轨迹方程的 几种求法整理
高中数学轨迹方程求轨迹方程的的基本方法关点法参数法交轨法向量法新人教版选修

轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求轨迹方程的几种常用方法

求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。
解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0),B (a,0)。
设动点C为(x, y),••• | AC |2 |BC |2 |AB|2,a)2y2]2h(x a)2y2]24a2,即x2由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点,故所求方程为x2y2a2( x a )。
2•代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。
解:设 A (a,0) , B (0, b), M (x, y),一方面,. 另一方面,36 , M分AB的比为1,2评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。
此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。
3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。
求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法点的轨迹方程是描述点在运动过程中所经过的路径的数学方程。
在数学和物理等领域,有许多方法可以推导和描述点的轨迹方程。
下面介绍六种常见的方法。
一、直角坐标系方法直角坐标系方法是最常见的一种方法,通常用于平面分析。
在直角坐标系下,点的位置可以用横坐标x和纵坐标y来表示。
如果已知点的坐标与时间的关系,可以通过方程联立或者曲线拟合的方法得到点的轨迹方程。
二、参数方程方法参数方程方法是一种将点的位置用参数表示的方法。
通过引入参数t,点的坐标可以用关于t的函数表示,如x=f(t)和y=g(t),这样就可以得到点的轨迹方程。
参数方程方法适用于描述直线、圆和其他曲线的方程。
三、极坐标系方法极坐标系方法是一种将点的位置用极径r和极角θ来表示的方法。
通过引入极径和极角的关系表达式,可以得到点的轨迹方程。
例如,对于圆的方程可以表示为r=f(θ),其中f(θ)是关于极角θ的函数。
四、矢量方程方法矢量方程方法是一种用矢量表示点的位置的方法。
通过引入位置矢量r(t),可以得到点的轨迹方程。
位置矢量r(t)通常用分量表示,如r=(x,y,z)。
矢量方程方法适用于描述曲线在三维空间中的轨迹。
五、微分方程方法微分方程方法是一种通过点的运动规律和动力学方程来推导轨迹方程的方法。
通过对点的位置向量或者其分量进行微分,并代入运动规律方程,可以得到点的轨迹方程。
微分方程方法适用于描述受力作用下点的运动。
六、变分原理方法变分原理方法是一种通过极小化或者极大化一些物理量来推导轨迹方程的方法。
通过对点的位置或路径的泛函进行变分,可以得到使泛函取得极值的轨迹方程。
变分原理方法适用于描述光的传播、质点在介质中的传播等问题。
综上所述,点的轨迹方程可以通过直角坐标系方法、参数方程方法、极坐标系方法、矢量方程方法、微分方程方法和变分原理方法等六种常见方法推导和描述。
不同的方法适用于不同的情况和问题,选择合适的方法可以更方便地求解轨迹方程。
轨迹方程求轨迹方程的的基本方法

轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
轨迹方程的求法

轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。
求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、已知直角坐标系中,点Q (2,0),圆C 的方程为221x y +=,动点M 到圆C 的切线长与MQ 的比等于常数()0λλ>,求动点M 的轨迹。
◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得PM . 试建立适当的坐标系,并求动点P 的轨迹方程.2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
例2、动圆过定点,02p ⎛⎫ ⎪⎝⎭,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程.◎◎ 已知圆C 的方程为 (x-2)2+y 2=100,点A 的坐标为(-2,0),M 为圆C 上任一点,AM 的垂直平分线交CM 于点P ,求点P 的方程。
◎◎已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.三、代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。
例3、P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 求PD 中点的轨迹方程.◎◎已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT 求点T 的轨迹C 的方程.练习:1、方程y=122+--x x 表示的曲线是: ( )A 、双曲线B 、半圆C 、两条射线D 、抛物线2. 抛物线的准线l 的方程是y =1, 且抛物线恒过点P (1,-1), 则抛物线焦点弦的另一个端点Q 的轨迹方程是( ).A. (x -1)2=-8(y -1)B. (x -1)2=-8(y -1) (x ≠1)C. (y -1)2=8(x -1)D. (y -1)2=8(x -1) (x ≠1)3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( )A 、(x -2)2+y 2=4B 、(x -2)2+y 2=4(0≤x <1)C 、(x -1)2+y 2=4D 、(x -1)2+y 2=4(0≤x <1)7 . P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 则PD 中点的轨迹方程为( ). A. 116922=+y x B. 196422=+y x C. 14922=+y x D. 19422=+y x 8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( )A 、抛物线B 、圆C 、双曲线的一支D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( )A 、y 2=12xB 、y 2=12x(x>0)C 、y 2=6xD 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=21B 、x 2+y 2=41C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 222222222222A. 1 B. 1 C. 1 D.12575752525757525x y x y x y x y +=+=+=+= 13、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( )A 、x 2+y 2=2a 2B 、x 2+y 2=4a 2C 、x 2-y 2=4a 2D 、x 2-y 2=a 214、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。
求轨迹方程的方法

求轨迹方程的方法轨迹方程是描述物体在运动过程中所遵循的路径的数学表达式。
轨迹方程的求解方法因物体的运动方式而异。
下面将介绍几种常见的物体运动方式,并讨论如何求解它们的轨迹方程。
1.直线运动:物体在直线上做匀速或变速直线运动时,其轨迹方程为y = mx + b,其中m为斜率,b为截距。
若已知起始点的坐标和运动速度,则可以通过这些参数来确定轨迹方程。
2.曲线运动:物体在空间中做曲线运动时,其轨迹方程一般无法用简单的直线方程表示。
这时需要通过其他方法来求解轨迹方程。
以下是几种常见的曲线运动例子:-圆周运动:若物体做匀速圆周运动,其轨迹方程可以用参数方程表示:x = r * cos(θ),y = r * sin(θ),其中r为圆的半径,θ为角度。
通过改变θ的取值范围,可以得到整个圆周的轨迹方程。
-椭圆运动:椭圆运动可以用参数方程表示:x = a * cos(θ),y = b * sin(θ),其中a和b分别为椭圆长轴和短轴的长度。
同样通过改变θ的取值范围,可以得到整个椭圆的轨迹方程。
-抛物线运动:物体做匀速或变速抛物线运动时,其轨迹方程可以用解析几何中的一般二次方程表示:y = ax^2 + bx + c,其中a、b和c为常数。
通过给定的起始点和速度,可以确定这些常数,从而求解轨迹方程。
-双曲线运动:物体做匀速或变速双曲线运动时,其轨迹方程可以用参数方程表示:x = a * sec(θ),y = b * tan(θ),其中a和b为常数。
同样通过改变θ的取值范围,可以得到整个双曲线的轨迹方程。
除了上述运动方式外,还存在许多其他复杂的运动形式,例如螺线、摆线等。
对于这些运动形式,求解轨迹方程的方法往往需要借助更高级的数学工具,如极坐标、参数方程、微分方程等。
总结起来,轨迹方程的求解方法因物体的运动方式而异。
对于直线运动,可以直接得到轨迹方程;对于曲线运动,常常需要借助参数方程、解析几何等数学工具来求解。
对于更加复杂的运动形式,可能需要借用更高级的数学方法来确定轨迹方程。
求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
求轨迹方程的常用方法

轨迹(曲线)方程的求法求轨迹方程问题是高中数学的一个难点,求轨迹方程的常用方法有:1)直接法;2)待定系数法;3)定义法;4)代入法;5)参数法;6)交轨法. 下面分别介绍以上六种方法:(1)直接法 —— 直接利用条件通过建立x 、y 之间的关系式f (x ,y )=0,是求轨迹的最基本的方法. 课标教材(人教版)²高中数学 选修2﹣1(以下所称教材都是指该教材)的《§2.1.2 求曲线的方程》中介绍了此法.直接法求轨迹(曲线)方程一般有五个步骤:① 建立适当的坐标系,设曲线上任意一点M 的坐标为(x ,y ); ② 写出点M 运动适合的条件P 的集合:P={M |P(M)}; ③ 用坐标表示条件P(M),列出方程 f (x ,y )=0; ④ 化方程 f (x ,y )=0 为最简形式;⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点. 一般地,步骤(5)可省略,如有特殊情形,可以适当说明.教材推导圆锥曲线(椭圆、双曲线、抛物线)的标准方程,都是使用直接法. 教材中还配有大量练习题(如:教材P.37练习/3,习题2.1/A 组/2、3,B 组/1、2;P.41例3,P.42练习/4,P.47例6,P.49习题2.2 / B 组/3;P.59例5,P.62习题2.3 / B 组/3;P.74习题2.4 / B 组/3;P.80复习参考题/ A 组/10,B 组/5).例1. 如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a >0),|CD|=2b (b>0),动点P 满足|PA|²|PB|=|PC|²|PD|. 求动点P 的轨迹方程.解:以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系,则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知 |PA|²|PB|=|PC|²|PD|,∴22)(y a x ++²22)(y a x +-=22)(b y x ++²22)(b y x -+,化简得 x 2-y 2=222b a -.故动点P 的轨迹方程为 x 2-y 2=222b a -.【练习1】 1、已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN |²|MP |+MN ²NP =0,求动点P (x ,y )的轨迹方程.2、如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程.(2)待定系数法 —— 当已知所求曲线的类型(如:直线,圆锥曲线等)求曲线方程,可先根据条件设出所求曲线的方程,再由条件确定方程中的系数(待定系数),代回所设方程即可.要注意设出所求曲线的方程的技巧.(如:教材P.40例1,P.42练习/2,P.46例5,P.48练习/3、4,P.49习题2.2/A 组/2、5、9;P.54例1,P.55练习/1,P.58例4,P.61练习/2、3,P.61习题2.3 / A 组/2、4、6,B 组/1;P.67练习/1,P.68例3,P.72练习/1,P.73习题2.4 / A 组/4、7;P.80复习参考题/ A 组/1).例2 根据下列条件,求双曲线的标准方程.(1)与双曲线41622y x -=1有公共焦点,且过点(32,2). (2)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23); 解: (1)设双曲线方程为2222by a x -=1. 由题意易求c=25.∵双曲线过点(32,2), ∴()2223a -24b=1. 又 ∵a 2+b 2=(25)2, ∴解得 a 2=12,b 2=8.故 所求双曲线的方程为 81222y x -=1. (2)设所求双曲线方程为16922y x -=λ(λ≠0), 将点(-3,23)代入得λ=41,∴ 所求双曲线方程为16922y x -=41, 即49422y x -=1. 【练习2】 已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),但|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.(3)定义法 —— 如果根据已知能够确定动点运动的条件符合某已知曲线的定义,则可由该曲线的定义直接写出动点轨迹方程.(如:教材P.49习题2.2/A 组/1、7,B 组/2;P.54例2,P.62习题2.3/A 组/5,B 组/2)例3. 已知动圆过()1,0,且与直线1x =-相切. (1) 求动圆圆心的轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设动圆圆心为M ,定点()1,0为F ,过点M 作直线1x =-的垂线,垂足为N ,由题意知: MF MN =即动点M 到定点F 与到定直线1x =-的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线, 其中()1,0F 为焦点,1x =-为准线,∴动圆圆心的轨迹方程为 x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k k =->,01k k ∴<>或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=, 即()()21212110ky y y y --+=,整理得 2221212(1)()0k y y k y y k +-++=,∴ 2224(1)40k k k k k +-⋅+=, 解得4k =-或0k =(舍去), 又 40k =-<,∴ 直线l 存在,其方程为440x y +-=【练习3】 1、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.2、在△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0)且满足条件x =sinC -sinB=21sinA ,则动点A 的轨迹方程是 ( ) A. 2216a x -221516a y =1(y ≠0)B. 2216a y -22316a x =1(x ≠0)C. 2216a x -221516a y =1(y ≠0)的左支 D. 2216a x -22316ay =1(y ≠0)的右支(4)代入法(也叫相关点法或转移法) ——若动点P(x ,y )随另一动点Q(x 1,y 1)的运动而运动,并且Q(x 1,y 1)又在某已知曲线上运动,则求点P 的轨迹方程问题常用此法.代入法求轨迹(曲线)方程一般有以下几个步骤:① 设所求点P 的坐标为 (x ,y ) (称之为从动点),动点Q 的坐标为(x 1,y 1) (称之为主动点) ② 找出点P 与点Q 的坐标关系;③ 用从动点的坐标x 、y 的代数式表示主动点的坐标x 1、y 1; ④ 再将x 1、y 1代入已知曲线方程,即得要求的动点轨迹方程.(如:教材P.41例2,P.50习题2.2 / B 组/1;P.74习题2.4 / B 组/1)例4. 设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN =2MP ,PM ⊥PF ,当点P 在y 轴上运动时,求点N 的轨迹方程. 解设N (x ,y ),M (x 1,0),P (0,y 0),由MN =2MP 得(x -x 1,y )=2(-x 1,y 0),∴11022x x x y y -=-⎧⎨=⎩,即1012x x y y =-⎧⎪⎨=⎪⎩.∵PM ⊥PF ,PM =(x 1,-y 0),PF =(1,-y 0), ∴(x 1,-y 0)·(1,-y 0)=0,∴x 1+y 2=0. ∴-x +42y =0,即y 2 = 4x .故所求的点N 的轨迹方程是 y 2 = 4x .【练习4】 如图所示,已知P (4,0)是圆 x 2+y 2=36 内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.(5)参数法 ——当动点P (x ,y )的横坐标x 、纵坐标y 之间的关系不易直接找到时,可以考虑将x 、y 都用一个中间变量(参数)来表示,即得参数方程,再消去参数就可得到普通方程.例5. 如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B. 设点M 是线段AB 的中点,求点M 的轨迹方程.解 方法一(参数法):设M 的坐标为(x ,y ).若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1). 若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1, 故直线CA 方程为:y =k(x -2)+2,令y =0得x =2-k2,则A 点坐标为(2-k2,0).CB 的方程为:y =-k1(x -2)+2,令x =0,得y =2+k2, 则B 点坐标为(0,2+k 2),由中点坐标公式得M 点的坐标为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=k k k k 112022112022y x ①, 消去参数k 得到x +y -2=0 (x ≠1), 又∵ 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二(直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ).∵|MA|=|MC|, ∴22)2(y x x +-=22)2()2(-+-y x , 化简得x +y -2=0.方法三(定义法)依题意 |MA|=|MC|=|MO|,即:|MC|=|MO|,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.(6)交轨法 —— 当所求轨迹上的动点是两动曲线的交点时,只要把两动曲线(族)的方程分别求出:0),,(=t y x f 与0),,(=t y x g(t 为参数),然后消去参数t ,即得所求轨迹方程.例6. 如图,过圆224x y +=与x 轴的两个交点A 、B 作圆的切线AC 、BD ,再过圆上任意一点H 作圆的切线,交AC 、BD 于C 、D 两点,设AD 、BC 的交点为R ,求动点R 的轨迹E 的方程.解:设点H 的坐标为(0x ,0y ),则20x +20y =4 由题意可知0y ≠0,且以H 为切点的圆的切线的斜率为0x y -, ∴切线CD 方程为 y -0y =0x y -(x -0x ),展开得 0x x +0y y =20x +20y =4, 即 以H 为切点的圆的切线方程为 0x x +0y y =4,∵A (-2,0),B (2,0),将x =±2代人0x x +0y y =4 可得 点C 、D 的坐标分别为C (-2,0042x y +),D (2,042x y -), 则直线AD 、BC 的方程分别为AD l :002424y x x y +=- …… ①, BC l :002424y x x y -=+- …… ②将两式相乘并化简可得动点R 的轨迹E 的方程为 2244x y +=,即2214x y += 解法二:设点R 的坐标为(0x ,0y );直线AR 的方程分别为y =002y x +(x +0x ),与直线BD 的方程x =2联立,解得D (2,0042y x +),同法可得C (-2,0042y x --),则直线CD 斜率为002024x y x -, ∴直线CD 的方程为y -0042y x --=002024x yx -(x +2)∵直线CD 与⊙O 相切, ∴圆心O 到直线CD 的距离等于圆半径2,000244x y y -=2,化简得 (20x -4)2+420x 20y =(420y )2整理得 (20x -4)2+420y (20x -4)=0, ∴20x -4=0 (舍去)或20x -4+420y =0即 动点R 的轨迹E 的方程为2244x y +=,即2214x y +=总结:求轨迹方程的方法:(1)求单个动点的轨迹问题,用直接法 或待定系数法 或定义法; (2)求两个动点的轨迹问题,用代入法;(3)求多个动点的轨迹问题,用参数法 或交轨法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。
设点。
列式。
化简。
说明等,圆锥曲线标准方程的推导。
1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =u u u r u u u r·,求点P 的轨迹。
26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是.选(B ). 2、一动圆与两圆和都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M ,半径为r ,则有动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支3、在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠.注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q 是圆x 2+y 2=4上动点另点A (3。
0)。
线段AQ 的垂直平分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上运动时,求点P 的轨迹方程.解:连接PA ∵l ⊥PQ ,∴|PA|=|PQ|.又P 在半径OQ 上.∴|PO|+|PQ|=2.由椭圆定义可知:P 点轨迹是以O 、A 为焦点的椭圆.5、已知ΔABC中,A,B,C 所对应的边为a,b,c,且a>c>b,a,c,b 成等差数列,|AB|=2,求顶点C 的轨迹方程解:|BC|+|CA|=4>2,由椭圆的定义可知,点C 的轨迹是以A 、B 为焦点的椭圆,其长轴为4,焦距为2, 短轴长为23,∴椭圆方程为13422=+y x , 又a>b, ∴点C 在y 轴左侧,必有x<0,而C 点在x 轴上时不能构成三角形,故x≠─2,因此点C 的轨迹方程是:13422=+y x (─2<x<0) 点评:本题在求出了方程以后讨论x 的取值范围,实际上就是考虑条件的必要性 6、一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。
解析:(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分别为1O 、2O ,将圆方程分别配方得:22(3)4x y ++=,22(3)100x y -+=, 当M e 与1O e 相切时,有1||2O M R =+ ①当M e 与2O e 相切时,有2||10O M R =- ②将①②两式的两边分别相加,得21||||12O M O M +=,即2222(3)(3)12x y x y +++-+= ③移项再两边分别平方得:222(3)12x y x ++=+ ④两边再平方得:22341080x y +-=,整理得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆。
(法二)由解法一可得方程2222(3)(3)12x y x y +++-+=,由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是焦点为1(3,0)O -、2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中心在坐标原点,焦点在x 轴上,∴26c =,212a =,∴3c =,6a =,∴236927b =-=,∴圆心轨迹方程为2213627x y +=。
三、相关点法此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.若动点P(x ,y)随已知曲线上的点Q(x 0,y 0)的变动而变动,且x 0、y 0可用x 、y 表示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种方法称为相关点法(或代换法).1、已知抛物线y 2=x+1,定点A(3,1)、B 为抛物线上任意一点,点P 在线段AB 上,且有BP ∶PA=1∶2,当B 点在抛物线上变动时,求点P 的轨迹方程.分析解:设点P(x ,y),且设点B(x 0,y 0) ∵BP ∶PA=1∶2,且P 为线段AB 的内分点.xy1O2OP2、双曲线2219x y -=有动点P ,12,F F 是曲线的两个焦点,求12PF F ∆的重心M 的轨迹方程。
解:设,P M 点坐标各为11(,),(,)P x y M x y ,∴在已知双曲线方程中3,1a b ==,∴9110c =+=∴已知双曲线两焦点为12(10,0),(10,0)F F -, ∵12PF F ∆存在,∴10y ≠由三角形重心坐标公式有11(10)103003x x y y ⎧+-+=⎪⎪⎨++⎪=⎪⎩,即1133x x y y =⎧⎨=⎩ 。
∵10y ≠,∴0y ≠。
3、已知点P 在双曲线上,将上面结果代入已知曲线方程,有22(3)(3)1(0)9x y y -=≠ 即所求重心M 的轨迹方程为:2291(0)x y y -=≠。
4、(2001上海,3)设P 为双曲线-42x y 2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是 。
解析:设P (x 0,y 0) ∴M (x ,y )∴2,200y y x x == ∴2x =x 0,2y =y 0∴442x -4y 2=1⇒x 2-4y 2=15、已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法如果不易直接找出动点的坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来.若动点P (x ,y )的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出x 、y 关于另一变量的参数方程,再化为普通方程.1、已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使有向线段OP OP 'u u u r u u u u r ,满足4OP OP '=u u u r u u u u r·,求直线AP 与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta=+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程. 评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.2、设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形. 解:(1)设所求椭圆方程为由题意得解得 所以椭圆方程为.(2)设点解方程组得 由和得其中t >1.消去t ,得点P 轨迹方程为和.其轨迹为抛物线在直线右侧的部分和抛物线在直线在侧的部分.3、已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q 求直线A 1P 与A 2Q 交点M 的轨迹方程;解设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为 y =)(11m x mx y ++ ①A 2Q 的方程为 y =-)(11m x m x y -- ②①×②得 y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1 此即为M 的轨迹方程4、设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a由OM ⊥AB ,得m =-y x由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒= 故x =my +4p ,用m =-y x代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k =--,过定点(2,0)N p ,由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k 则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外), ①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点5、过点A (-1,0),斜率为k 的直线l 与抛物线C :y 2=4x 交于P ,Q 两点.若曲线C 的焦点F 与P ,Q ,R 三点按如图顺序构成平行四边形PFQR ,求点R 的轨迹方程;解:要求点R 的轨迹方程,注意到点R 的运动是由直线l 的运动所引起的,因此可 以探求点R 的横、纵坐标与直线l 的斜率k 的关系.然而,点R 与直线l 并无直接联系.与l 有直接联系的是点P 、Q ,通过平行四边形将P 、Q 、R 这三点联系起来就成为解题的关键.由已知:(1)l y k x =+,代入抛物线C :y 2=4x 的方程,消x 得:204k y y k -+=∵ C l P 直线交抛物线于两点、Q ∴ 20410k k ⎧≠⎪⎨⎪∆=->⎩解得1001k k -<<<<或设1122(,),(,),(,)P x y Q x y R x y ,M 是PQ 的中点,则由韦达定理可知:122,2M y y y k +==将其代入直线l 的方程,得2212M M x k y k⎧=-⎪⎪⎨⎪=⎪⎩∵ 四边形PFQR 是平行四边形, ∴ RF 中点也是PQ 中点M .∴242342M F Mx x x k y y k ⎧=-=-⎪⎪⎨⎪==⎪⎩又(1,0)(0,1)k ∈-⋃Q ∴ (1,)M x ∈+∞.∴ 点R 的轨迹方程为.1),3(42>+=x x y 6、垂直于y 轴的直线与y 轴及抛物线y 2=2(x –1)分别交于点A 和点P ,点B 在y 轴上且点A 分OB 的比为1:2,求线段PB 中点的轨迹方程解:点参数法 设A(0,t),B(0,3t),则P(t 2/2 +1, t),设Q(x,y),则有⎪⎪⎩⎪⎪⎨⎧=+=+=+=t tt y t t x 223)2(4121222,消去t 得:y 2=16(x –21) 点评:本题采用点参数,即点的坐标作为参数在求轨迹方程时应分析动点运动的原因,找出影响动点的因素,据此恰当地选择参数7、过双曲线C :x 2─y 2/3=1的左焦点F 作直线l 与双曲线交于点P 、Q ,以OP 、OQ 为邻边作平行四边形OPMQ ,求M 的轨迹方程解:k 参数法 当直线l 的斜率k 存在时,取k 为参数,建立点M 轨迹的参数方程设M(x,y),P(x 1,y 1), Q(x 2,y 2),PQ 的中点N(x 0,y 0), l: y=k(x+2), 代入双曲线方程化简得:(3─k 2)x 2─4k 2x─4k 2─3=0,依题意k≠3,∴3─k 2≠0,x 1+x 2=4k 2/(3─k 2),∴x=2x 0=x 1 +x 2=4k 2/(3─k 2), y=2y 0=2k(x 0+2)=12k/(3─k 2),∴⎪⎪⎩⎪⎪⎨⎧-=-=22231234k ky k k x , 消去k 并整理,得点M 的轨迹方程为:1124)2(22=-+y x 当k 不存在时,点M (─4,0)在上述方程的曲线上,故点M 的轨迹方程为:1124)2(22=-+y x 点评:本题用斜率作为参数,即k 参数法,k 是常用的参数设点P 、Q 的坐标,但没有求出P 、Q 的坐标,而是用韦达定理求x 1+x 2,y 1+y 2,从整体上去处理,是处理解析几何综合题的常见技巧8、(06辽宁,20)已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA u u u r ,OB uuu r 满足OA OB OA OB +=-u u u r u u u r u u u r u u u r.设圆C 的方程为 221212()()0x y x x x y y y +-+-+=(I) 证明线段AB 是圆C 的直径;(II)当圆C 的圆心到直线X-2Y=0的距离的最小值为255时,求p 的值。