1)PA 的最小值.(Ⅲ)若F 为抛物线x y 22=的焦点,点M 在抛物线上移动,)2,3(A ,求MF MA +的最小值.(Ⅳ)已知点P 是抛物线2y = 2x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是7,42⎛⎫⎪⎝⎭,则PA PM +的最小值是 A .211B .4C .29 D .5【焦半径公式】例6.(Ⅰ)已知点P 在椭圆()222210x ya b a b +=>>上,12F F 、为椭圆的左右焦点,求12PF PF ⋅的取值范围.(Ⅱ)双曲线222x y a -=的两个焦点分别为12F F 、,P 为双曲线上的任意一点,求证:1PF 、PO 、2PF 成等比数列.(Ⅲ)已知抛物线24y x =的一条焦点弦被焦点分成为m 、n 的两部分,求证:m n m n +=⋅.(Ⅳ)若双曲线()222210,0x y a b a b-=>>,在右支上有一点P ,且P 到左焦点1F 与到右焦点2F 的距离之比为4:3,求P 点的横坐标.(Ⅴ)在双曲线2211213y x -=的一支上有不同的三点()11,A x y 、()2,6B x ,()33,C x y 与焦点()0,5F 的距离成等差数列,求13y y +.三、标准方程【待定系数法求圆锥曲线方程】例7.(Ⅰ)已知椭圆焦点在x 轴上,焦距等于4,并且经过点(3,P ,求椭圆的标准方程.(Ⅱ)已知椭圆经过两点)2A-,()B -,求椭圆的标准方程.(Ⅲ)已知椭圆的长轴长是短轴长的2倍,且过点()2,6-,求椭圆的标准方程. (Ⅳ)双曲线2222mx my -=的一条准线是1y =,则m 的值为 .(Ⅴ)已知双曲线的右准线为4x =,右焦点为()10,0F ,离心率2e =,求双曲线方程.(Ⅵ)求与双曲线221916x y -=有共同的渐近线,且经过点(M -的双曲线方程. (Ⅶ)求以椭圆221133x y +=的焦点为焦点,以直线12y x =±为渐近线的双曲线的方程. (Ⅷ)k 为何值时,方程22121x y k k +=--表示①圆;②椭圆;③双曲线? (Ⅸ)抛物线()210y x a a=≠的焦点坐标是 .(Ⅹ)已知抛物线的准线为2y =,求抛物线的标准方程.(Ⅺ)已知抛物线的焦点在x 轴上,且()2,3A -到焦点的距离是5,求抛物线的标准方程.(Ⅻ)已知抛物线焦点在x 轴上且截直线210x y -+=【利用椭圆的参数方程求最值】例8.已知实数x 、y 满足2214x y +=,①求222u x y y =+-的取值范围;②求v x y =+的取值范围.四、几何性质【求离心率】例9.(Ⅰ)已知12F F 、为椭圆()222210x y a b a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴,且1260F MF ∠=︒,求离心率.(Ⅱ)椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b 是两个顶点,如果F 到直线AB(Ⅲ)椭圆()222210x y a b a b+=>>的两焦点为12F F 、,以12F F 、为边作正三角形,若椭圆恰好平分正三角形的两条边,则椭圆的离心率为 .(Ⅳ)已知双曲线的两条渐近线方程是34y x =±,求此双曲线的离心率.(Ⅴ)设双曲线()222210,0x y a b a b-=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率是 .(Ⅵ)已知12F F 、是椭圆的两个焦点,满足120MF MF ⋅=的点总在椭圆内部,求椭圆离心率的取值范围.(Ⅶ)已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 A .(]1,2B .()1,2C .[)2,+∞D .()2,+∞五、直线与圆锥曲线的位置关系【有一个公共点】例10.(Ⅰ)已知椭圆2288x y +=,在椭圆上求一点P ,使P 到直线l :40x y -+=的距离最小并求出最小值. (Ⅱ)求经过点1,22⎛⎫⎪⎝⎭且与双曲线2241x y -=仅有一个公共点的直线方程.【有两个不同交点】——韦达定理【弦长】例11.(Ⅰ)抛物线212y x =截直线21y x =+所得弦长等于.(Ⅱ)已知椭圆的中心在原点,焦点在坐标轴上,直线1y x =+与该椭圆相交于P 和Q ,且OP OQ ⊥,PQ =,求椭圆方程. 【弦中点】例12.(Ⅰ)已知椭圆2212x y +=,①求斜率为2的平行弦的中点轨迹方程;②过()2,1A 的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;③过点11,22P ⎛⎫⎪⎝⎭且被P 点平分的弦所在直线的方程.(Ⅱ)已知双曲线2212y x -=,①过定点()2,1P 作直线交双曲线于12P P 、点,使P 点是12PP 的中点,求此直线方程;②过定点()1,1Q 能否作直线l ,使l 与双曲线相交于两点1Q 、2Q ,且Q 是12Q Q 的中点?若存在,求出l 的方程;若不存在,说明理由.【垂直】例13.(Ⅰ)若直线l :1y ax =+与双曲线2231x y -=交于A 、B 两点,且以AB 为直径的圆过原点,求a 的值.(Ⅱ)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.①求椭圆C 的标准方程;②若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A 、B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【对称】例14.(Ⅰ)已知椭圆C 的方程为22143x y +=,试确定m 的取值范围,使得对于直线4y x m =+,椭圆C 上有不同的两个点关于该直线对称.(Ⅱ)已知抛物线212y x =上总存在关于直线4y x m =+对称的两点,则实数m 的取值范围是.【数量积】例15.已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为),①求双曲线C 的方程;②若直线y kx =C 有两个不同的交点A 和B ,且2OA OB ⋅>(O为原点),求k 的取值范围.【面积】例16.(Ⅰ)已知双曲线C :()222210,0xy a b a b-=>>的两个焦点为()12,0F -、()22,0F ,点(P 在双曲线C 上.①求双曲线C 的方程;②记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C 相交于不同两点E 、F ,若OEF ∆的面积为l 的方程.(Ⅱ)已知中心在原点的双曲线C 的一个焦点是()13,0F -20y -=. ①求双曲线C 的方程;②若以()0k k ≠为斜率的直线l 与双曲线C 相交于不同两点,M N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围. 答案一、第一定义【利用第一定义求轨迹】例1.(Ⅰ)()2210259x y y +=≠.(Ⅱ)224412521x y +=(Ⅲ)221412x y -=(Ⅳ)222x y a +=(Ⅴ)——见《直线和圆的方程脑图》例8(Ⅲ)(Ⅳ). 【焦点三角形问题】 例2.(Ⅱ)(Ⅲ)()3,4()3,4-()3,4-()3,4--(Ⅳ)x <<(Ⅴ)0. 【利用第一定义求最值】例3.(Ⅰ)66二、第二定义【利用第二定义求轨迹】例4.(Ⅰ)B (Ⅱ)28y x =-(Ⅲ)22143x y += (Ⅳ)——见《直线和圆的方程脑图》例8(Ⅱ)、例9(Ⅱ)(Ⅸ).【利用第二定义求最值】 例5.(Ⅰ)112(Ⅱ)32(Ⅲ)72(Ⅳ)C 【焦半径公式】例6.(Ⅰ)2212b PF PF a ≤⋅≤(Ⅱ)证略(Ⅲ)证略(Ⅳ)20x =12三、标准方程【待定系数法求圆锥曲线方程】例7.(Ⅰ)2213632x y +=(Ⅱ)221155x y +=(Ⅲ)22114837x y +=或2215213x y +=(Ⅳ)43-. (Ⅴ)()22211648x y --=(Ⅵ)2219164x y -=或221944x y -=(Ⅶ)22182x y -= (Ⅷ)①32k =②3122k k <<≠且③21k k ><或(Ⅸ)0,4a ⎛⎫ ⎪⎝⎭.(Ⅹ)28x y =-(Ⅺ)28y x =或224y x =- (Ⅻ)212y x =或24y x =-【利用椭圆的参数方程求最值】 例8.①131,3⎡⎤-⎢⎥⎣⎦;②⎡⎣四、几何性质【求离心率】例9.(Ⅱ)121.(Ⅳ)54e =或53(Ⅵ)0,2⎛ ⎝⎭(Ⅶ)C 五、直线与圆锥曲线的位置关系【有一个公共点】例10.(Ⅰ)31,83P ⎛⎫- ⎪⎝⎭,min 2d =(Ⅱ)5324y x =+,21y x =+,23y x =-+和12x =【有两个不同交点】——韦达定理【弦长】例11.(Ⅱ)221223x y +=或221223x y += 【弦中点】例12.(Ⅰ)①444033x y x ⎛⎫+=-<< ⎪⎝⎭②222220x y x y +--=③2430x y +-=(Ⅱ)①470x y --=②不存在【垂直】例13.(Ⅰ)1a =±(Ⅱ)①22143x y +=②2(,0)7 【对称】例14.(Ⅰ)x <<(Ⅱ)216m <-. 【数量积】例15.31,,1⎛⎛⎫- ⎪ ⎪⎝⎭⎝⎭ 【面积】例16.(Ⅰ)①22122x y -=②2y =+ (Ⅱ)①22145x y -=②5555,,00,,4224⎛⎫⎛⎫⎛⎫⎛⎫-∞--+∞ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭。
圆锥曲线公开课教案

圆锥曲线--点的轨迹探究与欣赏一、教材分析1.地位和作用圆锥曲线与科研、生产以及人类生活有着密切的联系。
早在16、17世纪之交,开普勒就发现行星绕太阳运行的轨道是一个椭圆;探照灯反射面是抛物线绕其对称轴旋转形成的抛物面,发电厂冷却塔的外形线是双曲线。
本节课是在学生学习了圆锥曲线的定义和基本几何性质后展开的,旨在对圆锥曲线有更加深刻的了解。
2.教学重点难点(1)重点:求动点轨迹的基本方法。
(2)难点:找出相关点之间的内在关系,列出相应的数学式子。
(3)方法:定义法、交轨法,一题多变,发散思维,并用“几何画板”提高课堂效率。
3.教学目的:(1)通过教学活动,使学生掌握求点的轨迹的基本方法。
(2)“兴趣是最好的老师,它永远胜过责任心”(爱因斯坦语),本节课通过《几何画板》演示课本的习题和与圆锥曲线有关的几个精美图片激发学生的学习兴趣。
引导学生自主学习,自我探索,并从中体会到学习数学的乐趣。
(3)想通过本节课的学习也想加大学生的参与度,因为利用电脑,可以得到许多我们事先不知道的结果,正如平时一样,学生可以把上课的软件拷回家,自己课后加以学习研究,再去观察、再认识、再体会,象理化一样,给学生提供了做数学实验的机会。
二、教学过程三、小结与评价:1、本节课结合课本练习,研究了求轨迹的方法的一些方法:定义法、相关法、交轨法等。
2、充分利用《几何画板》的强大功能,动态显示课本习题,由此发现《几何画板》对学习数学的重要作用,并可自己动手实验,得到不同的结论,可以用它来验证我们的猜想和结论正确与否。
3、求轨迹方程时,应注意找出题目所给条件的内在联系,挖掘出它们关系,在化简时注意掌握必要的技巧和方法,并加以类比和总结。
四、练习与作业1、动圆M 过定点P (-4,0),且与圆08:22=-+x y x C 相切,求动圆圆心M 的轨迹方程。
2、M 是抛物线x y =2上一动点,以OM 为一边(O 为坐标原点)作正方形MNPO ,求动点P 的轨迹方程。
高二数学求曲线的轨迹方程 教案

高二数学求曲线的轨迹方程刘明华一. 教学内容:求曲线的轨迹方程二. 学习目标求曲线的方程是解析几何中的重点,也是难点,是解答题取材的源泉。
求曲线的轨迹方程的常用方法很重要。
三. 考点分析1、求曲线方程的步骤:(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件p的点M的集合P={M︱p(M)};(3)用坐标表示条件p(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上。
2、求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、待定系数法、参数法、交轨法。
(1)直接法:将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,即直接通过建立x、y之间的关系,构成F(x,y)=0,此法是求轨迹的最基本的方法。
(2)定义法:运用解析几何中一些常用定义(如椭圆、双曲线、抛物线、圆等),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系,从而求出轨迹方程。
注:①用定义法求曲线方程,灵活运用题设重要条件,确定动点满足的等量关系,结合圆锥曲线定义确定方程的类型。
②步骤:列出等量关系式;由等式的几何意义,结合圆锥曲线的定义确定轨迹的形状;写出方程。
③利用“定义法”求轨迹方程的关键:找出动点满足的等量关系。
(3)代入法(相关点法或转移法):动点所满足的条件不易表述或求出,但形成的轨迹的动点P(x,y)却随着另一动点Q(x1,y1)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x1,y1表示为x、y的式子,再代入Q的轨迹方程,然后整理得P的轨迹方程。
(4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程(6)交轨法:求两动曲线交点的轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些曲线的联系,然后消去参数得到轨迹方程。
圆锥曲线 第二讲 轨迹方程的求法

例2.(湖北) 设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是 直线l与x轴的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且m≠1). 当点A在圆上运动时,记点M的轨迹为曲线C. (Ⅰ)求曲线C的方程; (Ⅱ)略.
例3.(福建) 如图,在正方形OABC中,O为坐标原点,点A的坐标为(10,0),点C的坐标为 (0,10),分别将线段OA和OB十等分,分点分别记为A1,A2,…,A9和B1,B2,…, * B9 ,连接OBi,过作轴的垂线与交于点P( . i i N ,1 i 9) (Ⅰ)求证:点Pi( i N * ,1 i 9) 都在同一条抛物线上,并求抛物线E的方程; (Ⅱ)略 【答案】 (Ⅰ) x2 y1 )在椭圆上,有 2 2 1 a b y12 2 2 从而 x1 a (1 2 ) 代入③得 b x2 y2 1( x a , y 0) a 2 b2
备考指津
考点预测: 预计高考对本考点考查的可能性非常大.既可以 以小题的形式考查,也可以以解答题第一问的
例4.(辽宁)
x2 y2 如图,椭圆C0: a 2 b 2 1 (a>b>0,a,b为常数),动圆C1: x2+y2=t12,
b<t1<a.点A1,A2分别为C0的左、右顶点,C1与C0相交于A,B,C,D四点. (1)求直线AA1与直线A2B交点M的轨迹方程;(2) 略
y12 2 2 由①②得 y 2 2 (x a )③ x1 a
能力突破
例1.(四川) 如图,动点M到两定点A(-1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB , 设动点M的轨迹为C. (Ⅰ)求轨迹C的方程;(Ⅱ)略
高二数学圆锥曲线定义运用教学设计方案

高二数学《圆锥曲线定义的运用》教案设计设计:黄鹭芳福州格致中学点评:陈达辉福州八中一、概述•数学,高二•本课选自《全日制普通高级中学教科书<必修)•数学》(人教版>高二(上>,第八章< 圆锥曲线方程复习课),1课时•价值与重要性:圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象•恰当地利用定义解题,许多时候能以简驭繁•因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,我认为有必要再一次回到定义,熟悉“利用圆锥曲线定义解题”这一重要的解题策略•点评:本节课是在学习了椭圆、双曲线、抛物线后的一节习题课,主要利用两个例题及其引申,通过一题多变,层层深入地探索,强化对圆锥曲线定义的理解二、教案目标分析1. 知识与能力:(1>深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题。
(2>熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法。
(3>在求圆锥曲线的方程和求圆锥曲线方程有关轨迹问题时,能注意应用平面几何的基本知识。
(4>在解题过程中,加强对自身思想方法和能力的训练,特别是复杂运算能力和应用数形结合思想方法解决问题的能力。
2. 过程与方法:<1)通过练习,强化对圆锥曲线定义的理解•<2)在对不断引申的问题的思考、回答过程中,掌握联想、类比、猜测、证明等合情推理方法.4•情感、态度与价值观:借助多媒体辅助教案,<1 )激发起学习数学的兴趣.在民主、开放的课堂氛围中;<2)培养自己敢想、敢说、勇于探索、发现、创新的精神<3)培养自身思维的深刻性、创造性、科学性和批判性;<4)提高空间想象力及分析、解决问题的能力三、学习者特征分析我所任教班级的学生是初中开始“课程改革”后的第一届毕业生,他们在初中三年的学习中,接受的是“新课改”的理念,学习的是“新课标”下的课程、教材,由于05年高中“课改”还未全面推行,因此如今他们面对的高中教材还是旧教材。
圆锥曲线中轨迹方程问题的求法

第3讲 圆锥曲线中轨迹方程问题的求法一、考情分析 求曲线的轨迹方程是解析几何的两个基本问题之一。
求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 。
二、经验分享求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将圆锥曲线中动点满足的几何关系或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求;(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程;(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程;求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念三、题型分析(一) 直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程 当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常 数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【变式训练】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运用圆锥曲线的定义求轨迹方程
【学习目标】
1、进一步理解圆锥曲线定义的内涵,加深对圆锥曲线本质特征的理解和认识。
学会运用定义判断动点的轨迹并求动点的轨迹方程。
2、在应用圆锥曲线定义解决问题的过程中,体验运用定义法解决问题时的特点,提高快速、准确、灵活的解题的能力。
3、进一步培养自我批判的思维品质,质疑求真的科学态度。
【教学重点】(1)圆锥曲线定义的再认识;(2)圆锥曲线定义在解题中的运用。
【教学难点】如何运用圆锥曲线定义解决相关问题。
【课前导学】
1、圆锥曲线的定义(用数学符号表示)
椭圆的定义 双曲线的定义 抛物线的定义
2、解答下列各题
(1)过点(1,0)A 且与直线l :1-=x 相切的动圆M 的圆心M 的轨迹方程为
(2)在ABC ∆中,已知)0,1(),0,1(C A -,若sin sin 2sin A C B +=,则定点B 的轨迹方程为
(3)设向量i 、j 为直角坐标系的x 轴、y 轴正方向上的单位向量,向量(3)a x i y j =+⋅+⋅,
(3)b x i y j =-⋅+⋅ , 若且||||2a b -=,则满足上述条件的点(,)P x y 的轨迹方程 是
(4)方程|2|21
)1()1(22-+=+++y x y x 表示的曲线是 ( )
A 、 椭圆
B 、双曲线
C 、抛物线
D 、不能确定
【课堂学习】
[例题1] 一动圆与圆1O :4)3(22=++y x 外切,同时与圆2O :100)3(2
2=+-y x 内切,求动圆圆心P 的轨迹方程。
[思考1] 一动圆与圆1O :4)3(22=++y x 外切,圆2O :9)3(22=+-y x 中的一个内切一个外切,求动圆圆心P 的轨迹方程。
(同时相切呢?)
[思考2] 已知圆1O :4)2(2
2=+-y x ,动圆M 与圆1O 外切,且与y 轴相切,求动圆圆心M 的轨迹。
[例题2]已知圆22:(3)100M x y ++=和点(3,0)N ,P 为圆M 上任一点,线段NP 的的垂直平分线交直线MP 于Q ,当点P 在圆M 上运动时,问:点Q 的轨迹是什么?并求其轨迹方程。
[思考] 已知圆22:(3)4M x y ++=和点(3,0)N ,P 为圆M 上任一点,线段NP 的的垂直平分线交直线MP 于Q ,当点P 在圆M 上运动时,问:点Q 的轨迹是什么?并求其轨迹方程。
[例题3] 已知椭圆经过点(0,7),(0,7)A B -,且以点(12,2)C 为一个焦点,求椭圆另一焦点
P 的轨迹所在的曲线方程。
【自主小结】
【课后练习】
[必做作业]
1、已知ABC ∆的一边BC 的长为3,周长为8,则顶点A 的轨迹是什么?为什么?
2、若)0,2(-A ,)0,2(B ,且2=-MB MA ,则动点M 的轨迹是什么?为什么?
[思考]把2=-MB MA 换成(0)MA MB a a -=>后,情形会如何?
3、已知动点P 到直线40x +=的距离比它到点(2,0)M 的距离大2 ,则P 的轨 迹方程为
4、ABC ∆顶点为)2,0(-A ,)2,0(C ,三边长c b a ,,成等差数列,公差0<d ,求动点B 的轨迹方程。
5、一动圆与圆1O :4)3(22=++y x 外切,圆2O :9)3(2
2=+-y x 同时相切,求动圆圆心P 的轨迹方程。
[选做作业]
1、在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )
A. 直线
B. 圆
C. 双曲线
D. 抛物线 2、已知12,F F 分别是双曲线22
2136x y b
-=的左、右焦点,P 为双曲线上一点,过112F F PF ∠作的平分线的垂线,垂足为H,则点H 的轨迹为 ( )
A. 椭圆
B. 双曲线
C. 圆
D. 抛物线
3、 如图,某村在P 处有一堆肥,今要把此堆肥料沿道路PA 或PB 矩形的一块田ABCD 中去,已知PA=100米,PB=150米,BC=60米, 060=∠APB 。
能否在田中确定一条界线,使位于界线一侧的点沿道 路PA 送肥较近而另一侧的点沿PB 送肥较近?如果能,请说出这条
界线是什么曲线?并求出它的方程。