因式分解教案 (优秀5篇)

合集下载

因式分解数学教案优秀5篇

因式分解数学教案优秀5篇

因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。

因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

因式分解教案5篇

因式分解教案5篇

式分解教案5篇因式分解教案篇一教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。

2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。

3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。

教学重、难点:用提公因式法和公式法分解因式。

教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。

什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

(1)因式分解与整式乘法是相反方向的变形。

例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。

怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。

ma+mb+mc二m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。

例如:x2-x=x(x-l),8a2b-4ab+2a=2a(4ab-2b+1)。

探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。

(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a 化成-(a-b),然后再提取公因式。

因式分解教案四篇

因式分解教案四篇

因式分解教案四篇因式分解教案篇1一、运用平方差公式分解因式教学目标1、使学生了解运用公式来分解因式的意义。

2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解。

3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)重点运用平方差公式分解因式难点灵活运用平方差公式分解因式教学方法比照发现法课型新授课教具投影仪教师活动学生活动情景设置:同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?(学生或许还有其他不同的解决方法,教师要给予充分的肯定) 新课讲解:从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?首先我们来做下面两题:(投影)1.计算以下各式:(1)(a+2)(a-2)=;(2)(a+b)(a-b)=;(3)(3a+2b)(3a-2b)=.2.下面请你根据上面的算式填空:(1)a2-4=;(2)a2-b2=;(3)9a2-4b2=;请同学们比照以上两题,你发现什么呢?事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。

(投影)比方:a2–16=a2–42=(a+4)(a–4)例题1:把以下各式分解因式;(投影)(1)36–25x2;(2)16a2–9b2;(3)9(a+b)2–4(a–b)2.(让学生弄清平方差公式的形式和特点并会运用)例题2:如图,求圆环形绿化区的面积练习:第87页练一练第1、2、3题小结:这节课你学到了什么知识,掌握什么方法?教学素材:A组题:1.填空:81x2-=(9x+y)(9x-y);=利用因式分解计算:=。

2、以下多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把以下各式分解因式(1)1-16a2(2)9a2x2-b2y2(3).49(a-b)2-16(a+b)2B组题:1分解因式81a4-b4=2假设a+b=1,a2+b2=1,那么ab=;3假设26+28+2n是一个完全平方数,那么n=.由学生自己先做(或互相讨论),然后答复,假设有答不全的,教师(或其他学生)补充.学生答复1:992-1=99某99-1=9801-1=9800学生答复2:992-1就是(99+1)(99-1)即100某98学生答复:平方差公式学生答复:(1):a2-4(2):a2-b2(3):9a2-4b2学生轻松口答(a+2)(a-2)(a+b)(a-b)(3a+2b)(3a-2b)学生答复:把乘法公式(a+b)(a-b)=a2-b2反过来就得到a2-b2=(a+b)(a-b)学生上台板演:36–25x2=62–(5x)2=(6+5x)(6–5x)16a2–9b2=(4a)2–(3b)2=(4a+3b)(4a–3b)9(a+b)2–4(a–b)2=[3(a+b)]2–[2(a–b)]2=[3(a+b)+2(a–b)][3(a+b)–2(a–b)]=(5a+b)(a+5b)解:352π–152π=π(352–152)=(35+15)(35–15)π=50某20π=1000π(m2)这个绿化区的面积是1000πm2学生归纳总结因式分解教案篇2教学目标1、会运用因式分解进行简单的多项式除法。

因式分解教案6篇

因式分解教案6篇

因式分解教案6篇在教学工作者开展教学活动前,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。

教案要怎么写呢?下面是精心整理的因式分解教案6篇,仅供参考,希望能够帮助到大家。

因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用写出结果。

(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根X1,X2,那么2、教学实例:学案示例3、课堂练习:学案作业4、课堂:5、板书:6、课堂作业:学案作业7、教学反思:因式分解教案篇2一、教材分析1、教材的地位与作用“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

因式分解教案

因式分解教案

因式分解教案关于因式分解教案四篇因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式.解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y -x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)23a2(y-x)+4b2(y-x)2]=-(y-x)2 [3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)23a2(x-y)-4b2(x-y)2=(x-y)2 [3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.【教师活动】引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.【探研时空】利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.【探研时空】1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3) x2-0.01y2.因式分解教案篇2教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】 (1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2 提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1 用提公因式法将下列各式因式分解.(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.小结运用提公因式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。

关于因式分解教案锦集5篇

关于因式分解教案锦集5篇

关于因式分解教案锦集5篇因式分解教案篇1学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。

通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.学习重点:同底数幂乘法运算性质的推导和应用.学习过程:一、创设情境引入新课复习乘方an的意义:an表示个相乘,即an=.乘方的结果叫a叫做,•n是问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?列式为,你能利用乘方的意义进行计算吗?二、探究新知:探一探:1根据乘方的意义填空(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)55×54=_________=5();(3)(-3)3×(-3)2=_________________=(-3)();(4)a6a7=________________=a().(5)5m5n猜一猜:aman=(m、n都是正整数)你能证明你的'猜想吗?说一说:你能用语言叙述同底数幂的乘法法则吗?同理可得:amanap=(m、n、p都是正整数)三、范例学习:【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)__2+x2x1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.2.计算:(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.【例2】:把下列各式化成(x+y)n或(x-y)n的形式.(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1四、学以致用:1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=⑷-4444=⑸22n22n+1=⑹y5y2y4y=2.判断题:判断下列计算是否正确?并说明理由⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

初中数学因式分解教案5篇整理

初中数学因式分解教案5篇整理

初中数学因式分解教案5篇整理了解运用公式法分解因式的意义,会用平方差分解因式,知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。

这里给大家共享一些关于学校数学因式分解教案,便利大家学习。

学校数学因式分解教案篇1学问点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,把握提取公因式法、公式法、分组分解法等因式分解方法,把握利用二次方程求根公式分解二次二项式的方法,能把简洁多项式分解因式。

考查重难点与常见题型:考查因式分解力量,在中考试题中,因式分解消失的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解学问点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用写出结果。

(3)十字相乘法对于二次项系数为l的二次三项式查找满意ab=q,a+b=p的a,b,如有,则对于一般的二次三项式查找满意a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都转变符号。

(5)求根公式法:假如有两个根X1,X2,那么1、教学实例:学案示例2、课堂练习:学案作业3、课堂:4、板书:5、课堂作业:学案作业6、教学反思:学校数学因式分解教案篇2教学目标1、学问与技能会应用平方差公式进行因式分解,进展同学推理力量。

2、过程与方法经受探究利用平方差公式进行因式分解的过程,进展同学的逆向思维,感受数学学问的完整性。

(人教版)初中数学因式分解教案(5篇)

(人教版)初中数学因式分解教案(5篇)

(人教版)初中数学因式分解教案(5篇)第一篇:(人教版)初中数学因式分解教案1,教学目标【课前预习】:知识回顾1、单项式乘单项式的法则是把之积作为积的系数,相同字母的作为积里这个字母的指数,只在一个单项式中含有的字母,则连同其指数作为积的一个。

2、单项式与多项式相乘,就是根据乘法律,用单项式乘多项式的,再把所得的。

3、多项式与多项式相乘,先用一个多项式的乘另一个多项式的再把所得的。

4、写出完全平方公式写出平方差公式。

5、叫多项式的因式分解。

6、因式分解与整式乘法的关系怎样?7、填空: m(a+b+c)=(a+b)(c+d)=(a+b)(c+d)=(a+b)2=(a-b)2= 2,例题例1、已知a+b=-3, ab=2, 求a2+b2;(a-b)2 的值。

例2、先化简,后求值:2x2(x2-x+1)-x(2x3-10x2+2x), 其中x=0.25例 3.计算:(1)(a+9)(a+1)(2)(5-2x+y)(2x+5-y)(3)(2x+3y)2(2x-3y)2例4: 分解因式(1)x4-1(2)49(a-b)2-6(a+b)2(3)x4y4-8x2y2+16 3,作业一、耐心填一填(每小题2分,共18分)1、计算:(5⨯10)⨯(3⨯10)=________;(用科学记数法表示)42a(a+b)-b(a-b)=_____________.2、⑴·3ab2c=—24a3b5c;⑵(—a—b)2=a22ab+b23、.多项式—3x2y3z+9x3y3z—6x4yz2的公因式是___________;分解因式a3—4ab2=.4、用一张包装纸包一本长、宽、厚如图所示的书(单位:cm),如果将封面和封底每一边都包进去3cm.则需长方形的包装纸cm2.5、若a—b=2,3a+2b=3,则3a(a—b)+2b(a—b)=.二、精心选一选6、下列四个等式从左至右的变形中,是因式分解的是:()A.(a+1)(a—1)=a2—1;B.(x—y)(m—n)=(y—x)(n—m);C.ab—a—b+1=(a—1)(b—1); D.m23⎫⎛—2m—3=m m—2—⎪.m⎭⎝7、计算(3a+b)(-3a-b)等于:()A.9a2-6ab-b2 B.—b2-6ab-9a2 C.b2-9a2 D.9a2-b212、下列多项式, 在有理数范围内不能用平方差公式分解的是:()A.—x2+y2 B.4a2—(a+b)2 C. a2—8b2 D. x2y2—113、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是:()A.(a—b)2=a2—2ab+b2 B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a+b)(a—b)=a2—b214、如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为:()A.4 B.8 C.—8 D.±8215、(x-mx+1)(x-2)的积中x的二次项系数为零,则m的值是:A.1B.–1 C.–2D.2三、用心做一做 1.计算:(1)(2x-3y)2-(y+3x)(3x-y)(2)(x+y)(x2+y2)(x-y)(x4+y4)(3).(a-2b+3)(a+2b-3)(4).[(x-y)2+(x+y)2](x2-y2)222⎡⎛11⎫⎛⎫、先化简,再求值:⎢a—⎪— a+⎪⎤⎥(a+3),其中2⎭2⎭⎥⎝⎢⎣⎝⎦a= —23、分解因式:(1)4x3y+4x2y2+xy3;(3)x3-25x(4)4x4-4x3+x2;(5)ab+a+b+14、已知(a+b)2=7,(a—b)2=4,求a2+b2和ab的值.5、阅读解答题:(2)(a+b)2+2(a+b)+1 有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:(2004年河北省初中数学竞赛题)若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a—2)=a2—a—2,y=a(a—1)=a2—a ∵x—y=(a∴x<y 看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算 1.345⨯0.345⨯2.69—1.3452 —1.345⨯0.3452 2用这种方法不仅可比大小,也能解计算题哟!—a—2—a2—a=—2<0 )()第二篇:初中数学因式分解练习题1.(2014•黔南州)下列计算错误的是()A.a•a2=a3 C.2m+3n=5mnA.a2+4a-21=a(a+4)-21 C.(a-3)(a+7)=a2+4a-21 A.a2+1 A.-3B.a2-6a+9 B.-1B.a2b-ab2=ab(a-b)D.(x2)3=x6B.a2+4a-21=(a-3)(a+7)D.a2+4a-21=(a+2)2-25 C.x2+5y C.1D.x2-5y D.316.(2014•攀枝花)因式分解a2b-b的正确结果是()A.b (a+1)(a-1)A.x(x2-9)A.a(x-6)(x+2)A.x2+y2 A.(x+y)2=x2+y2 C.x2y+xy2=(xy)3 A.(a2+1)2 A.(x+2)(x-2)A.(x-2)2 A.m2+n2=(m+n)2 D.(a-2)(a+1)C.(a-b)2=a2-2ab+b2 A.(x2)3=x6 C.x2-2xy+y2=(x-y)2 A.x2+2x-1=(x-1)2 C.(x+1)2=x2+2x+1 A.x2-xy A.x(x2-4)A.y(x-y)2 A.a2(a-2)+aD.y(x+y)(x-y)D.2(x+9)(x-9)A.x2+2x-1=(x-1)2 C.x3-4x=x(x+2)(x-2)B.x2+xyB.x(x+4)(x-4)B.y(x+y)(x-y)B.a(a2-2a)B.(a2-1)2 B.(x+2)2 B.x2B.a(b+1)(b-1)B.x(x-3)2 B.a(x-3)(x+4)B.x2-yC.b(a2-1)C.x(x+3)2 C.a(x2-4x-12)C.x2+x+1 B.x2y2=(xy)4 D.x4÷x2=x2 C.a2(a2-2)C.(x-4)2 C.(x-1)2D.(a+1)2(a-1)2 D.(x-2)2 D.x(x-2)D.b(a-1)2 D.x(x+3)(x-3)D.a(x+6)(x-2)D.x2-2x+117.(2014•广东)把x3-9x分解因式,结果正确的是()18.(2014•怀化)多项式ax2-4ax-12a因式分解正确的是()19.(2014•玉林)下面的多项式在实数范围内能因式分解的是()21.(2014•官渡区一模)下列运算正确的是()2.(2014•海南)下列式子从左到右变形是因式分解的是()3.(2014•安徽)下列四个多项式中,能因式分解的是()4.(2014•台湾)若x2-4x+3与x2+2x-3的公因式为x-c,则c 之值为何?()5.(2014•台湾)(3x+2)(-x6+3x5)+(3x+2)(-2x6+x5)+(x+1)(3x6-4x5)与下列哪一个式子相同?()A.(3x-4x)(2x+1)C.-(3x6-4x5)(2x+1)A.x2-1 A.-1 A.a(a-1)22.(2014•下城区一模)分解因式a4-2a2+1的结果是()23.(2014•衡阳二模)把代数式x2-4x+4分解因式,下列结果中正确的是()24.(2014•滨湖区二模)分解因式(x-1)2-1的结果是()25.(2014•上城区二模)下列因式分解正确的是()B.m2-4n2=(m-2n)(m+2n)D.a2-3a+1=a(a-3)+1 B.x2•x3=x5 D.3x-2x=1B.-x2+(-2)2=(x-2)(x+2)D.x2-4x=x(x+2)(x-2)C.x2+y2C.x(x+2)(x-2)C.y(x+y)2 C.a(a-1)2D.x2-y2D.(x+2)(x-2)D.y(x2-2xy+y2)D.a(a+1)(a-1)B.(3x-4x)(2x+3)D.-(3x6-4x5)(2x+3)C.x2-2x+1 C.1C.(a-2)(a-1)B.(x-4)x=x-4x D.m2-2mn+n2=(m+n)26.(2014•威海)将下列多项式分解因式,结果中不含因式x-1的是()B.x(x-2)+(2-x)B.0 B.a(a-2)D.x2+2x+1 D.27.(2014•漳州)若代数式x2+ax可以分解因式,则常数a不可以取()8.(2014•仙桃)将(a-1)2-1分解因式,结果正确的是()9.(2014•常德)下面分解因式正确的是()A.x+2x+1=x(x+2)+1 C.ax+bx=(a+b)x10.(2014•河北)计算:852-152=()A.70A.x2-y2=(x-y)2 C.xy-x=x(y-1)B.700C.4900B.a2+a+1=(a+1)2 D.2x+y=2(x+y)D.700011.(2014•岳阳)下列因式分解正确的是()26.(2014•郯城县模拟)下列运算错误的是()27.(2014•路北区二模)下列各因式分解正确的是()29.(2014•长清区一模)下列多项式中,能运用公式法因式分解的是()30.(2014•天桥区二模)把多项式x3-4x分解因式所得的结果是()31.(2014•朝阳区一模)把多项式x2y-2xy2+y3分解因式,正确的结果是()32.(2014•邢台一模)分解因式:a3-2a2+a=()33.(2014•南充模拟)下列各因式分解正确的是()12.(2014•衡阳)下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③-x2+y2=(x+y)(x-y)A.3个B.2个C.1个B.x2+2x-1=(x-1)2 D.x-x+2=x(x-1)+2B.y(x-y)B.2(x-3)2D.0个13.(2014•毕节地区)下列因式分解正确的是()A.2x2-2=2(x+1)(x-1)C.x+1=(x+1)A.y(x+y)A.2(x2-9)14.(2014•泉州)分解因式x2y-y3结果正确的是()C.y(x-y)C.2(x+3)(x-3)B.-x2+(-2)2=(x-2)(x+2)D.(x+1)2=x2+2x+115.(2014•义乌市)把代数式2x2-18分解因式,结果正确的是()第三篇:初中数学因式分解(练习题)初中因式分解的常用方法例1、分解因式:am+an+bm+bn例2、分解因式:2ax-10ay+5by-bx练习:分解因式1、a2-ab+ac-bc2、xy-x-y+1例3、分解因式:x2-y2+ax+ay例4、分解因式:a2-2ab+b2-c2练习:分解因式3、x2-x-9y2-3y4、x2-y2-z2-2yz综合练习:(1)x3+x2y-xy2-y3(2)ax2-bx2+bx-ax+a-b(3)x2+6xy+9y2-16a2+8a-1(4)a2-6ab+12b+9b2-4a(5)a4-2a3+a2-9(6)4a2x-4a2y-b2x+b2y(7)x2-2xy-xz+yz+y2(8)a2-2a+b2-2b+2ab+1(9)y(y-2)-(m-1)(m+1)(10)(a+c)(a-c)+b(b-2a)(11)a2(b+c)+b2(a+c)+c2(a+b)+2abc(12)a3+b3+c3-3abc 例5、分解因式:x2+5x+6例6、分解因式:x2-7x+6练习5、分解因式(1)x2+14x+24(2)a2-15a+36(3)x2+4x-5练习6、分解因式(1)x2+x-2(2)y2-2y-15(3)x2-10x-24例7、分解因式:3x2-11x+10练习7、分解因式:(1)5x2+7x-6(2)3x2-7x+2(3)10x2-17x+3(4)-6y2+11y+10例8、分解因式:a2-8ab-128b2练习8、分解因式(1)x2-3xy+2y2(2)m2-6mn+8n2(3)a2-ab-6b2例9、2x2-7xy+6y2例10、x2y2-3xy+2练习9、分解因式:(1)15x2+7xy-4y2(2)a2x2-6ax+8综合练习10、(1)8x6-7x3-1(2)12x2-11xy-15y2(3)(x+y)2-3(x+y)-10(4)(a+b)2-4a-4b+3(5)x2y2-5x2y-6x2(6)m2-4mn+4n2-3m+6n+2(7)x2+4xy+4y2-2x-4y-3(8)5(a+b)2+23(a2-b2)-10(a-b)2 (9)4x2-4xy-6x+3y+y2-10(10)12(x+y)2+11(x2-y2)+2(x-y)2思考:分解因式:abcx2+(a2b2+c2)x+abc例11、分解因式:x2-3xy-10y2+x+9y-2练习11、分解因式(1)x2-y2+4x+6y-5(2)x2+xy-2y2-x+7y-6(3)x2+xy-6y2+x+13y-6(4)a2+ab-6b2+5a+35b-36例12、分解因式(1)x2-3xy-10y2+x+9y-2(2)x2+xy-6y2+x+13y-6练习12、分解因式(1)x2+xy-2y2-x+7y-6(2)6x2-7xy-3y2-xz+7yz-2z2第四篇:【初中数学】复习资料--因式分解常用技巧总结因式分解常用技巧总结基本的四种技巧:一.提取公因式法:ma+mb+mc=m(a+b+c);例:6xy2-9x2y-y3=二.公式法:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)2推广:a3±b3=(a±b)(a2μab+b2);an-bn=(a-b)(an-1+an-2b+an-3b+Λ+abn-2+bn-1)an+bn=(a+b)(an-1-an-2b+an-3b+Λ-abn-2+bn-1)(n为奇数)例:8x-3127y3=变式1:x8+x6+x4+x2+1=答案:(x4+x3+x2+x+1)(x4-x3+x2-x+1)三.十字相乘法:x+(a+b)x+ab=(x+a)(x+b)推广:a1a2x+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2),(a1a2≠0)xy-ax+by-ab=(x+b)(y-a)22例:6m+7mn-20n=变式1:x+xy-6y+x+13y-6=四.分组分解法:分组以后能提公因式或利用公式分解,从而把原多项式因式分解例:9a-6a+2b-b=25-4x-8xy-4y22222222=推广:(1)拆项法:把多项式里的某一项拆成两项或多项,使其能进行分组分解例:x4-7x2+1=答案:(x2-3x+1)(x2+3x+1)(2)添项法:在多项式中适当地添上一些项,使其能转化为可进行分组分解例:3x6-x12-1=答案:(x3-x6+1)(x3+x6-1)变式1:x3-9x+8=变式2:x4+4=其他重要的因式分解技巧:1.换元法:换元法是在分解因式时,通过将原式的代数式用字母代替后,达到简化原式结构的目的例1:(x+1)(x+2)(x+3)(x+6)+x2=提示:令m=x2+6,原式=(x2+6x+6)2 例2:xy(xy+1)+(xy+3)-2(x+y+答案:(x+1)(y+1)(x-1)(y-1)变式1:(x+1)(x+2)(x+3)(x+4)-24=变式2:(x-4x+1)(x+3x+1)+10x=2.主元法:主元法就是将多元(多个字母)中某个元作为主要字母,视其他元为常数,重新按主元排列多项式,排除非主元字母的干扰,从而简化问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解教案(优秀5篇)初二数学因式分解教案篇一1、shouldshould是情态动词,意为“应当,应该”。

表示义务、责任,可用于各种人称,无人称和数的变化,也不能单独作谓语,只能和主要动词一起构成谓语,表示说话人的语气和情态;否定形式为should not,缩写为shouldn’t。

其主要用法有:(1)表示责任和义务,意为“应该”。

You should take your teacher’s advice.你应该听从你老师的建议。

You shouldn’t be late for class.你不应该上课迟到。

(2)表示推断,意为“可能,该”。

The train should have already left.火车可能已经离开了。

(3)当劝某人做或不做某事时,常用should do sth.或shouldn’t do sth.,比must和ought to 更加委婉。

You should brush your teeth vefore you go to bed.你在睡觉前应该刷牙。

2、need(1)need作实义动词,意为“需要,必然”,有人称、时态及数的变化。

sb./sth.需要某人/某物need+ to do sth.需要做某事doing需要(被)做He needs some help.他需要些帮助。

You didn’t need to come so early.你不必来这么早。

The flowers need watering.花需要浇水。

(2)need也可作情态动词,意为“需要,必须”,没有人称、数和时态的变化,后接动词原形,多用于否定句和疑问句中。

He need not go at once.他不必立刻走。

Need he go at once?他必须立刻走吗?用must提问的句子,其否定回答常用needn’t。

— Must he hand in his homework this morning?他必须今天上午交作业吗?— No, he needn’t.不,不必了。

【拓展】need to do和need doing的辨析:need to do sth.意为“需要干某事”,是自己主动去干某事;need doing其主语是物,含有被动的意义,相当于need to be done。

The student needs to do his homework as soon as he gets home.那个学生需要一回家就做家庭作业。

My computer needs repairing.我的电脑需要修理。

3、untiluntil意为“直到…”,有下列用法:(1)作介词,后接时间名词,在句中作时间状语。

(2)作连词,后接从句,引导时间状语从句。

We waited until the rain stopped.我们等到雨停了。

She stayed there until 9 o’clock.她一直等到9点钟。

【拓展】(1)until用在肯定句中,多与持续性的动词连用表示某动作持续到某时,until相当于till。

如stand、wait、stay等,表示主句动作的终止时间。

(2)until可用于否定句中,即not…until…意为“直到…才”,常与非延续性动词连用。

如open、start、leave、arrive等,强调主句动作开始时间。

The child didn’t go to bed until his father came back.直到父亲回来,那个孩子才睡觉。

You’d better wait until the rain stops.你等到雨停。

因式分解教案篇二教学目标:1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。

2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。

4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。

教学重点:应用平方差公式分解因式.教学难点:灵活应用公式和提公因式法分解因式,并理解因式分解的要求.教学过程:一、复习准备导入新课1、什么是因式分解?判断下列变形过程,哪个是因式分解?①(x+2)(x-2)= ②③2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。

x2+2xa2b-ab3、根据乘法公式进行计算:(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=二、合作探究学习新知(一)猜一猜:你能将下面的多项式分解因式吗?(1)= (2)= (3)=(二)想一想,议一议: 观察下面的公式:=(a+b)(a—b)(这个公式左边的多项式有什么特征:_____________________________________公式右边是__________________________________________________________这个公式你能用语言来描述吗?_______________________________________(三)练一练:1、下列多项式能否用平方差公式来分解因式?为什么?① ② ③ ④2、你能把下列的数或式写成幂的形式吗?(1)()(2)()(3)()(4)= ()(5)36a4=()2 (6)0.49b2=()2 (7)81n6=()2 (8)100p4q2=( )2(四)做一做:例3 分解因式:(1)4x2- 9 (2) (x+p)2- (x+q)2(五)试一试:例4 下面的式子你能用什么方法来分解因式呢?请你试一试。

(1)x4- y4 (2) a3b- ab(六)想一想:某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?初二数学因式分解教案篇三《错过》答案【课堂同步】1、lánmānhānsǒuchóuchàng2、槽贻愫驭硕嚼涩凝3、(1)“又”字表明在一年前已经错过了许多,强调了错过是“人生的常态”。

(2)“一般来说”,用在这里表示限定范围,强调丁普遍性,但又不排除例外。

(3)“或许”用在这里表示一种猜测,不肯定。

因为“没有意识到错过”的不一定都“能产生一种自足感”。

(4)用两个“立刻”强调速度要快,才有可能“使错过转化为掌握”。

“多半”,是“一半以上”的意思,说明不是全部能“使错过转化为掌握”的。

4、对比论证。

“错过”了,能够认识到,这是一种“情愫”,在“追悔”中认识到为什么会“错过”,从而不再犯同样的“错过”的失误,这种引以为戒的能力是一种“升腾”的能力。

5、冷静而成熟地驾驭。

(答案不强求一致,言之有理即可)6、不矛盾。

因为上次错过了,“对错过有了痛切的感受,当机遇再次呈现时,你便会有高度的应变力与把握力”,便能“冷静而成熟地驾驭”。

7、不能调换。

两个词的意思不同。

“错过”是动词,是失去(机会、对象)的意思;“过错”是名词,是过失、错误的意思。

8、要习惯它、品味它。

因为人生充满了错过,没有“万无一失”的人生,所以必须“习惯”错过;错过自有意义,人“在追悔中产生出一种真切而细微、深入而丰厚的情愫”,“灵魂具备了升腾的能力”,产生“高度的应变力与把握力”,所以必须“品味”错过。

【课外拓展】9、指“我”不能突破现有的写作水平的关键。

10、缺少那能使人除了追求完整的意志而外把一切都忘掉的热忱。

11、“我”省悟到一切艺术与伟业的奥妙——专心。

12、通过细节描写表现罗丹的专注。

13、(示例)我太专注了。

《散步》答案【课堂同步】1、(1)C(2)B2、C3、(1)一个“熬”字,形象地写出了老母亲面对漫长的寒冬,在身体和精神方面所经受的磨难之巨。

(2)“总算”表露了“我”盼春春至的欣喜之情。

4、略,5、因为“我”爱幼,但更尊老;“我”伴同儿子的时日还长。

6、从“母亲摸摸孙儿的小脑瓜”这一细节可以看出,母亲改变主意是因为爱她的孙子。

7、祖孙发生了分歧,处理不好会影响家庭的和睦。

8、小路的景色十分诱人,照应前面的“小路有意思”,说明母亲走小路是顺从小孙子。

9、描写了一家三代和睦融洽、相互体贴关心的动人场面,体现了中华民族尊老爱幼的传统美德。

10、“我”和妻子人到中年,肩负着承前启后的责任,对生活有着高度的使命感。

【课外拓展】11、暗示修车女工他是影帝阿利克斯•洛依德。

12、女工认为人与人之间应该是平等的、相互尊重的。

13、谁来修车都是我的顾客,无论是普通人还是明星,这是我的工作。

每个人都有自己的工作,尽管有分工,但工作不分高低贵贱。

14、看到了普通女工高尚的精神境界,洛依德在她面前感到了自己的浅薄与虚妄。

15、“浅薄”指过分看重自己的职业和成就,“虚妄”指看不起他人和强求别人崇拜自己。

因式分解教案篇四教学目标:1、知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。

2、过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。

3、情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。

教学重、难点:用提公因式法和公式法分解因式。

教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。

什么叫因式分解?知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

【说明】(1)因式分解与整式乘法是相反方向的变形。

例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。

怎样把一个多项式分解因式?知识点2 提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。

ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。

例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1)。

探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1 用提公因式法将下列各式因式分解。

相关文档
最新文档